Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구
|
|
- 혜정 궁
- 5 years ago
- Views:
Transcription
1 Machine Learning Linear Regression siga α siga α
2 Issues siga α 2
3 Issues / 8 살짜리조카에게데이터베이스 (DB) 가무엇인지 3 줄의문장으로설명하시오 6 개월동안최대 25 번이나되는면접시험을거쳐구글러 ( 구글직원을일컫는말 ) 가될확률은 0.25%. 하버드대보다 25 배들어가기어렵다. 우리는 구글다운 (Being Googley) 인재들만뽑는다 회사에뭔가다른가치나재능을가져다줄수있는지 새로운지식을받아들일줄아는지적인겸손 유연함을갖췄는지 굴러다니는쓰레기를스스로줍는자발적인사람인지 망원경성능을개선하느니달에우주선을쏘는게낫다는식의 문샷싱킹 siga α 3 출처 : 중앙일보
4 Issues 실리콘밸리의스타트업 로코모티브랩스 이수인 (39) 대표는 기술기업에선모두가똑같은근무시간을채우는것보다최고의실력을가진 1 급개발자들이최고의성과를낼수있도록하는게더중요하다. 이들이이직하지않도록붙잡아두려면고액연봉외에, 자유 같은플러스알파의가치를더줘야한다는게실리콘밸리의보편적인분위기 출처 : 중앙일보 /robots/ siga α 4
5 Issues siga α 5
6 Linear Regression 임의의데이터가있을때, 데이터자질간의상관관계를고려하는것 친구 1 친구 2 친구 3 친구 4 친구 5 키 몸무게 siga α 6
7 Linear Regression 즉, 회귀문제란.. 수치형목적값을예측하는방법 목적값에대한방정식필요 회귀방정식 (Regression equation) 집값을알기위해아래와같은방정식을이용 Ex) 집값 = * 평수 * 역까지의거리 평수 와 역까지의거리 입력데이터 집값 추정데이터 와 0.5 의값 회귀가중치 (Regression weight) 여자친구의몸무게를추정하기위하여.. Ex) 몸무게 = 0.05 * 키 키 입력데이터 몸무게 추정데이터 0.05 회귀가중치 siga α 7
8 Hypothesis Hypothesis y = wx + b x 입력데이터 : 키 y 추정데이터 : 몸무게 w 회귀가중치 : 기울기 siga α 8
9 Hypothesis y = wx + b siga α 9 Andrew Ng
10 Hypothesis y = wx + b y = wx y i = w 0 + w T x i y i = w y i = i=0 (generalization) w i x i w i x i wx (generalization) Variable Description J(θ), r Cost function vector, residual(r) y Instance label vector y, h(θ) hypothesis w 0, b Bias(b), y-intercept x i Feature vector, x 0 = 1 W Weight set (w 1, w 2, w 3,, w n ) X Feature set (x 1, x 2, x 3,, x n ) siga α 10
11 Regression: statistical exaple 모집단 : 유통기간에따른비타민 C 의파괴량 유통기간 ( 일 ) : X 비타민 C 파괴량 (g) :Y 독립변수 X 가주어졌을때 Y 에대한기대값 y = wx + b + ε y = θx + ε ε: disturbance ter, error variable siga α 11
12 Regression: statistical exaple Rando variable of Y siga α 12
13 Residual r 5 r 1 r 2 r 3 r 4 아래의말은서로같은의미 정답데이터와추정데이터의차이 정답모델과추정모델의차이 y = wx + b, s. t. in(r) ㅡ정답모델ㅡ추정모델정답데이터추정데이터 Residual: r(= ε) siga α 13
14 Least Square Error (LSE) (residual) y r h θ (x) r = y h θ (x) r i = y y r 1 r 2 r 3 r 4 r 5 r i = y i y i in r = Least square (y i y i ) i r 2 = in y i y i 2 r = y i w T x i b 2 r = 1 y 2 i w T x i b 2 = J(θ) cost function siga α 14
15 Cost Function (for fixed, this is a function of x) (function of the paraeter ) y x f x 1 = h θ x 1 = θ 1 x 1 = 1 J θ 1 = y 1 f(x 1 ) f x 1 = h θ x 1 = w 1 x 1 = 1 siga α 15 J θ 1 = 1 1 = 0 = r in J(θ) == in r Andrew Ng
16 Training J(θ) = 1 2 y i w T x i b 2 Miniu!! Residual을줄여야함 LSE의값을최소화해야함 2차함수 하나의최소값 (iniu) 을가짐 각 w에대한선형함수 각차원의최소값을알수있음 즉, 전역최소값 (global iniu) 을알수있음 이최소값을찾기위해기울기하강 (gradient descent) 을사용 siga α 16
17 Training: Gradient 각변수에대한일차편미분값으로구성되는벡터 벡터 : f(. ) 의값이가파른쪽의방향을나타냄 벡터의크기 : 벡터증가, 즉기울기를나타냄 어떤다변수함수 f(x 1, x 2,, x n ) 가있을때, f 의 gradient 는다음과같음 f = ( f x 1, f x 2,, f x n ) Gradient 를이용한다변수 scalar 함수 f 는점 a k 의근처에서의선형근사식 (using Taylor expansion) f a = f a k + f a k a a k + o( a a k ) siga α 17
18 Training: Gradient Descent Forula a k+1 = a k η k f a k, k 0 η k : learning rate Algorith begin init a, threshold θ, η do k k + 1 a a η f a until η a k < 0 return a end 출처 : wikipedia siga α 18
19 Training: Gradient Descent r 을최소화하는 w 를찾아라!! in J(θ) = 1 2 y i w T x i 2 벡터에대한미분 J(θ) w = y i w T x i ( x i ) Weight update w w η r w a k+1 = a k η k f a k, k 0 siga α 19
20 Training: Gradient Descent (for fixed, this is a function of x) (function of the paraeters ) siga α 20 Andrew Ng
21 Training: Gradient Descent (for fixed, this is a function of x) (function of the paraeters ) siga α 21 Andrew Ng
22 Training: Gradient Descent (for fixed, this is a function of x) (function of the paraeters ) siga α 22 Andrew Ng
23 Training: Gradient Descent (for fixed, this is a function of x) (function of the paraeters ) siga α 23 Andrew Ng
24 Training: Gradient Descent (for fixed, this is a function of x) (function of the paraeters ) siga α 24 Andrew Ng
25 Training: Gradient Descent (for fixed, this is a function of x) (function of the paraeters ) siga α 25 Andrew Ng
26 Training: Gradient Descent (for fixed, this is a function of x) (function of the paraeters ) siga α 26 Andrew Ng
27 Training: Gradient Descent (for fixed, this is a function of x) (function of the paraeters ) siga α 27 Andrew Ng
28 Training: Gradient Descent (for fixed, this is a function of x) (function of the paraeters ) siga α 28 Andrew Ng
29 Training: Solution Derivation 분석적방법 (analytic ethod) J(θ) 를각모델파라미터들로편미분한후에그결과를 0 으로하여연립방정식풀이 f x = wx + b 인경우에는모델파라미터 w 와 b 로편미분 w 에대한편미분 r w = y i w T x i b ( x i ) = 0 b 에대한편미분 r b = y i w T x i b ( 1) = 0 siga α 29
30 Training: Solution Derivation b 에대한편미분 r b = y i w T x i b ( 1) = 0 r b = y i w T r b = y i w T x i b = 0 x i = b r b = y wt x = b siga α 30
31 Training: Solution Derivation w 에대한편미분 r w = y i w T x i b ( x i ) = 0 y w T x = b 0 = y i x i w T x i x i bx i ( xx i x i x i w T ) = y i x i yx i 0 = y i x i w T x i x i ( y w T x)x i w T = xx i x i x i 1 y i x i yx i 0 = y i x i w T x i x i yx i + w T xx i (w T xx i w T x i x i ) = y i x i yx i 0 의값을갖는이유는모든 instance 의값을더하는것과평균을 n 번더하는것은같은값을갖게하기때문 siga α 31
32 Training: Solution Derivation w 에대한편미분 r w = y i w T x i b ( x i ) = 0 1 solution b = y w T x w T = x i x)(x i x T 1 x i x (y i y) w T = xx i x i x i y i x i yx i 1 w T = x i x i T x T x i + ( x x T xx T i ) y i x i yx i + ( y x y i x) w T = x i x)(x i x T 1 x i x (y i y) 1 w T = var(x i ) cov(x i, y i ) siga α 32
33 Training: Algorith siga α 33
34 Regression: other probles siga α 34
35 Regression: Multiple variables 친구에대한정보가많은경우 Features Label i 1 i 2 i 3 i 4 i 5 키 나이 발크기 다리길이 몸무게 친구 친구 친구 친구 친구 x 1 x 2 x 3 x 4 y Instance i Hypothesis: Paraeters: Features: h x = w 0 x 0 + w 1 x 1 + w 2 x 2 + w 3 x 3 + w 4 x 4 + w 5 x 5 w 0, w 1, w 2, w 3, w 4, w 5 x 0, x 1, x 2, x 3, x 4, x 5 siga α 35
36 Regression: Multiple variables Hypothesis: Paraeters: Features: Cost function: h x = w T x = w 0 x 0 + w 1 x 1 + w 2 x w n x n w 0, w 1, w 2, w 3, w 4,, w n x 0, x 1, x 2, x 3, x 4,, x n Rn+1 R n+1 J w 0, w 1,, w θ = 1 y 2 i h(x i ) 2 x = x 0 x 1 x 2 x 3 x n R n+1 w = w 0 w 1 w 2 w 3 w n R n+1 siga α 36
37 Multiple variables: Gradient descent Gradient descent J(θ) w = y i w T x i ( x i ) Standard (n=1), n: nu. of features Repeat { w 0 = w 0 η w 1 = w 1 η } y i w T x i x ij x i0 = 1 y i w T x i x i1 siga α 37 Multiple (n>=1) Repeat { w j = w j η } y i w T x i w 0 = w 0 η y i w T x i w 1 = w 1 η w 2 = w 2 η y i w T x i y i w T x i x i0 x i1 x i2 x ij
38 Multiple variables: Feature scaling Feature scaling 키나이발크기다리길이몸무게 친구 친구 친구 친구 친구 각각의자질값범위들이서로다름 키 : 160~175, 나이 : 17~26, 발크기 : 230~250, 다리길이 : 80~90 Gradient descent 할때최소값으로수렴하는데오래걸림 siga α 38
39 Multiple variables: Feature scaling Feature scaling 자질값범위가너무커서그림과같이미분을많이하게됨, 즉 iteration 을많이수행하게됨 예를들어 이정도차이의자질들은괜찮음 0.5 x x 2 3 이정도차이의자질들이문제 1000 x x siga α 39
40 Multiple variables: Feature scaling Feature scaling 따라서자질값범위를 1 x i 1 사이로재정의 Feature scaling Scaling: Exaple μ i = 240 x i μ i S i S i = 230 x i 250 range: = 20 siga α 40 x i : feature data μ i : ean of feature datas S i : range of feature datas S i = ax feat. in(feat. ) x i x 1 = 230 x 5 = = 0.5 = 0.5
41 Multiple variables: Feature scaling Feature scaling Feature scaling을통하여정규화 간단한연산 결국에 Gradient descent가빠르게수렴할수있음 siga α 41
42 Linear Regression: Noral equation 앞에서다뤘던방법은다항식을이용한분석적방법 분석적방법은고차함수나다변수함수가되면계산이어려움 따라서대수적방법으로접근 Noral equation Such as, training exaples, n features 분석적방법 : Gradient Descent 필요 η와 any iteration 필요 n 이많으면좋은성능 대수적방법 : Gradient Descent 필요없음 η와 any iteration 필요없음 X T X 1 의계산만필요 O(n 3 ) n 이많으면속도느림 siga α 42
43 Linear Regression: Noral equation Exaples: Size (feet 2 ) Nuber of bedroos Nuber of floors Age of hoe (years) Price ($1000) W = w 0 w 1 w 2 w 3 w 4 WX = y siga α 43
44 Linear Regression: Noral equation Exaples: Size (feet 2 ) Nuber of bedroos Nuber of floors Age of hoe (years) Price ($1000) WX = y W = X T X 1 X T y siga α 44
45 Linear Regression: Noral equation W = X T X 1 X T y 가정말 residual 2 합을최소로하는모델인가? 어떻게유도하는가? r = y y Y WX 2 in( Y WX 2 ) 을만족하는 W 를구하라 W 을편미분한후 0 으로놓으면 2X T Y WX = 0 2X T Y + 2X T WX = 0 2X T WX = 2X T Y X T WX = X T Y W = X T X 1 X T Y siga α 45
46 References 2/ siga α 46
47 QA 감사합니다. 박천음, 박찬민, 최재혁, 박세빈, 이수정 siga α, 강원대학교 Eail: siga α 47
Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구
Siamese Neural Network 박천음 강원대학교 Intelligent Software Lab. Intelligent Software Lab. Intro. S2Net Siamese Neural Network(S2Net) 입력 text 들을 concept vector 로표현하기위함에기반 즉, similarity 를위해가중치가부여된 vector 로표현
More informationVector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표
Vector Differential: 벡터 미분 Yonhee Lee October 7, 08 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표기법을 정의하는 방법이다 보통 스칼라(scalar)에 대한 미분은 일분수 함수 f : < < 또는 다변수 함수(function
More information슬라이드 1
장연립방정식을 풀기위한반복법. 선형시스템 : Guss-Sedel. 비선형시스템 . 선형시스템 : Guss-Sedel (/0) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정식을푸는반복법중에서 가장보편적으로사용되는방법이다. 개의방정식에서 인 ( 대각원소들이모두 0 이아닌 ) 경우를다루자. j j b j b j j j
More information소성해석
3 강유한요소법 3 강목차 3. 미분방정식의근사해법-Ritz법 3. 미분방정식의근사해법 가중오차법 3.3 유한요소법개념 3.4 편미분방정식의유한요소법 . CAD 전처리프로그램 (Preprocessor) DXF, STL 파일 입력데이타 유한요소솔버 (Finite Element Solver) 자연법칙지배방정식유한요소방정식파생변수의계산 질량보존법칙 연속방정식 뉴톤의운동법칙평형방정식대수방정식
More information(Microsoft PowerPoint - Ch19_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345])
수치해석 6009 Ch9. Numerical Itegratio Formulas Part 5. 소개 / 미적분 미분 : 독립변수에대한종속변수의변화율 d vt yt dt yt 임의의물체의시간에따른위치, vt 속도 함수의구배 적분 : 미분의역, 어떤구간내에서시간 / 공간에따라변화하는정보를합하여전체결과를구함. t yt vt dt 0 에서 t 까지의구간에서곡선 vt
More information(Microsoft PowerPoint - Ch6_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345])
수치해석 Numercal Analyss 6009 Ch6. Roots: Open Methods 개방법 : 한개의초기값에서시작하거나구간내에근을포함하지않을수도있는두개의초기값에서시작한다. 구간법과개방법의비교 (a 구간법 ( 이분법 (b 개방법 발산하는경우 (c 개방법-수렴하는경우 Numercal Analyss 6. 단순고정점반복법 (/3 f ( = 0 을재배열하여유도
More information(Microsoft PowerPoint - Ch21_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345])
수치해석 161009 Ch21. Numerical Differentiation 21.1 소개및배경 (1/2) 미분 도함수 : 독립변수에대한종속변수의변화율 y = x f ( xi + x) f ( xi ) x dy dx f ( xi + x) f ( xi ) = lim = y = f ( xi ) x 0 x 차분근사 도함수 1 차도함수 : 곡선의한점에서접선의구배 21.1
More information슬라이드 1
1 장수치미분 1.1 소개및배경 1. 고정확도미분공식 1.3 Richardson 외삽법 1.4 부등간격의미분 1.5 오차가있는데이터의도함수와적분 1.6 MATLAB 을이용한수치미분 1.1 소개및배경 (1/4) 미분이란무엇인가? 도함수 : 독립변수에대한종속변수의변화율 y f( xi + x) f( xi) dy f( x = i + x) f( xi) = lim =
More information장연립방정식을풀기위한반복법 12.1 선형시스템 : Gauss-Seidel 12.2 비선형시스템 12.1 선형시스템 : Gauss-Seidel (1/10) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정
. 선형시스템 : GussSedel. 비선형시스템. 선형시스템 : GussSedel (/0) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. GS 방법은선형대수방정식을푸는반복법중에서 가장보편적으로사용되는방법이다. 개의방정식에서 인 ( 대각원소들이모두 0 이아닌 ) 경우를다루자. j j b j j b j j 여기서 j b j j j 현재반복단계
More information<B4EBC7D0BCF6C7D02DBBEFB0A2C7D4BCF62E687770>
삼각함수. 삼각함수의덧셈정리 삼각함수의덧셈정리 삼각함수 sin (α + β ), cos (α + β ), tan (α + β ) 등을 α 또는 β 의삼각함수로나 타낼수있다. 각 α 와각 β 에대하여 α >0, β >0이고 0 α - β < β 를만족한다고가정하 자. 다른경우에도같은방법으로증명할수있다. 각 α 와각 β 에대하여 θ = α - β 라고놓자. 위의그림에서원점에서거리가
More informationMicrosoft Word - Ch3_Derivative2.docx
통계수학 Chapter. 미분.5 미분응용.5. 최대값과최소값 지역 (local) 과절대 (absolute) 의의미 f 절대최소지역최대지역최소절대최대지역최소 차미분정리함수 f 가일정구간안의모든점에서미분가능하고구간내임의의점 c 에서 차미분이 0 이면 ( c) 0 ) 함수 f 는점 c 에서지역최대값이나최소값을갖는다. 증가함수와감소함수정의만약 > f ( ) > f
More information= ``...(2011), , (.)''
Finance Lecture Note Series 사회과학과 수학 제2강. 미분 조 승 모2 영남대학교 경제금융학부 학습목표. 미분의 개념: 미분과 도함수의 개념에 대해 알아본다. : 실제로 미분을 어떻게 하는지 알아본다. : 극값의 개념을 알아보고 미분을 통해 어떻게 구하는지 알아본다. 4. 미분과 극한: 미분을 이용하여 극한값을 구하는 방법에 대해 알아본다.
More informationG Power
G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2
More information지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월
지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support
More informationArtificial Intelligence: Assignment 5 Seung-Hoon Na December 15, Numpy: Tutorial 다음 자료를 참조하여 numpy기본을 공부하시오.
Artificial Intelligence: Assignment 5 Seung-Hoon Na December 15, 2018 1 Numpy: Tutorial 다음 자료를 참조하여 numpy기본을 공부하시오. https://docs.scipy.org/doc/numpy-1.15.0/user/quickstart.html https://www.machinelearningplus.com/python/
More informationMicrosoft PowerPoint - MDA 2008Fall Ch2 Matrix.pptx
Mti Matrix 정의 A collection of numbers arranged into a fixed number of rows and columns 측정변수 (p) 개체 x x... x 차수 (nxp) 인행렬matrix (n) p 원소 {x ij } x x... x p X = 열벡터column vector 행벡터row vector xn xn... xnp
More information문제지 제시문 2 보이지 않는 영역에 대한 정보를 얻기 위하여 관측된 다른 정보를 분석하여 역으로 미 관측 영역 에 대한 정보를 얻을 수 있다. 가령 주어진 영역에 장애물이 있는 경우 한 끝 점에서 출발하여 다른 끝 점에 도달하는 최단 경로의 개수를 분석하여 장애물의
제시문 문제지 2015학년도 대학 신입학생 수시모집 일반전형 면접 및 구술고사 수학 제시문 1 하나의 동전을 던질 때, 앞면이나 뒷면이 나온다. 번째 던지기 전까지 뒷면이 나온 횟수를 라 하자( ). 처음 던지기 전 가진 점수를 점이라 하고, 번째 던졌을 때, 동전의 뒷면이 나오면 가지고 있던 점수를 그대로 두고, 동전의 앞면이 나오면 가지고 있던 점수를 배
More information학습목표 함수프로시저, 서브프로시저의의미를안다. 매개변수전달방식을학습한다. 함수를이용한프로그래밍한다. 2
학습목표 함수프로시저, 서브프로시저의의미를안다. 매개변수전달방식을학습한다. 함수를이용한프로그래밍한다. 2 6.1 함수프로시저 6.2 서브프로시저 6.3 매개변수의전달방식 6.4 함수를이용한프로그래밍 3 프로시저 (Procedure) 프로시저 (Procedure) 란무엇인가? 논리적으로묶여있는하나의처리단위 내장프로시저 이벤트프로시저, 속성프로시저, 메서드, 비주얼베이직내장함수등
More informationMATLAB for C/C++ Programmers
오늘강의내용 (2014/01/16) 회귀분석 1 회귀분석 (Regression Analysis) 2 회귀분석 회귀분석이란? 연관된변수들간의관계를찾는통계적방법 즉, 어떠한변수 x가변수 Y에함수관계를통해영향을미친다는것을찾아내는것 예를들어 강우량 ( 변수 x) 이곡물의수확량 ( 변수 Y) 에미치는영향 화학공정의수율 ( 변수 x) 이촉매의사용량 ( 변수 Y) 에따라어떻게변하는지..
More informationASETAOOOCRKG.hwp
청년층 희망 일자리와 실제 취업 일자리 격차 분석 - 고학력 청년 실업 원인에 대한 일고찰 - 홍 성 민 * ** 박 진 희 세계적인 경기침체가 본격화되는 2009년에는 실업문제가 가장 큰 사회경제적 이슈로 등장할 가 능성이 높으며, 특히 청년층의 고실업 문제와 더불어 일자리 기피 인해 나타날 가능성이 있는 NEET 화 현상에 대한 우려가 커질 것으로 예상된다.
More information31. 을전개한식에서 의계수는? 를전개한식이 일 때, 의값은? 을전개했을때, 의계수와상수항의합을구하면? 을전개했을때, 의 계수는? 를전개했을때, 상수항을 구하여라. 37
21. 다음식의값이유리수가되도록유리수 의값을 정하면? 1 4 2 5 3 26. 을전개하면상수항을 제외한각항의계수의총합이 이다. 이때, 의값은? 1 2 3 4 5 22. 일때, 의값은? 1 2 3 4 5 27. 를전개하여간단히 하였을때, 의계수는? 1 2 3 4 5 23. 를전개하여 간단히하였을때, 상수항은? 1 2 3 4 5 28. 두자연수 와 를 로나누면나머지가각각
More information第 1 節 組 織 11 第 1 章 檢 察 의 組 織 人 事 制 度 등 第 1 項 大 檢 察 廳 第 1 節 組 대검찰청은 대법원에 대응하여 수도인 서울에 위치 한다(검찰청법 제2조,제3조,대검찰청의 위치와 각급 검찰청의명칭및위치에관한규정 제2조). 대검찰청에 검찰총장,대
第 1 章 檢 察 의 組 織 人 事 制 度 등 第 1 節 組 織 11 第 1 章 檢 察 의 組 織 人 事 制 度 등 第 1 項 大 檢 察 廳 第 1 節 組 대검찰청은 대법원에 대응하여 수도인 서울에 위치 한다(검찰청법 제2조,제3조,대검찰청의 위치와 각급 검찰청의명칭및위치에관한규정 제2조). 대검찰청에 검찰총장,대검찰청 차장검사,대검찰청 검사,검찰연구관,부
More informationMicrosoft Word - LectureNote.doc
7. 상미분방정식. 서론 자연현상 물리법칙적용 수학적표현 미분방정식 자연현상뿐아니라공학적인문제에서도미분방정식이많이활용되나공학분야대부분의미분방정식들은해석적으로는풀리지않고수치적인접근방법을필요로한다. 일반적으로공학분야미분방정식은. Smpled 된 equton 을해석적으로푸는방법. Orgnl Equton 을 ppromte 하게푸는방법등두가지방법으로해를찾을수있는데 정확한
More informationWeb-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft s Bing Search Engine Thore Graepel et al., ICML, 2010 P
Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft s Bing Search Engine Thore Graepel et al., ICML, 2010 Presented by Boyoung Kim April 25, 2018 Boyoung Kim
More information歯TC프로그래밍매뉴얼
Turning Center (TC) HX - Programming Manual Serial No. : PG-20011119 HX - Programming Manual Turning Center (TC) 1...!. 2 (Program)...19 3 (G )...33 4 (Interpolation Functions)...37 5 (Feed Function)...73
More informationMicrosoft Word - LectureNote.doc
5. 보간법과회귀분석 . 보간법 Iterpolto. 서론 응용예 : 원자간 pr-wse tercto Tlor Seres oe-pot ppromto 를사용할수없는이유 Appromte / t 3 usg Tlor epso t.! P! 3 4 5 6 7 P 3-3 -5-43 -85 . Newto Tlor Seres 와의관계 te dvded derece Forwrd
More information<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>
주간기술동향 2016. 5.18. 컴퓨터 비전과 인공지능 장혁 한국전자통신연구원 선임연구원 최근 많은 관심을 받고 있는 인공지능(Artificial Intelligence: AI)의 성과는 뇌의 작동 방식과 유사한 딥 러닝의 등장에 기인한 바가 크다. 이미 미국과 유럽 등 AI 선도국에서는 인공지능 연구에서 인간 뇌 이해의 중요성을 인식하고 관련 대형 프로젝트들을
More informationMicrosoft PowerPoint - m05_Equation1(Print) [호환 모드]
Chap. 5 비선형방정식의해법 (1) - 구간법 CAE 기본개념소개 비선형방정식의개요 증분탐색법 이분법 가위치법 1 Chap.5 비선형방정식 (1) 비선형방정식 (Nonlinear Equation) 선형방정식 : Ax = b 해석적인방법으로방정식을만족하는해의계산이용이함한번의계산으로해를구할수있음 x = A -1 b (Direct calculation) Example:
More information탐색적데이터분석 (Exploratory Data Analysis) 데이터가지닌주요특성 / 개괄을 ( 우선적으로 ) 탐구함으로써 데이터분석을시도하려는형태 모델링이나가설을세우고이를검증하기보다데이터자체 가우리에게말하려고하는것을알아내는것의중요성을강 조하며시각화플롯을많이활용 J
탐색적데이터분석 Supervised Learning 탐색적데이터분석 (Exploratory Data Analysis) 데이터가지닌주요특성 / 개괄을 ( 우선적으로 ) 탐구함으로써 데이터분석을시도하려는형태 모델링이나가설을세우고이를검증하기보다데이터자체 가우리에게말하려고하는것을알아내는것의중요성을강 조하며시각화플롯을많이활용 John Tukey 가그중요성을강조 S 와
More information산선생의 집입니다. 환영해요
Biped Walking Robot Biped Walking Robot Simulation Program Down(Visual Studio 6.0 ) ). Version.,. Biped Walking Robot - Project Degree of Freedom : 12(,,, 12) :,, : Link. Kinematics. 1. Z (~ Diablo Set
More informationMicrosoft PowerPoint - 알고리즘_5주차_1차시.pptx
Basic Idea of External Sorting run 1 run 2 run 3 run 4 run 5 run 6 750 records 750 records 750 records 750 records 750 records 750 records run 1 run 2 run 3 1500 records 1500 records 1500 records run 1
More informationstatistics
수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지
More information제 3강 역함수의 미분과 로피탈의 정리
제 3 강역함수의미분과로피탈의정리 역함수의미분 : 두실수 a b 와폐구갂 [ ab, ] 에서 -이고연속인함수 f 가 ( a, b) 미분가능하다고가정하자. 만일 f '( ) 0 이면역함수 f 은실수 f( ) 에서미분가능하고 ( f )'( f ( )) 이다. f '( ) 에서 증명 : 폐구갂 [ ab, ] 에서 -이고연속인함수 f 는증가함수이거나감소함수이다 (
More informationMicrosoft PowerPoint - ch07ysk2012.ppt [호환 모드]
전자회로 Ch7 CMOS Aplifiers 김영석 충북대학교전자정보대학 202.3. Eail: kiys@cbu.ac.kr k Ch7- 7. General Considerations 7.2 Coon-Source Stae Ch7 CMOS Aplifiers 7.3 Coon-Gate Stae 7.4 Source Follower 7.5 Suary and Additional
More informationPowerPoint 프레젠테이션
Chapter 06 반복문 01 반복문의필요성 02 for문 03 while문 04 do~while문 05 기타제어문 반복문의의미와필요성을이해한다. 대표적인반복문인 for 문, while 문, do~while 문의작성법을 알아본다. 1.1 반복문의필요성 반복문 동일한내용을반복하거나일정한규칙으로반복하는일을수행할때사용 프로그램을좀더간결하고실제적으로작성할수있음.
More information<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>
제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0
More information함수공간 함수공간, 점열린위상 Definition 0.1. X와 Y 는임의의집합이고 F(X, Y ) 를 X에서 Y 로의모든함수족이라하자. 집합 F(X, Y ) 에위상을정의할때이것을함수공간 (function space) 이라한다. F(X, Y ) 는다음과같이적당한적집합과
함수공간 함수공간, 점열린위상 Definition.1. X와 Y 는임의의집합이고 F(X, Y ) 를 X에서 Y 로의모든함수족이라하자. 집합 F(X, Y ) 에위상을정의할때이것을함수공간 (function spce) 이라한다. F(X, Y ) 는다음과같이적당한적집합과같음을볼수있다. 각 x X에대해 Y x = Y 라하자. 그리고 F := Y x x X 이라하자.
More information쉽게배우는알고리즘 6장. 해시테이블 테이블 Hash Table
쉽게배우는알고리즘 6장. 해시테이블 테이블 Hash Table http://academy.hanb.co.kr 6장. 해시테이블 테이블 Hash Table 사실을많이아는것보다는이론적틀이중요하고, 기억력보다는생각하는법이더중요하다. - 제임스왓슨 - 2 - 학습목표 해시테이블의발생동기를이해한다. 해시테이블의원리를이해한다. 해시함수설계원리를이해한다. 충돌해결방법들과이들의장단점을이해한다.
More informationJava ...
컴퓨터언어 1 Java 제어문 조성일 조건문 : if, switch 어떠한조건을조사하여각기다른명령을실행 if 문, switch 문 if 문 if - else 문형식 if 문형식 if ( 조건식 ) { 명령문 1; 명령문 2;... if ( 조건식 ) { 명령문 1; 명령문 2;... else { 명령문 a; 명령문 b;... 예제 1 정수를입력받아짝수와홀수를판별하는프로그램을작성하시오.
More information<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>
자연과학연구 제27권 Bulletin of the Natural Sciences Vol. 27. 2013.12.(33-44) 교통DB를 이용한 교통정책 발굴을 위한 통계분석 시스템 설계 및 활용 Statistical analytic system design and utilization for transport policy excavation by transport
More information예제 1.1 ( 관계연산자 ) >> A=1:9, B=9-A A = B = >> tf = A>4 % 4 보다큰 A 의원소들을찾을경우 tf = >> tf = (A==B) % A
예제 1.1 ( 관계연산자 ) >> A=1:9, B=9-A A = 1 2 3 4 5 6 7 8 9 B = 8 7 6 5 4 3 2 1 0 >> tf = A>4 % 4 보다큰 A 의원소들을찾을경우 tf = 0 0 0 0 1 1 1 1 1 >> tf = (A==B) % A 의원소와 B 의원소가똑같은경우를찾을때 tf = 0 0 0 0 0 0 0 0 0 >> tf
More informationFGB-P 학번수학과권혁준 2008 년 5 월 19 일 Lemma 1 p 를 C([0, 1]) 에속하는음수가되지않는함수라하자. 이때 y C 2 (0, 1) C([0, 1]) 가미분방정식 y (t) + p(t)y(t) = 0, t (0, 1), y(0)
FGB-P8-3 8 학번수학과권혁준 8 년 5 월 9 일 Lemma p 를 C[, ] 에속하는음수가되지않는함수라하자. 이때 y C, C[, ] 가미분방정식 y t + ptyt, t,, y y 을만족하는해라고하면, y 는, 에서연속적인이계도함수를가지게확 장될수있다. Proof y 은 y 의도함수이므로미적분학의기본정리에의하여, y 은 y 의어떤원시 함수와적분상수의합으로표시될수있다.
More informationMicrosoft PowerPoint - m22_ODE(Print) [호환 모드]
Chap. 상미분방정식의해법 CAE 기본개념소개 Euler법 Heun 법 중점법 Runge-Kutta법 1 Chap. 미분방정식 상미분방정식 상미분방정식 (Ordnar Dfferental Equaton; ODE) One-step method Euler 법 (Euler s method) Heun 법 (Heun s method) 중점법 (Mdpont method)
More informationMATLAB for C/C++ Programmers
회귀분석 (Regression Analysis) 1 회귀분석 회귀분석이란? 연관된변수들간의관계를찾는통계적방법 즉, 어떠한변수 x가변수 Y에함수관계를통해영향을미친다는것을찾아내는것 예를들어 강우량 ( 변수 x) 이곡물의수확량 ( 변수 Y) 에미치는영향 화학공정의수율 ( 변수 x) 이촉매의사용량 ( 변수 Y) 에따라어떻게변하는지.. 2 변수간의관계 확정적 (deterministic)
More informationLab - Gradient descent Copyright 2018 by Introduction [PDF 파일다운로드 ]() 이번랩은우리가강의를통해들은 Gradient descent 을활용하여 LinearRegression
Lab - Gradient descent Copyright 2018 by teamlab.gachon@gmail.com Introduction [PDF 파일다운로드 ]() 이번랩은우리가강의를통해들은 Gradient descent 을활용하여 LinearRegression 모듈을구현하는것을목표로합니다. 앞서 우리가 Normal equation lab 을수행하였듯이,
More information1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut
경영학을 위한 수학 Fial Eam 5//(토) :-5: 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오.. (각 6점) 다음 적분을 구하시오 4 ( ) (a) ( )4 8 8 (b) d이 성립한다. d C C log log (c) 이다. 양변에 적분을 취하면 log C (d) 라 하자. 그러면 d 4이다. 9 9 4 / si (e) cos si
More informationMicrosoft PowerPoint - chap03-변수와데이터형.pptx
#include int main(void) { int num; printf( Please enter an integer: "); scanf("%d", &num); if ( num < 0 ) printf("is negative.\n"); printf("num %d\n", num); return 0; } 1 학습목표 의 개념에 대해 알아본다.
More information(Microsoft PowerPoint - Ch17_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345])
수치해석 6009 Ch7. Polyomial Iterpolatio 다항식보간법 T C ρ kg/m µ N s/m v m /s -40 0 0 50 00 50 00 50 00 400.5.9.0.09 0.946 0.85 0.746 0.675 0.66 0.55.5 0-5.7 0-5.80 0-5.95 0-5.7 0-5.8 0-5.57 0-5.75 0-5.9 0-5.5
More information슬라이드 1
3.7 The Inverse -transfor f ( ) Z F( ) long dvson 2 expanson n partal dvson 3 resdue ethod 3.7. Long-Dvson Method B () F( ) B( ) 를 A( ) A () 로나누어 의 negatve power seres 로표현해계수를구함 Regon of Convergence(ROC)
More information기본자료형만으로이루어진인자를받아서함수를결과값으로반환하는고차함수 기본자료형과함수를인자와결과값에모두이용하는고차함수 다음절에서는여러가지예를통해서고차함수가어떤경우에유용한지를설명한다. 2 고차함수의 예??장에서대상체만바뀌고중간과정은동일한계산이반복될때함수를이용하면전체연산식을간 단
EECS-101 전자계산입문 고차함수 박성우 2008년5월 29일 지금까지정수나부동소수와같은기본적인자료형의조합을인자로받고결과값으로반환하는 함수에대해서배웠다. 이번강의에서는함수자체를다른함수의인자로이용하거나결과값으로 이용하는 방법을 배운다. 1 고차함수의 의미 계산은무엇을어떻게처리하여결과값을얻는지설명하는것으로이루어진다. 여기서 무엇 과 결 과값 은계산의대상체로서정수나부동소수와같은기본자료형의조합으로표현하며,
More informationPowerPoint 프레젠테이션
System Software Experiment 1 Lecture 5 - Array Spring 2019 Hwansoo Han (hhan@skku.edu) Advanced Research on Compilers and Systems, ARCS LAB Sungkyunkwan University http://arcs.skku.edu/ 1 배열 (Array) 동일한타입의데이터가여러개저장되어있는저장장소
More information딥러닝 첫걸음
딥러닝첫걸음 4. 신경망과분류 (MultiClass) 다범주분류신경망 Categorization( 분류 ): 예측대상 = 범주 이진분류 : 예측대상범주가 2 가지인경우 출력층 node 1 개다층신경망분석 (3 장의내용 ) 다범주분류 : 예측대상범주가 3 가지이상인경우 출력층 node 2 개이상다층신경망분석 비용함수 : Softmax 함수사용 다범주분류신경망
More information슬라이드 1
Chapter 8. Root Locus Techique Thigs to kow The defiitio of root locus How to sketch the root locus How to use the root locus to fid the poles of a closed-loop syste How to use the root locus to desig
More informationVector Space Vector space : 모든 n 차원컬럼벡터의집합 : {, :, } (, 2), (2, 5), (-2.4, 3), (2.7, -3.77), (,), 이차원공간을모두채움 : {,, :,, } (2,3,4), (3,2,-5), Vector spa
Seoul National University Vector Space & Subspace Date Name: 김종권 Vector Space Vector space : 모든 n 차원컬럼벡터의집합 : {, :, } (, 2), (2, 5), (-2.4, 3), (2.7, -3.77), (,), 이차원공간을모두채움 : {,, :,, } (2,3,4), (3,2,-5),
More informationλx.x (λz.λx.x z) (λx.x)(λz.(λx.x)z) (λz.(λx.x) z) Call-by Name. Normal Order. (λz.z)
λx.x (λz.λx.x z) (λx.x)(λz.(λx.x)z) (λz.(λx.x) z) Call-by Name. Normal Order. (λz.z) Simple Type System - - 1+malloc(), {x:=1,y:=2}+2,... (stuck) { } { } ADD σ,m e 1 n 1,M σ,m e 1 σ,m e 2 n 2,M + e 2 n
More information제 4 장회귀분석
회귀의역사적유래 (historical origin of the regression) 회귀 (regression) 라는용어는유전학자 Francis Galton(1886) 에의해처음사용된데서유래함. 그의논문에서 비정상적으로크거나작은부모의아이들키는전체인구의평균신장을향해움직이거나회귀 (regression) 하는경향이있다. 고주장 회귀의역사적유래 (historical
More informationMicrosoft PowerPoint - chap_2_rep.ppt [호환 모드]
제 강.1 통계적기초 확률변수 (Radom Variable). 확률변수 (r.v.): 관측되기전까지는그값이알려지지않은변수. 확률변수의값은확률적실험으로부터결과된다. 확률적실험은실제수행할수있는실험뿐아니라가상적실험도포함함 (ex. 주사위던지기, [0,1] 실선에점던지기 ) 확률변수는그변수의모든가능한값들의집합에대해정의된알려지거나알려지지않은어떤확률분포의존재가연계됨 반면에,
More information<3230B4EBBFA9BCBAC3EBBEF7C7F6BDC728C0CCBDB4BAD0BCAE292E687770>
2대 여성 청년층의 취업현실 개요 2 대는 면학시기 이면서 입직시기, 결혼적령기 등 자신의 생애주기 가운데 가장 다양한 변수를 품고 있는 시기임. 그럼에도 노동시장의 환경은 대다수 2대 여성에게 특정 선택 을 강요하며, 2대 여성들의 취업률은 육아와 가사로 인해 3대 초반부터 감소하기 시 작함. 비경제활동인구 역시 3대에 들어서면서 급격히 늘어나며 이러한 경력단절
More informationpublic key private key Encryption Algorithm Decryption Algorithm 1
public key private key Encryption Algorithm Decryption Algorithm 1 One-Way Function ( ) A function which is easy to compute in one direction, but difficult to invert - given x, y = f(x) is easy - given
More information歯4차학술대회원고(장지연).PDF
* 1)., Heckman Selection. 50.,. 1990 40, -. I.,., (the young old) (active aging). 1/3. 55 60 70.,. 2001 55 64 55%, 60%,,. 65 75%. 55 64 25%, 32% , 65 55%, 53% (, 2001)... 1998, 8% 41.5% ( 1998). 2002 7.8%
More information2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형
M-Plus 의활용 - 기본모형과예제명령어 - 성신여자대학교 심리학과 조영일, Ph.D. 2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형 3 / 27 1. M-plus 란? 기본정보 M-plus 는구조방정식모형과종단자료분석 ( 잠재성장모형 ) 의분석에사용되기위해서고안된프로그램임.
More informationGray level 변환 및 Arithmetic 연산을 사용한 영상 개선
Point Operation Histogram Modification 김성영교수 금오공과대학교 컴퓨터공학과 학습내용 HISTOGRAM HISTOGRAM MODIFICATION DETERMINING THRESHOLD IN THRESHOLDING 2 HISTOGRAM A simple datum that gives the number of pixels that a
More informationProbabilistic graphical models: Assignment 3 Seung-Hoon Na June 7, Gibbs sampler for Beta-Binomial Binomial및 beta분포는 다음과 같이 정의된다. k Bin(n, θ):
Probabilistic graphical models: Assignment 3 Seung-Hoon Na June 7, 207 Gibbs sampler for Beta-Binomial Binomial및 beta분포는 다음과 같이 정의된다. k Bin(n, θ): binomial distribution은 성공확률이 θ인 시도에서, n번 시행 중 k번 성공할 확률
More information조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a
조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형
More information(Hyunoo Shim) 1 / 24 (Discrete-time Markov Chain) * 그림 이산시간이다연쇄 (chain) 이다왜 Markov? (See below) ➀ 이산시간연쇄 (Discrete-time chain): : Y Y 의상태공간 = {0, 1, 2,..., n} Y n Y 의 n 시점상태 {Y n = j} Y 가 n 시점에상태 j 에있는사건
More information체의원소를계수로가지는다항식환 Theorem 0.1. ( 나눗셈알고리듬 (Division Algorithm)) F 가체일때 F [x] 의두다항식 f(x) = a 0 + a 1 x + + a n x n, a n 0 F 와 g(x) = b 0 + b 1 x + + b m x
체의원소를계수로가지는다항식환 Theorem 0.1. ( 나눗셈알고리듬 (Division Algorithm)) F 가체일때 F [x] 의두다항식 f(x) = a 0 + a 1 x + + a n x n, a n 0 F 와 g(x) = b 0 + b 1 x + + b m x m, b m 0 F, m > 0 에대해 f(x) = g(x)q(x) + r(x) 을만족하는
More information에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -
에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 - . - 2 - . 1. - 3 - [ 그림 1] 도시가스수요와실질 GDP 추이 - 4 - - 5 - - 6 - < 표 1>
More information미시경제학을위한기초수학 조남운 March 20, 함수 1.1 함수란무엇인가 여러분이미시경제학을배우면서미분을배우는이유는계산을통해함수의최대값이나최소값을구해야하기때문이다. 최대값이나최소값을구하기위해서는함수의미분을알
미시경제학을위한기초수학 조남운 mailto:namun.cho@gmail.com March 20, 2008 1 함수 1.1 함수란무엇인가 여러분이미시경제학을배우면서미분을배우는이유는계산을통해함수의최대값이나최소값을구해야하기때문이다. 최대값이나최소값을구하기위해서는함수의미분을알아야하며, 함수의미분을알기위해서는함수의연속과극한을알아야한다. 그중에서도가장먼저알아야할것은 함수
More information<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>
한국지능시스템학회 논문지 2010, Vol. 20, No. 3, pp. 375-379 유전자 알고리즘을 이용한 강인한 Support vector machine 설계 Design of Robust Support Vector Machine Using Genetic Algorithm 이희성 홍성준 이병윤 김은태 * Heesung Lee, Sungjun Hong,
More information슬라이드 1
7 장다항식보간법 7. 보간법의소개 7. Newto 보간다항식 7. Lagrage 보간다항식 7.4 역보간법 7.5 외삽법과진동 7 장다항식보간법 / White 999 보고에의한 기압에서온도 T 에따른밀도 ρ 점성계수 µ 와동점성계수 v T C ρ kg/m µ N s/m v m /s -40 0 0 50 00 50 00 50 00 400 500.5.9.0.09
More informationmethods.hwp
1. 교과목 개요 심리학 연구에 기저하는 기본 원리들을 이해하고, 다양한 심리학 연구설계(실험 및 비실험 설계)를 학습하여, 독립된 연구자로서의 기본적인 연구 설계 및 통계 분석능력을 함양한다. 2. 강의 목표 심리학 연구자로서 갖추어야 할 기본적인 지식들을 익힘을 목적으로 한다. 3. 강의 방법 강의, 토론, 조별 발표 4. 평가방법 중간고사 35%, 기말고사
More information<312E2032303133B3E2B5B520BBE7C8B8BAB9C1F6B0FC20BFEEBFB5B0FCB7C320BEF7B9ABC3B3B8AE20BEC8B3BB28B0E1C0E7BABB292DC6EDC1FD2E687770>
2013년도 운영관련 업무처리안내 개정사항(신구문 대조표) 분야 P 2012년 안내 2013년 안내 개정사유 Ⅱ. 의 운영 3. 의 연혁 Ⅲ. 사업 8 20 12년: 사회복지사업 개정 201 2년: 사회복지사업법 개정 -오타수정 13 사업의 대상 1) 국민기초생활보장 수급자, 차상위계층 등 저소득 주민 2) 장애인, 노인, 한부모가정 등 취약계층 주민
More information에너지경제연구 제13권 제1호
에너지경제연구 Korean Energy Economic Review Volume 13, Number 1, March 2014 : pp. 23~56 거시계량모형을이용한전력요금 파급효과분석 * 23 24 25 26 < 표 1> OECD 전력요금수준 ( 단위 : $/MWh) 27 28 < 표 2> 모형의구성 29 30 31 [ 그림 1] 연립방정식모형의개요 32
More information제 출 문 한국산업안전공단 이사장 귀하 본 보고서를 2002 년도 공단 연구사업계획에 따라 수행한 산 업안전보건연구수요조사- 산업안전보건연구의 우선순위설정 과제의 최종보고서로 제출합니다. 2003년 5월 연구기관 : 산업안전보건연구원 안전경영정책연구실 정책조사연구팀 연
산업안전보건분야 연구수요조사분석 2003. 5 한국산업안전공단 산업안전보건연구원 제 출 문 한국산업안전공단 이사장 귀하 본 보고서를 2002 년도 공단 연구사업계획에 따라 수행한 산 업안전보건연구수요조사- 산업안전보건연구의 우선순위설정 과제의 최종보고서로 제출합니다. 2003년 5월 연구기관 : 산업안전보건연구원 안전경영정책연구실 정책조사연구팀 연구책임자 :
More information경제수학강의노트 09 미분법 I: 미분법칙, 편미분, 전미분 Do-il Yoo PART III: Comparative-Static Analysis 비교정태분석 Chapter 7: Rules of Differentiation and Their Use in Comparat
경제수학강의노트 09 미분법 I: 미분법칙, 편미분, 전미분 Do-il Yoo PART III: Comparative-Static Aalysis 비교정태분석 Chapter 7: Rules of Differetiatio ad Their Use i Comparative Statics 미분법칙과비교정태분석 7.. Rules of Differetiatio for a
More informationMicrosoft PowerPoint 다변수 방정식과 함수(1).ppt
수치해석 () 다변수방정식과함수 (Part 1) (Multi-Variable Equations and Functions Part 1) 2005 년가을학기 문양세컴퓨터과학과강원대학교자연과학대학 In this chapter 다변수방정식과함수 변수가두개이상인함수, 예를들어, f ( x, y, z) = log( x+ y) + sin( x+ z) 의해 (f(x,y,z)=0
More information5장. 최적화
5 장. 최적화 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 5 장. 최적화 1 / 57 학습내용 기초이론제약없는최적화제약있는최적화통계학에서제약최적화문제 박창이 ( 서울시립대학교통계학과 ) 5 장. 최적화 2 / 57 기초이론 : 일변수함수 I 정리 5.1 ( 중간값정리 ). 함수 f 는구간 [a, b] 에서연속이며실함수라고하자. f (a)
More informationJun. 27, 2012 Fixed Income Analyst June 27, 2012 FX Analyst 10 (%) 5 3 0 5 10 15 20 500 440 380 320 CRB 30 1800 115 (yoy,) (%) 1600 110 20 105 1400 10 100 1200 0 95 260 200 Jan 05 Sep 06 May
More information에너지경제연구 Korean Energy Economic Review Volume 9, Number 2, September 2010 : pp. 1~18 가격비대칭성검정모형민감도분석 1
에너지경제연구 Korean Energy Economic Review Volume 9, Number 2, September 2010 : pp. 1~18 가격비대칭성검정모형민감도분석 1 2 3 < 표 1> ECM 을이용한선행연구 4 5 6 7 and 8 < 표 2> 오차수정모형 (ECM1~ECM4) 9 10 < 표 3> 민감도분석에쓰인더미변수 11 12 < 표
More information(2) 다중상태모형 (Hyunoo Shim) 1 / 2 (Coninuous-ime Markov Model) ➀ 전이가일어나는시점이산시간 : = 1, 2,, 4,... [ 연속시간 : 아무때나, T 1, T 2... * 그림 (2) 다중상태모형 ➁ 계산과정 이산시간 : 전이력 (force of ransiion) 정의안됨 전이확률 (ransiion probabiliy)
More information02장.배열과 클래스
---------------- DATA STRUCTURES USING C ---------------- CHAPTER 배열과구조체 1/20 많은자료의처리? 배열 (array), 구조체 (struct) 성적처리프로그램에서 45 명의성적을저장하는방법 주소록프로그램에서친구들의다양한정보 ( 이름, 전화번호, 주소, 이메일등 ) 를통합하여저장하는방법 홍길동 이름 :
More informationProbability Overview Naive Bayes Classifier Director of TEAMLAB Sungchul Choi
Probability Overview Naive Bayes Classifier Director of TEAMLAB Sungchul Choi 머신러닝의학습방법들 - Gradient descent based learning - Probability theory based learning - Information theory based learning - Distance
More information일반각과호도법 l 삼각함수와미분 1. 일반각 시초선 OX 로부터원점 O 를중심으로 만큼회전이동한위치에동경 OP 가있을때, XOP 의크기를나타내는각들을 ( 은정수 ) 로나타내고 OP 의일반각이라한다. 2. 라디안 rad 반지름과같은길이의호에대한중심각의 크기를 라디안이라한
일반각과호도법 l 1. 일반각 시초선 OX 로부터원점 O 를중심으로 만큼회전이동한위치에동경 OP 가있을때, XOP 의크기를나타내는각들을 ( 은정수 ) 로나타내고 OP 의일반각이라한다. 2. 라디안 rad 반지름과같은길이의호에대한중심각의 크기를 라디안이라한다. 3. 호도법과육십분법 라디안 라디안 4. 부채꼴의호의길이와넓이 반지를의길이가 인원에서중심각이 인 부채꼴의호의길이를
More information강의10
Computer Programming gdb and awk 12 th Lecture 김현철컴퓨터공학부서울대학교 순서 C Compiler and Linker 보충 Static vs Shared Libraries ( 계속 ) gdb awk Q&A Shared vs Static Libraries ( 계속 ) Advantage of Using Libraries Reduced
More information<4D F736F F F696E74202D FC0E5B4DCB1E220BCF6BFE4BFB9C3F8205BC8A3C8AF20B8F0B5E55D>
생산관리론 장단기수요예측 서강대학교경영학부 경영전문대학원교수서창적 -1-1 학습내용 수요예측기법 예측오차의측정과통제 수요예측기법의선정 수요예측의의의 수요예측 (demand forecasting) 이란? 기업의제품과서비스에대한수요의양과시기를예측하는것 수요예측이이루어지면수요를충족시키기위해필요한자원에대한예측이이루어지는데이는구매되는부품과원자재뿐만아니라기업의설비, 기계,
More information融合先验信息到三维重建 组会报 告[2]
[1] Crandall D, Owens A, Snavely N, et al. "Discrete-continuous optimization for large-scale structure from motion." (CVPR), 2011 [2] Crandall D, Owens A, Snavely N, et al. SfM with MRFs: Discrete-Continuous
More information<5B30385DC0D3BBF3C8ADC7D0B0CBBBE72DC0E5BBF3BFEC2E687770>
임상병리검사과학회지 : 35 권제 2 호, 126-130, 2003 임상화학검사 Kit 의비교평행시험에대한연구 녹십자의료재단, 고객지원및 QA 부, 관리부 1, 임상화학검사실 2 장상우 김남용 최호성 1 박용원 2 A Study of Comparative Paralellism Test on Test Kit in Clinical Chemistry Chang,
More informationuntitled
전방향카메라와자율이동로봇 2006. 12. 7. 특허청전기전자심사본부유비쿼터스심사팀 장기정 전방향카메라와자율이동로봇 1 Omnidirectional Cameras 전방향카메라와자율이동로봇 2 With Fisheye Lens 전방향카메라와자율이동로봇 3 With Multiple Cameras 전방향카메라와자율이동로봇 4 With Mirrors 전방향카메라와자율이동로봇
More information김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월
지능정보연구제 17 권제 4 호 2011 년 12 월 (pp.241~254) Support vector machines(svm),, CRM. SVM,,., SVM,,.,,. SVM, SVM. SVM.. * 2009() (NRF-2009-327- B00212). 지능정보연구제 17 권제 4 호 2011 년 12 월 김경재 안현철 지능정보연구제 17 권제 4 호
More information고 학년도 9월고수학 1 전국연합학력평가영역문제지 1 1 제 2 교시 수학영역 5 지선다형 3. 두다항식, 에대하여 는? [ 점 ] 1. 의값은? ( 단, ) [ 점 ] 다항식 이 로인수분해될때, 의값은? ( 단,,
고 208학년도 9월고수학 전국연합학력평가영역문제지 제 2 교시 수학영역 5 지선다형 3. 두다항식, 에대하여 는? [ 점 ]. 의값은? ( 단, ) [ 점 ] 2 3 2 3 4 5 4 5 2. 다항식 이 로인수분해될때, 의값은? ( 단,, 는상수이다.) [ 점 ] 4. 좌표평면위의두점 A, B 사이의거리가 일때, 양수 의값은? [ 점 ] 2 3 4 5 2
More informationRM2005-9.hwp
이슈리포트 3호 e-러닝을 통한 주5일 수업제 지원 방안 2005. 4. 31 ksoon@keris.or.kr 1 - 1 - 2003년 시 기 시 행 일 정 우선 시행학교 26개교 연구학교 136개교 (총 162개교, 전체 학교의 1.5% 해당) 2004년 3월 월1회 우선 시행학교 확대 운영 (총 1,023개교, 전체 10%이상) 2005년 3월 전국 학교
More information1 1 장. 함수와극한 1.1 함수를표현하는네가지방법 1.2 수학적모형 : 필수함수의목록 1.3 기존함수로부터새로운함수구하기 1.4 접선문제와속도문제 1.5 함수의극한 1.6 극한법칙을이용한극한계산 1.7 극한의엄밀한정의 1.8 연속
1 1 장. 함수와극한 1.1 함수를표현하는네가지방법 1.2 수학적모형 : 필수함수의목록 1.3 기존함수로부터새로운함수구하기 1.4 접선문제와속도문제 1.5 함수의극한 1.6 극한법칙을이용한극한계산 1.7 극한의엄밀한정의 1.8 연속 2 1.1 함수를표현하는네가지방법 함수 f : D E 는집합 D 의각원소 x 에집합 E 에속하는단하나의원소 f(x) 를 대응시키는규칙이다.
More information