fm

Similar documents
41.3(18) fm

304.fm

14.531~539(08-037).fm

605.fm

16(1)-3(국문)(p.40-45).fm

82-01.fm

93-08.fm

9(3)-4(p ).fm

69-1(p.1-27).fm

84-01.fm

10(3)-12.fm

DBPIA-NURIMEDIA

82.fm

< DC1A4C3A5B5BFC7E22E666D>

10(3)-09.fm

untitled

10(1)-08.fm

12(2)-04.fm

10(3)-10.fm

\\g1w1725.austin.hp.com\hse\docs\atn\kor_ghs\korean\013022_Q4209A.pdf


2 3

12(3) 10.fm

50(1)-09.fm

12.077~081(A12_이종국).fm

10(3)-02.fm

416.fm

16(2)-7(p ).fm

11(5)-12(09-10)p fm

fm

83-07.fm


878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

50(5)-07.fm

15.101~109(174-하천방재).fm

환경중잔류의약물질대사체분석방법확립에 관한연구 (Ⅱ) - 테트라사이클린계항생제 - 환경건강연구부화학물질연구과,,,,,, Ⅱ 2010

26(1)-11(김기준).fm

03-2ƯÁý -14š

서론 34 2

31(3B)-07(7055).fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

한약재품질표준화연구사업단 금은화 ( 金銀花 ) Lonicerae Flos 생약연구과

fm

untitled

38(6)-01.fm

17.393~400(11-033).fm

03-서연옥.hwp

49(6)-06.fm

3.fm

19(1) 02.fm

04_이근원_21~27.hwp

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

14(4) 09.fm

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

10.063~070(B04_윤성식).fm

51(2)-06.fm

연세대-신규메뉴북-수정3

32(4B)-04(7455).fm

8(2)-4(p ).fm

Æ÷Àå82š

07.051~058(345).fm

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

식료

싱카이 역삼점 메뉴내지_단품음주류

(2)-02(최경자).fm

한약재품질표준화연구사업단 강활 ( 羌活 ) Osterici seu Notopterygii Radix et Rhizoma 생약연구과

01.01~08(유왕진).fm

<30332DB9E8B0E6BCAE2E666D>

Lumbar spine

14(4)-14(심고문2).fm

84-07.fm

012임수진

DBPIA-NURIMEDIA

14.fm

27(3D)-07.fm

21(4)-02.fm

51(4)-13.fm

γ

한약재품질표준화연구사업단 고삼 ( 苦參 ) Sophorae Radix 생약연구과

82-08.fm


Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

26(2)-04(손정국).fm

제3호-최종

14(2) 02.fm


03이경미(237~248)ok

25(6)-12(조윤아).fm

54 한국교육문제연구제 27 권 2 호, I. 1.,,,,,,, (, 1998). 14.2% 16.2% (, ), OECD (, ) % (, )., 2, 3. 3

16(4)-05.fm

Seoul Garden 11

07.045~051(D04_신상욱).fm

11(1)-15.fm

20(2)-07[25].fm

Microsoft Word - KSR2012A021.doc

40.5(4) fm

93.fm

한약재품질표준화연구사업단 작약 ( 芍藥 ) Paeoniae Radix 생약연구과

08.fm

11¹ÚÇý·É

Transcription:

J. Fd Hyg. Safety 19(4), 176 184 (4) w w y w ky (PAHs) sƒ ½ z y* * k* Ÿ t t *š w tœw Exposure Assessment for Polycyclic Aromatic Hydrocarbons in the Model Menu System of Korean YunHee Kim, EunKyung Yoon, HyoMin Lee, KyungAh Park, EunAh Jun, CherlHo Lee*, SangYun Choi*, SeungTaek Lim*, KeumRyun Ze and KwangSik Choi,PSFB'PPEBOE%SVH"ENJOJTUSBUJPO (SBEVBUF4DIPPMPGMJGFTDJFODFBOECJPUFDIOPMPHZ,PSFB6OJW ABSTRACT This study was conducted to compare and estimate the daily PAHs dietary intake from both homecooking and dining-out, through approach of model diet used in exposure assessment of food contaminants. Food commodities reflecting in model diet were selected from the KHIDI report and were analysed in cooked or uncooked edible forms using HPLC-Fluorscence Detector. The PAHs dietary intake comparison between home-cooking and dining-out was based on one meal intake suggested in model diet and PAHs dietary intake was estimated by using food consumption rate and body weight of the Korean adult group. The daily PAHs dietary intake was calculated by permutation and combination method with assumption that a person consumed 2 meals from home-cooking menu and 1 meal from dining-out menu. The total PAHs levels in 36 food commodities with samples were ranged from 2.00 ug/kg to 141.28 ug/kg and a food showing the highest PAHs level was the stir-fried anchovy. The TEQ BaP levels of PAHs were calculated using benzo(a)pyrene equivalents individual congener level and corresponding TEF value and the TEQ BaP level were ranged from 0.03 /kg to 1.31 /kg and a food showing the highest TEQ BaP level was the hamburger. The PAHs dietary intakes per one meal from home-cooking and diningout were 2.4 10-3 /kg/meal and 4.0 10-3 /kg/meal, respectively. This data showed the PAHs dietary intake from dining-out was about 1.7 times higher than from the home-cooking. The daily PAHs dietary intakes of general Korean adult having two meals from home-cooking and one meal from dining-out per a day were ranged between 8.0 10-3 ~9.7 10-3 /kg/day and mean value as 8.9 10-3 /kg/day. Key words: PAHs(Polycyclic Aromatic hydrocarbons), KHIDI(Korea Health Industry Development Institute), TEQ(Toxic Equivalents), TEFs(Toxic Equivalency Factors) y w ky (Polycyclic Aromatic hydrocarbons, PAHs) 2 š ƒ x ƒ ù»yw yw š. yw 1,2) benzo(a)pyrene x š, p benzo(a)pyrene, benzo(a)anthracene, dibenzo(a,h)anthracene, chrysene ùkü š. 3) benzo(a)pyrene PAHs yw ƒ ƒ w, PAHs yw t š š, mouse, rat, hamster, rabbit, guinea pig, duck, dog, monkey sww k,»x, Author to whom correspondence should be addressed. ùkþ. U.S.EPA(1992) 4) benzo(a)anthracene, benzo(a)pyrene, dibenzo(a,h) anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, indeno(1,2,3-c,d)pyrene group B2(probable human carcinogen). 7) PAHs yw congener w w x, j 7 w k œ v ƒ k šƒ. 5,6) PAHs yw» w sƒ yw tw» (toxic equivalency factors, TEFs) w w sƒ wš.»k yw 176

&YQPTVSF"TTFTTNFOUGPS1PMZDZDMJD"SPNBUJD)ZESPDBSCPOTJOUIF.PEFM.FOV4ZTUFNPG,PSFBO 177 w w PAHs yw ƒ» w y, ƒ t š. 8-10) x ¾ š w ù t mw t ql j ùkü 3~17 ug/day, 11,12) PAHs yw t w y w j š š. 9,10,12) ù t ql w PAHs yw» t š»,, š» w t. w t w ¼ w, 1 4.32 10-7 mgteq BaP / kg/day š. w ù ƒ ƒwš,» w ù 1 1z w 26.3% 16) š, w PAHs» t mw ƒ w t ƒw PAHs yw š ƒw. x w yql w y w ƒ PAHs yw sƒwš w., ù Á t š ƒ wš, w t PAHs yw w, PAHs yw y w ƒ sƒwš w. ƒ ƒ w PAHs yw w w t t w š (w, 3) 17) Á t w w. ƒ 1 4 (,,, 1, 2, ½e, z ) 4 w, ù ( y, 0) w 4 w. t PAHs yw t PAHs yw (10), (10), (3), gù (3), (3), š (10),» (3), (3), w (3), f (3), š» (10), (10), š» (3), (10), (3), e (3), (10), k (3), tš (3), (3), q (3), o½(3), eù (10), gù e(3), ek (3), ½ e(10), ¾»(3), q½e(3), (10), g (10), w (4), (3), (10), (3), (10), (3) sww t 30 t 6 w, ( ) v w. t,,,,, ù t ƒƒ 3 ƒ l, ù x w w t w w š, ½e,,, q pt,, q t w w. Naphthalene (NA), Fluorene (FL), Phenanthrene (PH), Anthracene (AN), Fluoranthene (Fluo), Pyrene (PY), Chrysene (CH), Benzo(a)anthracene (BaA), Benzo(a)fluoranthene (BaF), Benzo(k)fluoranthene (BkF), Benzo(a)pyrene (BaP), Dibenzo(a,h)anthracene (DahA), Benzo(g,h,i)perylene (BghiP), Indeno(1,2,3-c,d)pyrene (IP) 14 PAH yw w. t PAHs yw i) g 10 ml p 2ml 0.4 M NaOH/EtOH- Water(9:1, v/v) 4 ml ƒw 60 C 30 y g o. y z n-hexane PAHs w N 2 gas jš acetonitrile 1 ml w g High Performance Liquid Chromatography-FL(Detector 3013, shiseido, Japan) w (Table 1). 19) PAHs Table 1. Condition for HPLC analysis of PAHs in foods Column Detector Flow Rate Solvent System Wavelength (Em/Ex) Supelcosil LC-PAH column(25cm 4.6cm) with C 18 Guard column Fluorescence(Detector 3013, shiseido) 1ml/mi Min Initial 10 35 Acetonitrile(% % % 0 0 Min nm(em/ex * ) 0.0-18.5 18.5-32.5 32.5-.0 267/384 290/410 293/498 *Em : Emission wavelength; Ex : Excitation wavelength 60 60

178 :VO)FF,JNFUBM w f supelguard LC-18(supelco, USA) LC-PAH colume(2.5 cm 4.6 mm I.D., sum, supelco, USA) w. ii) g w t 0 ml v p» 30 g 2M KOH/ MeOH-Water(9:1, v/v) ml Na 2 S 2 g ƒw 2 y j 70 C y w z o n-hexan ml ƒw 15 z ml ƒw w ew. Hexane d ml w N 2 gas k z acetonitrile 1ml w g High Performance Liquid Chromatography-FL(Detector 3013, shiseido, Japan) w. 18) PAHs w f g w. PAHs yw sƒ ƒ (Toxic Equivalents, TEQ BaP ) - PAHs yw benzo(a)pyrene w yw (toxic equivalency factors, TEFs) Nisbet & Lagoy (Table 2) y w TEQ BaP w (Equation 1). 20) Equation 1) TEQ BaP n = 1 ( Vkg) = ( Cij) TEFj i: Number of food commodity considered in one meal. j: Number of PAH congener occurred in edible food commodity. C ij : Concentration of congenerj in food commodityi (ug/kg) TEF j : Toxic equivalency factors using for converting individual PAH congenerj level into TEQ BaP TEQ BaP : Benzo(a)pyrene equivalents adjusted TEFs value ( /kg) ö ƒ PAHs yw (PAHs dietary intakes) ƒ mw w ö PAHs yw ù 60 kg ( š, 1998) 23) w š, w t TEQ BaP 1 1z (one serving size) t ( t, 3) 22) y w w (Equation 2). Equation 2) PAHs dietary intake per one meal n O Cij TEFjP IRi n = i = j ------------------------------------------------------- ( /kg/meal) BW i = 1 i: Number of food commodity considered in one meal. j: Number of PAH congener occurred in edible food commodity. C ij : Concentration of congenerj in food commodityi (ug/kg). TEF j : Toxic equivalency factors using for converting individual PAH congenerj level into TEQ BaP IR i : Amount of one serving size per one meal of food commodityi (g/meal). BW: Body weight of adult (60kg). 1 3z š w PAHs yw (Daily PAHs dietary intake) š w ql ƒ 2 : 1 š w 16), w 4 ƒ 2z, 4 1z» w y w 1 3z mw PAHs yw w. Table 2. Toxic Equivalency Factors using for converting individual PAH congener level into TEQ BaP 21) Congener TEF Congener TEF Naphthalene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Chrysene 0.010 0.010 TEQ BaP : Toxic Equivalents; TEF : Toxic Equivalency Factor Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Indeno(1,2,3-c,d)pyrene 0. 0. 0. 1.000 5.000 0.010 0.

&YQPTVSF"TTFTTNFOUGPS1PMZDZDMJD"SPNBUJD)ZESPDBSCPOTJOUIF.PEFM.FOV4ZTUFNPG,PSFBO 179 š ƒ ù t t 1, 1, 2, 1, 9, e 1, 6, o½ 1, ù 2, 1, ½e 3, t 1, 1, 4, 1, ƒœ t 1 sww 36 w ƒ Table 3. t PAHs t t PAHs yw y 36 t, 14 PAHs yw w, e 141.28 ug/ kg, 86.04 ug/kg, w 64.46 ug/kg š» 64.21 ug/kg, g w t PAHs yw 2.00 ug/kg~63.98 ug/kg (Fig. 1). ƒ PAHs yw ùkü e š w w ƒœ m PAHs yw ù,» w w t ü PAHs yw š. w y š Table 3. Home cooking menu and dining out menu considering primary foods consumed in large amount by Koreans Home cooking menu Dining out menu A Loaf bread Cow's milk Fried sausage Fried bacon Pan-fried eggroll Stir-fried onion Apple Oven baked chicken Pan-fried eggroll Baechu kimchi Chicken radish Citrus B Soy bean paste pot-stew Broiled mackerel Stir-fried fish paste Fried ham Baechu kimchi Persimmon Barbecued beef Soy bean paste pot-stew Stir-fried anchovy Seasoned bean sprout Lettuce Apple C Broiled yellow corvinal Stir-fried anchovy Stir-fried oyster mushroom Pear Hamburger Fast food french-fry Coke D Bean-spout soup Fried bean curd Seasoned spinach Stir-fried potato Kakdugi Citrus Barbecued pork Stir fried oak-mushroom Stir-fried fish paste Lettuce Fig. 1. Total PAHs level and Total TEQ BaP level of primary foods consumed in large amount by Korean.

180 :VO)FF,JNFUBM w n d 25) 0.01 ug/kg~2.2 ug/kg PAHs yw ƒ d ewš. ½ w w ƒ ƒ 10) benzo(a)pyrene, ƒ ¼, ƒ ƒ benzo(a)pyrene ƒw š, w t PAHs yw ƒ. ƒ ùkù, t PAHs yw ƒ ùkû. PAHs yw œ» n w Ë Ë t, p t, f, e ƒ. 14) Monica, 14) Lodovici, 12) Larsson w 26) PAHs ƒƒ 13.53 ug/kg, 2.61 ug/kg, 26 ug/kg~ ug/kg š, 25.07 ug/kg. ù PAHs yw ƒ š ƒ, k x, š benzo(a)pyrene chrysene, 0.19~2.15 ug/kg. r, w 7 š, benzo(a)pyrene 0.01~0.03 ug/kg ùkû. 7 PAHs yw chrysene w 6, benzo(a)anthracene 0.61 ug/kg ƒ š, benzo(a)pyrene ù w 0.01 ug/kg ùkû. t PAHs yw ql t PAHs yw s r naphthalene fluoranthene ƒƒ 561.1 ug/kg(.06%) 552.9 ug/ kg(39.48%) yw w. PAHs t benzo(a)pyrene w 0.52 ug/kg(28.41%) ƒ š, š» 0.28 ug/kg(15.30%), w 0.13 ug/kg(7.10%), 0.10 ug/kg(5.46%), f 0.10 ug/ kg(5.46%). PAH yw ql r, fluoranthene naphthalene ƒƒ 19.21(±10.01) ug/kg(45%), 13.(±11.) ug/kg(30%), fluorene pyrene ƒƒ 21.11(±32.13) ug/kg (41%), 16.69(±11.35) ug/kg(32%) PAH yw (Fig. 2). 14 PAHs yw PAHs yw ( ß3 rings PAHs) 4 š PAHs yw ( à4 ring PAHs) 10 Fig. 2. Distribution of individual PAH congener in foods according to cooking methods A:Fried food group; B: Stir-fried group. š PAHsƒ 46.77% w wš ùkû. š PAHs yw 10 7,» { w š tt w ƒ j š š. 27) t PAH yw sƒ PAHs yw ƒ - w y w t ƒ w ƒ 1.31 /kg, š

&YQPTVSF"TTFTTNFOUGPS1PMZDZDMJD"SPNBUJD)ZESPDBSCPOTJOUIF.PEFM.FOV4ZTUFNPG,PSFBO 181 0.81 /kg, eù 0.67 / kg, š» 0.54 /kg (Fig. 1). ƒ PAHs yw s r t indeno(1,2,3-c,d)pyrene, benzo(a)pyrene, dibenzo(a,h)anthracene ùkû, 3 ƒ ƒƒ 3.32 /kg(30.46%), 1.82 /kg(16.70%), 1.76 /kg(16.61%). Indeno(1,2,3-c,d)pyrene š 0.60 /kg (17.85%), benzo(a)pyrene w 0.518 / kg(28.49%), dibenzo(a,h)anthracene 0.45 /kg(25.59%) ƒ ùkû. PAHs yw ƒ t r, e, gù e,,, PAHs yw ù, y w ƒ û ùkû. PAHs yw PAHs yw w û»., eù PAHs yw ƒ û ƒ, PAHs yw w. w, š», š, PAHs yw Table 4. The PAHs dietary intakes per one meal from home cooking menu and dining out menu Home cooking menu Dining out menu Foods Food intake 12) (g/meal) Dietary intake (ug/kg/meal) Foods Food intake (g/meal) dietary intake (ug/kg/meal) A Loaf bread Cow's milk Fried sausage Fried bacon Pan-fried eggroll Stir-fried onion Apple 70 20 25 3.3 10-4 7.0 10-4 1.2 10-4 1.5 10-4 4.5 10-4 2.1 10-4 2.7 10-4 Oven-baked chicken Pan-fried eggroll Baechu kimchi Chicken radish Citrus 1 1.3 10-3 1.8 10-3 4.5 10-4 1.3 10-4 3.2 10-4 1.0 10-4 B C D Total 615 2.2 10-3 Total 810 4.6 10-3 Soy-bean paste pot-stew Broiled mackerel Stir-fried fish-paste Fried ham Baechu kimchi Persimmon 2 80 80 1.2 10-4 1.1 10-3 1.0 10-4 3.3 10-4 1.3 10-4 5.0 10-5 Barbecued beef Soy-bean paste pot-stew Stir-fried anchovy Seasoned bean-sprouts Lettuce Apple 2 15 2.0 10-3 1.2 10-4 8.0 10-5 3.3 10-4 9.0 10-5 1.1 10-4 2.7 10-4 Total 7 2.3 10-3 Total 965 3.0 10-3 Broiled yellow corvina Stir-fried anchovy Stir-fried oyster-mushroom Pear 15 1.8 10-3 1.8 10-4 8.0 10-5 1.1 10-4 1.4 10-4 6.0 10-5 Hamburger Fast food french fry Coke 180 1 480 3.9 10-3 2.8 10-4 Total 725 2.9 10-3 Total 810 4.2 10-3 Bean-spouts soup Fried bean curd Seasoned spinach Stir-fried potato Kakdugi Citrus 2 80 5.0 10-4 5.2 10-4 5.6 10-4 7.0 10-5 6.0 10-5 1.0 10-4 Barbecued pork Stir-fried oak mushroom Stir-fried fish-paste Lettuce 0 1.5 10-3 1.8 10-3 3.1 10-3 1.0 10-3 1.0 10-4 1.1 10-4 Total 790 2.3 10-3 Total 790 4.4 10-3 Average 2.4 10-3 Average 4.0 10-3

182 :VO)FF,JNFUBM ƒ PAHs yw w. ö ƒ PAHs yw ù s³ 1 1z t PAHsyw w w ö ƒ PAHs yw s³ ƒƒ 2.4 10-3 /kg/day, 4.0 10-3 /kg/day ƒ 1.7 ùkþ (Table 4). 4 w ƒ 2.2 10-3 ~2.9 10-3 /kg/meal ƒ Cƒ ƒ. 1.8 /kg/meal(21%), PAHs yw û ƒ 1z t t w ƒ C ƒ t ƒ» ùkþ. š 1.1 10-3 /kg/meal(12%), 7.0 10-4 /kg/meal(8%), eù 6.0 10-4 /kg/meal(6%), 5.0 10-4 /kg/ meal(6.02%), gù 5.0Ü10-4 /kg/meal(5.7%)» ƒ ùkû. 4 3.0 10-3 ~4.6 10-3 /kg/meal Aƒ ƒ. A ƒ C ƒ» ùkþ, t w ƒ ƒ» ùkþ. w 2 3.9 10-3 /kg/meal(30%) PAHs yw ƒ 1z t PAHs yw» t. w š» 2.0 10-3 /kg/meal(16%), 1.8 10-3 /kg/meal (14%), 1.5 10-3 /kg/meal(12%), š» 1.3 10-3 /kg/meal(10%)» ùkþ. t y w ƒ w š, š»,,, eù 1 z t PAHs yw. š»,, gù ƒ û, 1z t PAHs yw, w, q, f ƒ 1z t t» û. 1 3z š w 1 PAHs yw s ƒ w ql ƒ 2z 1z š w 4 ƒ 2z 4 1z» w w, w 3z 24 ƒ. ƒ w 1 PAHs yw 8.0 10-3 ~9.7 10-3 /kg/day (Table 5). ù 5» mw PAHs yw 1 (y, 1999) 1.8 10-6 mgteq BaP /kg/day š, w ql mw 1 s³ 8.8 10-6 mgteq BaP /kg/day PAHs yw y š w, t mw 80%. ù mw PAHs yw w. 30) ù y š w y w ƒ PAHs yw sƒw. ƒ PAHs yw 1.7 ƒ ùkû, w, š»,, š PAHs yw ƒ, 1z t PAHs t. PAHs» t ƒ wš. w ql š w ƒ 1 8.2 10-3 ~9.6 10-3 /kg/day. œ»,, m mw PAHs yw vw, t mw PAHs yw w. w yƒ ƒwš ƒ mw w w w š y vw z v wš., w t w v w. Table 5. The daily PAHs dietary intake calculated by permutations and combinations with assumption that a person has two meals from the home cooking and the one meal from the dining menu out per a day (unit : ugteqbap/kg/day) One meal from dining menu a b c d Two meals from home cooking menu AB 9.1 10-3 8.0 10-3 8.7 10-3 9.0 10-3 AC 9.6 10-3 8.6 10-3 9.3 10-3 9.5 10-3 AD 9.1 10-3 8.0 10-3 8.7 10-3 9.0 10-3 BC 9.7 10-3 8.7 10-3 9.4 10-3 9.6 10-3 BD 9.2 10-3 8.2 10-3 8.8 10-3 9.1 10-3 CD 9.7 10-3 8.7 10-3 9.4 10-3 9.6 10-3 *the lowest level **the highest level I. ABCD: Home-cooking II. abcd: Dining-out

&YQPTVSF"TTFTTNFOUGPS1PMZDZDMJD"SPNBUJD)ZESPDBSCPOTJOUIF.PEFM.FOV4ZTUFNPG,PSFBO 183 PAHs yw»k yw w w,» w y ƒ t ƒ š. PAHs yw t y wš ù t t š ƒ wš w t PAHs yw w, PAHs yw y w ƒ 1ö» wš, w ƒ 2z, 1z 1 sƒw. Á t PAHs yw w PAHs 2.00~141.28 ug/kg, e ƒ ùkû. (TEFs) y w y w ƒ 0.03~1.31 /kg š, ƒ ƒ t w. t š w w ö ƒ PAHs yw s³ ƒƒ 2.4 10-3 /kg/meal 4.0 10-3 /kg/meal ƒ PAHs yw 1.7 ƒ ùkû. w, š»,, š PAHs yw ƒ 1z t PAHs yw» t. ƒ 1.8 10-3 /kg/meal, w ƒ 3.9 10-3 /kg/meal» ƒ ƒ. w 3z š w 1 PAHsyw 8.0 10-3 ~9.7 10-3 ug/kg/day. ƒ PAHs yw sƒ» ³ v t w ³ w» ƒ ¼, PAHs yw š y z, w œwš w. š x 1. Pelkonene, O., Nebet, D.W.: Metabolism of polycyclic aromatic hydrocarbons. Etiological Role in Carcinogenesis Pharmacol Rev., 43, 189~222 (1982). 2. Gelboin, H.V.: Benzo(a)pyrene metabolism, activation, and carcinogenesis Role and regulation of mixed-function oxidases and related enzymes. Physiol Rev., 60, 1107-1166 (1980). 3. DHHS/ATSDR, Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs) (1995). 4. American Conference of Governmental Industrial Hygienists, Inc. Documentation of the Threshold Limit Values and Biological Exposure Indices. 6th ed. Volumes I, II, III. Cincinnati, OH: ACGIH, 125 (1991). 5. Klaassen, C.D.: Casarett and Doull's Toxicology. The Basic Science of Poisons. 6th ed. New York, NY: McGraw-Hill, 668 (1). 6. Rom, W.N.: Environmental and Occupational Medicine. 2nd ed. Boston, MA: Little, Brown and Company, 877 (1992). 7. International Agency for Research on Cancer (IARC): monographs on the evaluation of the carcinogenic risk of chemicals to humans Vol.32, polyunclear aromatic compounds, part I. chemical. Environmental and experimental data (1983). 8. U.S. National Academy of Science: PAH-evaluation of sources and effects 477 (1983). 9. WHO/IPCS selected Non-heterocyclic polycyclic aromatic hydrocarbons. Environmental health criteria 202 (1998). 10. ½,, : ƒ Benzo(a)pyrene w, w wz, 9(4), 323~332 (1993). 11. Howord, J.W., Fazio, T.:,Review of Polycyclic aromatic hydrocarbons in food. Analyrical methology and reported findings of polycyclic aromatic hydrocarbons in foods. Journal of the Association of offical analytical chemists 63, 1077 (1980). 12. Lodovici, M., Dolara, P., Casalini, C., Ciappellano, S., & Tesolini, G.: Polycyclic aromatic hydrocarbon contaminantion in the Italian food. Food Additives and contaminants, 12(5), 703~713 (1995). 13. z,, : t Polycyclic aromatic hydrocarbons w sƒ w t wz, 19(1), (4). 14. Monica, C., Rojo, Camargo., Maria, C., Toledo, F.: Polycyclic aromatic hydrocarbons in brazilian vegetables and fruits. Food Control 14, 49~53 (3). 15., 1998 š, w (1999). 16., 1 š, w (2). 17. w, w t w sƒ(3).

184 :VO)FF,JNFUBM 18. Chen, B., Wang, C., Chiu, C.: Evaluation of analysis of polycyclic aromatic aromatic hydrocarbons in meat products by liquild chromatography. J. agric. Food Chem. 44, 2244~ 2251 (1996). 19. Naoy, K., Mitsuhio, W., Naotaka, K., Syuzo, A.: Determination of Polycyclic aromatic hydrocarbons in milk samples by high-performance liquid chromatographywith fluorescence detection. Journal of Chromatography B 789, 257~264 (3). 20. Tsai, P., Shieh, Y., Lee, J., Lai, S.: Health-risk assessment for workers exposured to polycyclic aromatic hydrocarbons (PAHs) in a carbon black manufacturing industry. The Sci. Total Env 278, 137~1 (1) 21. Nisbet, C., Lagoy, P.: Toxic Equivalency Factors(TEFs) for polycyclic aromatic hydrocarbons (PAHs). Reg. Toxicol. Pharmacol. 16, 290~300 (1992). 22., t l ƒ š (0). 23.» t, t š, w t w (1998). 24. m, m š lifetime table (1999). 25. x: w y w 2 š, w y (1999). 26. Larsson, B., Sahlberg, G.: Polycyclic aromatic hydrocarbons in lettuce: infuence of a highway and an aluminium smelter. Sixth international symposium on physical and biological chemistry, Columbus, Ohio (1981). 27. Steven, D., Colome, N., Kado. Y., Peter, J., Michael, K.: Atmos Environ 26(4), 2173~2178 (1992). 28. U.S.EPA. Risk Assessment guidance for superfund. Vol 1. Human health evaluation manual(part A). Interim Final. EPA/ 5/1-89-002. Office of Emergency and Remedical Response. U.S. Environmental Protection Agency (1989). 29. w t wzr, t w Ÿ (1994). 30. Gemma, F., Jose, L., Juan, M., Angel, T., Conrad, C., Lutz, M.: Polycyclic aromatic hydrocarbons in foods : Human exposure through the diet in catalonia, Spain. Journal of food protection 66, 2325~2331 (3).