Korean Chem. Eng. Res., Vol. 44, No. 5, October, 2006, pp. 435-443 { h i m h l kl Ž 305-600 re o s o 462 (2006 8o 18p r, 2006 9o 14p }ˆ) Basic Technologies for the Development of High Explosives Hyoun-Soo Kim High Explosives Team, Agency for Defense Development, 462, Jochiwon-gil, Yuseong-gu, Daejeon 305-600, Korea (Received 18 August 2006; accepted 14 September 2006) k h p p kl s q q l kl rp r r rp p. k l k (1) e l v vp, (2) k rs, (3) k s, (4) ~ rn l, (5) n v ~ r p l, k l p p o n rp kl. Abstract The objective of this paper is to provide fundamental information on the subject of high explosives not only to the explosive scientist but also to the chemical engineer. Technologies for the development of high explosives are divided into 5 areas: (1) synthesis of new energetics, (2) preparation of functional explosives, (3) formulation study of plastic bonded explosives, (4) application of high explosives to munitions, (5) demilitarization process. This paper outlines the basic technologies need to understand the high explosives. Key words: High Explosives, Energetic Materials, Munitions 1. k(high explosives)p, wp e (~10-6 s)p pl m(~10 3 o K) k(~10 5 bar)p ~ Ž} l v(ž}l vm n l v) pn vp. kp q tn n p (performance) (sensitivity) p. p, p rp p p kp (n p q l d p )p v, p v kp p lv. p n p ˆ kp p p kl s q p s p. k l p k n k. l v v( q k l v r)p p eq l k rs l, k(pbx, plastic bonded explosive) p s r, p r kp r- r l e r r, ~ p rn l, /kr To whom correspondence should be addressed. E-mail: hyounsoo@add.re.kr, p v n ˆkp r } sr ~ p kr l m p t p k l p l / k p r~ k k p. p l k l k Fig. 1l ˆ p (1) e l v vp, (2) kp rs, (3) k s, (4) ~ rn l, (5) n v ~(demilitarization) p l, kl rp p f k p r~ rp q. Fig. 1. Steps in the development of high explosives. 435
436 Fig. 2. Structure of common molecular explosives. 2. h i m h 2-1. i s sm p n kp p p o kp l r s. p l o k kp o o kp q k l v v, k(composite) p k p. q n kp t p n q kp TNT(tri-nitro-toluene), RDX(research development explosive, cyclotrimethylenetrinitramine), HMX(high melting explosive, cyclotetramethylenetetranitramine) p, p vp sep Fig. 2 m. er q er ˆ(munition)l p s p vp o n kp lp k. TNT qp s p l ˆp, RDXm HMX ˆ rs. p v k t TNT ( k ) l o p q k kp (Table 1 s). e p r l tn pq qn ~ l t n. rp k (80.8 o C) np rp qrp pv, l l lr, r kr rq p lv rp p., p ˆl RDX HMX n. RDX HMX p l v kp l eˆv kp ˆ tqk(main charge explosive)p sqk(booster charge explosive)p n l. p po RDX HMX l vp dž r p n l kp rs p f e n (2-3r s). pnl HNIW(hexanitrohexaazaisowurtzitane)m p q kp l l rp j n pp, NTO(3-nitro-1,2,4-triazole-5-one), ADNBF(7-amino-4,6- dinitrobenzofuroxan), FOX-7(1,1-diamino-2,2-dinitroethylene) q kl l v p. n q kl n p v nk p. (1) l v (energy density) HMX 5Í p p, (2) (,, rr ) HMX, (3) lr, r p kr, (4) rp v kp p [2]. l v m n t, p, pl p q sm ll q p. l l m p q k q s p r rp }k, p l e rl p m p f rr k q }k l tp. p l rp o sp k q q p v, rq, qlp tn k q p r o l p p pd e dšp l n tp., q k l rp e k (impact sensitivity) m o l, orq k v p e p pn r r s- (QSPR, quantitative structure property relationship) p l l m p l rp v tp. Fig. 3p tp l v vp p m p mp [3], Fig. 4 m mp [4]. p m p p e rl m vp v p l r m pl, k qp rp, o e p tp p. Fig. 3. Prediction of explosive performance[3]. Table 1. Characteristics of common molecular explosives[1] TNT RDX HMX Crystal density (g/cm 2 ) 1.6 1.8 1.9 Detonation velocity (m/s) 6,640 8,950 9,150 Detonation pressure (kbar) 210 350 390 Temperature of detonation ( K) 2740 2,600~4,000 2,400~3,800 Fig. 4. Prediction of impact sensitivity by QSPR method[4]. o44 o5 2006 10k
2-2. hm oo rp rs l v v(o k)p p o p, p rp, p, v p q v kp, p p r r l rl l. kp l l v vp pn l t rp p f kpqp, p,,, r, v, p rl l o kp p pp sr v rp. kpqp s p l l m p p lp v r p l v v p r t pqp,, r s r p v l p l r p. p k q rs l v p, pq rn n r~ p v p l v r rp p eˆ p l, sp k pq l j p l, p l v eˆ m p p p [5]. k rs o sp p (milling), nk q r(recrystallization from solution), o q r(emulsion crystallization), q r(spray crystallization), v q r(evaporation crystallization), pž r(ultra-sonification process), o~ l v (fluid energy mill) p on rp. pm l l p l r r rp pn (spherical shape) p krs, p o~ pn p pq rs r, k, r p mr r q kp p p. kp r p cubic, tetragonal, orthorhombic p l rl rs rp p. p ˆ, pv~p, p l pl p n kr l p rp p pl d. p rrp rp p eˆ r rp p. Fig. 5l r r rp pn (spherical shape)p k (NTO) rs re m, pqp srl Table 2l re m p p 3 r lpp k p [6](t: p n p r l p p ). p o~ pn krs l k v tep t p. l l p l r GAS(gas anti-solvent) rp pn p o~p krs r rn p p p [7, 8]. Fig. 6p Stepanov [9]p RESS(rapid expansion of supercritical solution) rp p n l RDX rp rs p, 110~220 nmp p p v, p sp o ll lpp k p. k pqp (internal cavity) p kp l v m p. p rp pl p RDX pq k Šl n eˆ, n e rr. RDX pq r l p. Fig. 7(a) l p rs RDX k Šp } s l ll rp SEM vp, n p v rpp k p. rp m l~ p k l p k 437 Fig. 5. SEM image of explosive crystals[6]. Table 2. Impact sensitivity of explosives[6] General shape of NTO Spherical shape of NTO Impact sensitivity (J) 16.9 46.5 Fig. 6. RDX particles produced by RESS process (mean size : 115± 35 nm)[9]. p. Fig. 7(b) image analyzer n l p vp r vp. r l p s p, p q rl n n,,, m p }or p. p r p (internal defect)p p p o n l rs k s (explosive formulation)p p l p p l p ( p hot spotp qn l adiabatic compressionp o ). ks p kr p p o p r vp o p srp rp. dp krs p SNPE(SME) n q r rp RDX(reduced sensitivity RDX, RS-RDX)p rs l m m. SNPE p RS-RDXp p IRDX p [10]. Image analyzer pn l RS-RDXp r, Fig. 7(c)l ˆ m p p r lpp k p. p} p r q kp kl rn l e mp ˆ. n l v l v(shock energy)l r e p large scale gap test(lsgt) Fig. 8l ˆ p RDX o n kp p RDX n k j p ˆ p l [10](t: LSGT k p p ˆ p). p p r Korean Chem. Eng. Res., Vol. 44, No. 5, October, 2006
438 Fig. 7. Microscopic observations of different qualities of RDX crystals with refractive index matching[10]. Fig. 8. LSGT results for different RDX qualities used in PBXN-109 [10]. rp p eˆ q k rs l qrp p. 2-3. h o p o kp kp ˆ, p k nl n kp n l l tqkp sqkp vr n l. k p k ˆl n o l p v, p k kp m ( ~ p )l ~ rp ˆ ov pp krrp vp ov v. ˆp o kp kp v l, ~ ˆp r p lk. k(pbx)p p} ˆp o kl q v p q n l (ts k) -pveˆ (k k) ~(composite) ˆp v f, q e k (TNT t p Comp-B Octol p np r lp k)p lr, r k p kr p srp kp p. Table 3l np r kp Comp-B m kp k kp tn p m. Table 3. Characteristics of conventional explosive and plastic bonded explosive Comp-B (Composition B) r -rqe s - rp k -q e lp, k~ ˆp kn ( p npr) - q e p ( p) o44 o5 2006 10k High performance PBX v TNT p dž k(pbx) rs np r k k k rso TNT qp s ˆp, r p m (80 C) ˆp l p o o k(hmx, RDX) l q dž p, p TNT r k p sp r -pve (molding powder) ˆ, p, p e eˆ r ~ vp pp. ˆ~l vr k r cylinder ˆ k p p p pn RDXm p k, o ˆp kp l n. le p (np) ˆ~l reˆ. s RDX + TNT + Wax HMX + vp q r : 7,900 m/s : 8,700 m/s q r - p r - p np - p n kr - s p -lr kr ov - p sk, lp v kp - q e pp v p p(l p) - p - p p
kp rs l (1) ts (cast) k, (2) k (pressed) k, (3) k (extrudable) k, (4) (injection molding) k p p. l p kp ts kp, pp k kp. e p p rs kp p r v k p. k p kp kt n jp, k r [1, 2]. ts kp q s l RDX HMX p r kp eˆ p m p ˆ p v l n q l n p ˆ, rp s p Table 4m. ts kp n o k,, rm q vl r vp, kp kr p pp sr pl ~ p n s l l o pn p. k kp o k kp l l v eˆ, k l ˆ l n p, k p 98Í(t ) v p p kp.,, p n r o ~ p tqkp sqkp n [11]. Fig. 9 q r(estane) o k(hmx)p -pve rs k k, m k(25,000 psi t)p k eˆ r, NC machinep n l o p vp. k l p k 439 Table 4. Typical example of cast-pbx formulation Ingredient RDX (HMX) HTPB PAPI DOA FeAA Aluminum AP Function Molecular Explosives Prepolymer Curative Plasticizer Catalyst Metal fuel Oxidizer l ~ p rq,, nn l ~ (IM, Insensitive Munitions) r n p p. p k ˆ /ˆkp rq, nn rl pp pr, r ep er rql rp o n (l, q,, ˆq Ž ) kr p q rp p. er l nn Oriskany, Forrestal, Enterprise q, 1991 r e o p Camp Dohal p ˆk p p l ˆkl n p v l (Fig. 10). k rp ol oo l r UN Test Series 7 (substance) p rrp p rp. k ˆkp rq, n rq nn rl sn p o n p s m o tp 6sp e ( e, e, Fig. 9. Pressed PBX. Fig. 10. Pictures of unexpected detonating accident with warheads and ammunitions. Korean Chem. Eng. Res., Vol. 44, No. 5, October, 2006
440 Fig. 11. SUSAN test[13]. e, l e, m l e, ˆq/Ž e )p l pp, p e p kp EIDS(extremely insensitive detonating substance) kp [12]. er kp porp p k n p o q n l v k n p v. Fig. 11l k e tp p e (SUSAN Test)p e q sm m. kp e n ˆql r l 76 mm rl e e kp pr r e p. e ˆp l pk p r r Ž. e kp e q e k(comp-b TNT) j p, EIDS (Ë) k p k tp s p [13]. 2-4. z nk i kp ~ rnp kl p ˆ (warhead) l ˆp r. p ˆ ~ l n r. ˆ p p p. ~ p l n ˆ ( ) p p p [2]. (1) (metal acceleration), (2) t Ž(air blast), (3) p r(general purpose, GP), (4) t n(under water - bubble energy, shock energy), (5) (internal blast), (6) (cratering) p. rn r(ˆ )l kp o p e Fig. 12 m. n kp wp e l p k p kp. r kp p p Ž p l(fragmentation) p l p Ž eˆ, qk p (shaped charge liner) k e p r (jet) rl p p p. Ž n k p ƒ r m p, v k l kp l l v q r m e k k(overpressure)p ov kp. o44 o5 2006 10k Fig. 12. Selection of useful explosives according to the detonating effect. ˆ M&S(modeling and simulation) rp p. Fig. 13p n p AUTODYN-2D/3Dp pn l Ž p p p [14]. Fig. 14 qkˆ p r p o l ˆ p n qv ˆ re r ep pn, r l v ˆ p [14]. ~ l n rp ˆ p k p r, p kp reˆ ˆ /ˆkp s, kr,, e p, p l np k p po l rn. Fig. 15 p e rl l s ~ r r o p q p. l p q k s p r ˆ q l p. Fig. 15(a) v o k kp r l pp, Fig. 15(b) o p ts kp r l p.
Fig. 13. Modeling and simulation of fragmentation[14]. Fig. 14. Penetrating phenomena by shaped charge jets[14]. k l p k 441 2-5. k s z n v ~(demilitarization) p v n ˆkp rp kr p } p p. v vp ˆkp kn p } ep mp, mm p r n } p p n pe p r rp p. ˆkp v m } sp rq p s r rp k lk. k ˆkp qo p p l t p seˆp ˆkp qop, q n q n(3r: resource recovery, recycle, and reuse)pp r l v p tep v p. l l p p q e ˆkp pr } e p lp v p. ˆkp n v ~ l p } r rp ˆl r v( k, q, vr )p kr m mm v v s p prp se k } r p l nl p. n v ~ rp (1) ˆ r, (2) r, (3) q n q n r, (4) rp p. Fig. 16l ˆ lq (multiple launching rocket system, p MLRS)p m l n v ~ tn rp [15,16]. r MLRS p p k o o l pl q np. p podl lp l p p ˆ m v p, ˆ p ~ l 644 p M77 qˆ p r l p. p qˆp nl p np, q ˆp qr ˆ o ˆs p. M77 qˆp r k p pv qk ˆ pl r tl p q 10 cm r p ~Ž e ˆ p r. qˆp Ž p k p (copper liner cone) e q eˆ } q q n. v l vr(composite propellant) r l pl k n l vr r, r p. vr n ( ln k o )p jp, np q n o l Fig. 15. Precision guided missile warhead filled with PBX. Korean Chem. Eng. Res., Vol. 44, No. 5, October, 2006
442 Fig. 16. MLRS demilitarization technology[16]. r r vo pp, p k l p m l p r p - -l l ~ p p rrp p. kl k p k l p k e p r~ k k pp, kp r k k p. p p, q v tp k l k l l, l~ p p ep. vr s p tn ( r k)p q. k r p ˆ~ l k p r vp l q n p. pnl qˆp eˆ o qk, e, ~ p l q n }. ˆ rl Ž, k o~ l vl p r p p rn, rl dž p Ž pn n p, k o~ l vl p } p p n. vp q n q n rl r, q rl p v rs, p o~ pn p p rn p. v p rl l k, p, d l np, npm,, r } p l p. p n v ~ p v p e tl r v, r~rp pr eq p. } ˆ kp s k p l } ˆkp } p np p sq v kv lk p kr p q n qop p p eˆ pp, nm p p p rp plk l pp lv lp p. 3. p p eq n p k l w lp, p k kl l rp m k r l p l r ep. p n p n TNT, RDX p o kp l }p p n 30l rp pp. lk l mv l ˆ ˆk l np r kp ˆ r r r, ts k k kp, kp, kp kr, ~ rn l, el v vp q k / m p rp k l l k l rp v p. e p o l~l pr l k l l p., ~ e p l n p o l l l l m l o44 o5 2006 10k k l m o l~p o l( e, e, l )p pd. y 1. Dobratz, B. M. and Crawford, P. C. LLNL Explosive Handbook, LLNL, University of California(1985). 2. Anderson, E., AIAA Tactical Missile Series Vol.155 Tactical Missile Warhead - Explosives, NSWC, USA(1993). 3. Kim, H. S., Cho, S. G., Kim, J. K. and Song, S. Y., Molecular Design of Explosive Molecules : Nitroimidazole Derivatives, Proc. ACS Meeting (57th SE/61st SW), Nov., Memphis, USA (2005). 4. Cho, S. G., Kim, J. K., Song, S. Y., Lee, S. K. and No, K. T., Optimization of Neural Networks Architecture for Impact sensitivity of Energetic Molecules, Proc. ACS Meeting (57th SE/ 61st SW), Nov., Memphis, USA(2005). 5. Yongxu, Z., Dabin, L. and Chunxu, L., Preparation and Characterization of Reticular Nano-HMX, Propellants,G Explos., Pyrotech., 30(6), 438-441(2005). 6. Kim, K. J., Kim, M. J., Lee, J. M., Kim, H. S. and Park, B. S., Control of Size and Shape of NTO Crystals by Cooling Crystallization, Proc. Intern. Symp. CGOM, Aug., Breman, Germany, 169(1997). 7. Lim, G. B., Lee, S. Y., Koo, K. K., Park, B. S. and Kim, H. S., Gas Anti-solvent Recrystallization of Molecular Explosives under Subcritical to Supercritical Conditions, Proc. 5th Meeting Supercritical Fluids, March, Tome 1 Nice, 23-25(1998). 8. Lim, G. B., Lee, S. Y., Koo, K. K., Park, B. S. and Kim, H. S., Size and Shape Control of Molecular Explosives Using SCF CO 2, Proc. 11th Symp. Missile Tech., Daejon, Korea, 363-366 (2001). 9. Stepanov, V., Krasnoperov, L. N., Elkina, I. B. and Zhang, X., Production of Nanocrystalline RDX by Rapid Expansion of Supercritical Solutions, Propellants, Exploives, Pyrotechnics, 30(3), 178-183(2005). 10. Spyckerelle,G Insensitive RDX, Proc. 32nd Intern. Annual Conf. ICT, June, Karlsruhe, Germany(2001). 11. Kim, H. S. and Park, B. S., Characteristics of the Insensitive Pressed Plastic Bonded Explosive, Propellants, Exploives, Pyrotechnics., 24, 217-220(1999). 12. MIL-STD-2105B, Hazard Assessment Tests for Non-Nuclear
k l p k 443 Munitions(1991). 13. Kim, J. K. and Kim, S. H., Development of Insensitive High Explosive, DXD-09, ADD report GWSD-419-90042(1999). 14. Lee, J. M., Moon, D. C., Kim, G. L. and Cho, S. H., Application of Explosives to Ammunition, Proc. KIChE 2006 Spring Meeting(Special Issue for Military Explosives Technology), 97-108(2006). 15. Park, B. S. and Ham, D. S., Demilitarization Technologies for Aging or Obsolete Munitions, Proc. KIChE 2006 Spring Meeting(Special Issue for Military Explosives Technology), 109-120 (2006). 16. Olszewski, B., MLRS Demilitarization Status Update, Global Demil Symposium and Exhibition, Sparks, NV(2003). Korean Chem. Eng. Res., Vol. 44, No. 5, October, 2006