(3) 추론에서계산이모수적방법보다훨씬단순. (4) 사용자가이의논리를스스로발견하게하며이해하기쉬움. (5) 표본이정규분포를따를때에도검정력에큰손실이없으며, 정규분포와상이한경우에이의검정력은정규분포에의한방법보다크다. 3. 부호검정 (Sg test) 모집단의중앙값에대한검정으로관찰

Size: px
Start display at page:

Download "(3) 추론에서계산이모수적방법보다훨씬단순. (4) 사용자가이의논리를스스로발견하게하며이해하기쉬움. (5) 표본이정규분포를따를때에도검정력에큰손실이없으며, 정규분포와상이한경우에이의검정력은정규분포에의한방법보다크다. 3. 부호검정 (Sg test) 모집단의중앙값에대한검정으로관찰"

Transcription

1 제 3 장. 비모수적방법 (Dstrbuto-free Method) 모수적방법 (parametrc method): 관측값이어느특정한확률분포, 예를들면정규분포, 이항분 포등을따른다고전제한후그분포의모수 (parameter) 에대한검정을실시하는방법이다. 비모수적방법 (oparametrc method): 관측값이어느특정한확률분포를따른다고전제할수 없거나또는모집단에대한아무런정보가없는경우에실시하는검정방법으로모수에대한언급이없으며분포무관방법이라고도한다. 요약하면자료가정규분포가아니거나표본의크기가작으면분포에대한기본가정을필요로하지않는통계적기법이다. 비모수적방법은주로모집단의분포가대칭이라든가또는중앙값이어디라든가하는정도의가정을하는것이보통이며, 자료의관측값은확률변수의실제값을이용하기보다는부호나순위등의형태를이용하는경우가많다. 즉자료가관측치자체보다부호나순위만이의미가있는경우에자주이용된다. 약점으로는검정력이약하다. 비모수적방법의특성비모수적통계추론 (oparametrc statstcal ferece) 은 945년 Wlcoxo 검정이효시. 현재는추정, 분산분석 (Aalyss of Varace: ANOVAR), 회귀분석, 시계열분석등에응용된다. 다음표는주로사용되는비모수검정방법이다. 표 [3-] 비모수적검정 표본 단일표본 서열척도 -Kolmogorov-Smrov 검정 검정방법 - 검정 - Ru 검정 명목척도 종속표본 개 - 부호검정 -Wlcoxo 의부호순위검정 - Mcemar 검정 k 개 - Fredma 검정 - Cochra 의 Q 검정 - Wlcoxo 의순위합검정 독립표본 개 - Ma-Whtey U 검정 - Kolmogorov-Smrov 검정 - Moses 의극단반응검정 - 검정 - Fsher 의정확확률검정 k 개 - 중위수검정 - Kruska-Walls 검정 - 검정 () 분포의가정이완화되어있으므로어떠한형태의모집단에대한비교도가능. () 실제의양적관측치에의존하지않고이들의상대적평가 ( 순위 : rak) 에의존하므로이상값의영향을감소시킴. 95

2 (3) 추론에서계산이모수적방법보다훨씬단순. (4) 사용자가이의논리를스스로발견하게하며이해하기쉬움. (5) 표본이정규분포를따를때에도검정력에큰손실이없으며, 정규분포와상이한경우에이의검정력은정규분포에의한방법보다크다. 3. 부호검정 (Sg test) 모집단의중앙값에대한검정으로관찰된표본중에서중앙값을초과하는값이몇개인지를파악 하며, 모평균과모중앙값은분포의위치를나타내는모수로써분포의형태가대칭이면두모수는 일치한다. 확률변수 의중앙값이 M 이라하면다음의관계를만족한다. P( M ) P( M ) 즉, 전체 개의표본중 /개는중앙값초과, / 과하는수또는미달된수가검정통계량이다. 개는중앙값미달이며따라서중앙값을초 모집단의중앙값이 M 인연속확률분포에서추출한 인표본을,,, 이라하면, 이때 중앙값 M 에관한귀무가설 ( 영가설 ) 과이에대한대립가설 ( 연구가설 ) 은 H : M M H : () M M () M M (3) M M 이가설들에대한비모수적검정통계량 : ( M) 의부호 (sg). 이때각 에대해서부호를나타내는확률변수 M S M 단 M 검정통계량 : 는제외시킨다. B S 검정통계량 B 는중앙값 M 보다큰 귀무가설 H 하에서 M 가중앙값이므로각 S 를 들의개수가된다. S 가 이될확률은 / 이고 S 는서로독립이므 로 B 의분포는모수가 (, / ) 인이항분포를따르게된다. 여기서 은 M 를제외 시킨자료의개수다. 만일표본의수가 인경우는이항분포를이용할수없고, 정규분포에근사하므로표준화된 부호검정통계량을이용할수있다. 귀무가설 H : M M 하에서부호통계량 B 의평균과분산은 B ( ) Var B 4 96

3 표준화된통계량 : H 에서 이클때 B B ( / ) /4 B 의분포는근사적으로표준정규분포 N(,) 을따른다. [ 보기 3_] 우리나라대학생의 IQ 중앙값은 M 5 이다. J대학학생의 IQ 중앙값이 5이 상이라고주장한다. 이주장이옳은지를확인하기위해서임의로 명을추출하여 IQ 를조사한 자료는다음과같다. 유의수준.5 에서비모수방법으로검정하여라 ( 풀이 ) () 가설 H : M 5, 가설 H : M 5 () 중앙값 : 크기순으로나열하고중앙값 M 을찾아보면 (3) 중앙값보다큰, 즉 6 부터 37 까지의자료수 : B M 를제외한표본수 : 8 (8/ ) B.948 8/ 4 (4) 5 (5) 표준화값 : (6) 확률 : PB ( ).43 부호검정표에서 B, 8이교차하는값을찾아보면그값은.43 이다. (7) 결론 : 이것은유의수준.5 보다값이크므로 H 가채택된다. 즉 J 대학의 IQ 의중앙 값은 5 이상이라는가설은맞지않다. 3. Wlcoxo 의부호순위검정 부호검정은두자료를비교하고자할때관측치의크기는무시하고 B 는 M 를중심으로크고 작은것만을고려하는것이었다. 여기에얼마나크고작은지도고려할때 Wlcoxo 부호순위검 정을한다. 모집단의중앙값 M 을중심으로대칭인연속분포에서추출한크기 인표본을,,, 이라하자. 이때중앙값 M 에관한귀무가설과이에대한대립가설은 H : M M H : () M M () M M (3) M M 이가설들에대한비모수적검정통계량 ( 부호순위검정 ): ( M) 의부호와 M 위를이용하며이때 S 와 ( M) S ( M) R 를다음과같이정의한다. 에서의순 97

4 여기서 M R M 는자료로부터제외시킨다. 의 { M M M,( ),, } 에서의순위 단동점인경우에는해당순위들의평균을사용한다. 부호순위검정통계량 : 단 R 는 W SR 가 M 보다큰경우 M 위를사용한다. 귀무가설 H 하에서 W 는다. 그러나그특징을살펴보면 () W 의최소값은 S 들이모두 인경우에 그리고최대값은 터 까지의순위의합인 ( ) /. 의순위이며, 동일한관측값이있는경우에는평균순 분포는 에따라다르며일반적인형태는존재하지않 S 들이모두 인경우에 부 () H 하에서 M 는 을중심으로대칭이므로 W 분포도대칭인분포이며그중심은최대 값과최소값의중간지점인 ( ) / 4 그러므로 ( ) / 4 로부처거리가같은양쪽의두점 은 * P( W x) P( W x ) p 이다. x x x * *, ( x ) 에대해 W 의양끝의확률 [ 보기 3_] 앞의 [ 보기문제 ] 에서주어진자료가비대칭이므로다시 5 명을임의로추출한자 료가다음과같다. 유의수준.5 에서부호순위를검정하라 ( 풀이 ) 중앙값 : 크기순으로나열하여표를만들면다음과같다. 단 Mo 5 인자료는제외하라 표 [3-] 중앙값순위 W 5 5 S R S R

5 중앙값 : M 5 () 영가설 H : M Mo, 연구가설 H : M M () 부호순위통계량 (W ) 분포표 P( W x) 에서 x 5.5 와 3 PW ( 5.5).354 이다. o 이만나는점의값은 이값은유의수준.5 보다크므로영가설 H 가채택된다. 즉이학교의학생 IQ는중앙값 이 5 이상이라고말할수없다. 3.3 독립두표본의비모수검정 (Ma-Whtey 검정 ) 두모집단간의중심위치를비교하기위한비모수적검정법으로 Ma-Whtey-Wlcoxo 순위 합검정또는단순히 Ma-Whtey U 검정이라한다. 연속이며동일한분포형태를갖는두개 의독립인모집단 과 로부터확률표본,,, m 과,,, ( m ) 을각각추출하였 다고하자. 이때두모집단간중앙값의차 에대한귀무 ( 영 ) 가설과대립 ( 연구 ) 가설은각각다음 과같다. 귀무 ( 영 ) 가설 H : 대립 ( 연구 ) 가설 H : 또는 또는 이때두모집단의혼합표본에서 Ma-Whtey 순위합검정통계량 U 는 ( ) U W 여기서 W Rj, j j j 의순위를나타낸다. R 는두모집단의혼합표본 {,,, m,,, j, } 에서 U 의값은혼합표본에동점이없는경우두표본을합해서가장작은값부터크기순으로배열하 여표본 의값보다작은표본 의값을구하고, 이값을표본 의모든관측값에대하여 합한값을나타낸다. SPSS 통계처리문제 ( 독립표본비모수검정 ) [ 보기 3_3] 두 TV 방송국에서같은시간대에방영하는유사한두연속극, 에대해 연 속극이 연속극보다시청률이낮다고주장한다. 이주장이타당한지확인하기위하여시청자의 시청률을각각 9회, 8회에걸쳐서조사한결과가다음과같다. 유의수준.5 에서검정하라. 여기서숫자는시청률로단위가 % 이다. 표 [3-3] 두방송국 TV 시청률

6 ( 풀이 ) 와 를크기순으로나열하면 표 [3-4] 시청률순위 (a) 의중앙값 : 6.3 () 의중앙값 : () 중앙값의차 : (3) (b) 가설 H :, 가설 H : (4) (c) 혼합표본을크기순으로나열하여순위 (rak) 를나타내자. 표 [3-5] 혼합순위 여기서 bold face 의숫자는 R ( 의 rak), 이것을제외한것은 값이같은것은두순위의합을 로나누어나타낸다. 이것을 와 가분리된 [ 의순위 R ] 와 [ 의순위 j R j ( 의 rak) 를나타낸다. R j ] 를표로요약하면다음과같다. 표 [3-6] 와 의순위합및순위평균 번호 R R j 순위합계 V W 64 순위평균.5 7. (d) 자료개수 : m 9, 8. (5) mm ( ) Ma-Whtey 순위합검정통계량 U : U W (6)

7 9(9 ) U 64 9 (7) (e) Ma-Whtey U 통계량분포표에서 P( U u) 를얻으려면 m 9 인표에서 8, u 9 가만나는곳의값이다. 즉 PU ( 9).57 (8) 6) 결론 : 확률이유의수준.5 보다크므로 H 를기각할수없다. 즉유의수준 5% 내에서 연속극이 연속극보다시청률이낮다고할수없다. 즉 H ( 시청률은차이가없다 ) 는영가 설을채택한다고해도 5% 의오차밖에지나지않는다는의미이다. SPSS 통계처리 [3_3_TVsoap.sav] SPSS 로얻은결과를위에서계산한값들과비교하여비모수독립표본통계를이해하도록하자. 분석 > 비모수검정 > 독립 -표본보조창이뜨면 [ 시청률 ] 을검정변수로이동 [ 연속극 ] 을집단변수로이동하고집단정의를클릭하여집단 에, 집단 에 를입력. 여기서집단 은 연속극, 집단 는 연속극을대표하는수이다. 검정유형에 Ma-Whtey(U) 를선택후확인 비모수검정결과 Ma-Whtey 검정 순위 시청률 연속극 연속극 연속극합계 N 평균순위 순위합 검정통계량 b Ma-Whtey 의 U Wlcoxo 의 W 근사유의확률 ( 양측 ) 정확한유의확률 [*( 단측유의확률 )] 시청률 a a. 동률에대해수정된사항이없습니다. b. 집단변수 : 연속극 결과분석. 순위분석 () N 은측정수로 연속극은 9, 연속극은 8.

8 () 평균순위 : 표 의순위 (rak) 합인 64 W 와 V 89 를측정수로나누면 의평균순위 : , 의평균순위 : (3) 위의이론계산에서순위합인 W 64 와 V 89 를얻는방법을참조할것.. 검정통계량분석 () 이론계산에서 Ma-Whtey U 를계산하는방법 (6) 과결과 (7) 을참조할것. ) 이론계산에서 Wlcoxo의 W를계산하는방법을참조할것. (3) 의순위 (rak) 가정규분포라고보면 여기서 는순위의평균으로 7., 는표준편차이다. 4) P( z.638) P( z.638) 근사유의확률양측 : P( z.638) P( z.638).9493 (.57). (5) *( 단측유의확률 ) 의.4는보기문제 (8) 에서계산한 PU ( 9).57 에 배를한값이 다. 이유의확률때문에영가설즉 연속극이 연속극보다시청률이낮다고할수없다. [ 보기 3_4] 흡연이운전기술에미치는영향을평가하기위하여경력 5년이상의모범운전자를무작위로추출하여이들의운전습관, 주의력, 속도감등을점수한결과가다음과같다. 두집단사이의운전기술에대한차이가있는지비모수검정독립 -표본으로검정하고그결과값들을이론으로계산하여맞았는지확인하라. 채택된가설검정은무엇인가? 표 [3-7] 비흡연자흡연자의운전기술점수 비흡연자 ( ) 흡연자 ( ) [ 비모수독립 - 표본예제 (p374)] SPSS 통계처리 [regsur.sav] 성별에따라이웃으로부터생활용품을빌리는차이를검증한다. 분석 > 비모수검정 > 독립 -표본용품빌리기 [3]-검정변수로이동성별-집단변수로이동집단정의단추를누르고집단 에, 집단 에 를쳐넣고계속정확 단추를눌러점근적검정선택 검정유형에서 Ma-Whtey U 를선택하고확인. 비모수검정

9 Ma-Whtey 검정 용품빌리기 성남자여자합계 순위 N 평균순위 순위합 검정통계량 a Ma-Whtey 의 U Wlcoxo 의 W 근사유의확률 ( 양측 ) a. 집단변수 : 성 용품빌리기 해석은위의보기문제와동일하다..4 대응표본의비모수검정 일명 Wlcoxo Matched Pars Sged-Raks Test 표본이쌍으로관측된경우모집단간의비교를대응비교 (pared comparso) 라한다. 분포가연속이고중앙값이 M 과 M (, ), (, ),, (, ) 인두모집단으로부터 개를쌍으로추출한대응표본을 이라하자. 이때 D 라정의하면 D, D,, D 은분포가연속이고중앙값이 인 개 의모집단으로추출한크기 인표본으로간주할수있다. 이경우에두모집단간의위치를비 교하는문제는 개의모집단에서그의중앙값 에대한검정문제로바꾸어생각할수있다. 따라서앞에서다루었던단일표본인경우에부호검정과부호순위검정을대응비교의비모수적 검정법으로사용할수있다. 방법은 D 에순위를매기고 D 는제외한다. 그리고원래 하여이들중에서 부호를가진순위합인검정통계량 W 를구한다. D 가가지고있던부호를부여 SPSS 통계처리문제 ( 대응표본비모수검정 ) [ 보기 3_5] 새로운 AB, 두가지음료를개발하여시음을실시한다. 임의로 명을추출하여 맛을보고점수를나타낸자료는다음과같다. 표 [3-8] 음료의점수 시음자 A B 두청량음료의맛에차이가있다고볼수있는지유의수준.5 에서검정하여라. 3

10 ( 풀이 ) () 부호검정 : D B A 는다음과같다. 표 [3-9] 음료의부호검정표 시음자 A B D () 귀무가설과대립가설은다음과같이설정한다. H :, H : () (3) D 자료중 인것을제외하면 9 통계량은 B 6 이므로통계표에서이것의확률은 이고 9 개중양의값을갖는수는 6 개이다. 따라서부호 PB ( 6).539 () 유의확률 : PB ( 6) (.539).578 (3) (4) 결론 : 유의확률이유의수준보다크므로 H 가채택된다. 즉두음료의맛의차이는없다. Wlcoxo 부호순위검정 : 표 [3-] Wlcoxo 부호순위검정표 W D D D 를크기순으로나열하고순위를부여하면 S R S R D 에서 5는 3개가있다. 따라서순위는, 3, 4가이들에해당되며이순위의평균은 3으로 R 에서모든 5는 3이되었다. 음의순위합 : W 3 R (4) 평균순위 : (5) 4

11 양의순위합 : W 6 R (6) 평균순위 : (7) B ( / ) 검정통계량 : B /4 SPSS 통계처리 [3_5_drk.sav] 분석 > 비모수검정 > 대응 표본 [ 시음자A] 와 [ 시음자B] 를검정대응변수로이동 검정유형에서 Wlcoxo 과부호를 check 후확인 비모수검정 Wlcoxo 부호순위검정 순위 시음자 B - 시음자 A a. 시음자 B < 시음자 A b. 시음자 B > 시음자 A c. 시음자 B = 시음자 A 음의순위양의순위동률합계 N 평균순위 순위합 3 a b c 검정통계량 b 근사유의확률 ( 양측 ) a. 음의순위를기준으로. 시음자 B - 시음자A -.3 a.58 b. Wlcoxo 부호순위검정 부호검정 시음자 B - 시음자 A 빈도분석 a. 시음자 B < 시음자 A b. 시음자 B > 시음자 A c. 시음자 B = 시음자 A 음수차 a 양수차 b 동률 c 합계 N 3 6 5

12 검정통계량 b 시음자B - 시음자A 정확한유의확률 ( 양측 ).58 a a. 이항분포를사용함. b. 부호검정 해석 : P(.3) P(.3) 양측의확률 : (.93).586 정확한유의확률 ( 양측 ) 은이론계산의수식 () 와 (3) 을참고하라. [ 보기 3_6] 두생산라인에서생산된전구를 일동안관측한결과각생산라인의일별불량품의수가다음표와같이관측되었다. 두생산라인의일별생산량이동일하다고할때아래자료를이용하여두라인에서생산된제품중에서불량품수의분포가동일한가를비모수검정의대응 -표본으로검정하고 SPSS 프로그램검정하고나온값을공부한이론으로맞추어보아라. 표 [3-] 일별두생산라인의전구불량품 일자 Le Le [ 비모수대응 - 표본, 교과서예제 (p377)] SPSS 통계처리 [regsur.sav] 용품빌리기 [v3]- 경조사참석 [v33] 을대응비교하여결과를분석한다. 분석 > 비모수검정 > 대응 - 표본 용품빌리기 [3]- 경조사참석 [v33] 두개를 hghlght 하여 - 검정대응변수로이동 검정유형에서 Wlcoxo 과부호를 check 한후확인. 비모수검정 Wlcoxo 부호순위검정 순위 경조사참석 - 용품빌리기 a. 경조사참석 < 용품빌리기 b. 경조사참석 > 용품빌리기 c. 경조사참석 = 용품빌리기 음의순위양의순위동률합계 N 평균순위 순위합 4 a b c 575 6

13 검정통계량 b 근사유의확률 ( 양측 ) a. 양의순위를기준으로. b. Wlcoxo 부호순위검정 경조사참석 - 용품빌리기 a. 부호검정 빈도분석 경조사참석 - 용품빌리기 a. 경조사참석 < 용품빌리기 b. 경조사참석 > 용품빌리기 c. 경조사참석 = 용품빌리기 음수차 a 양수차 b 동률 c 합계 N 검정통계량 a 근사유의확률 ( 양측 ) a. 부호검정 경조사참석 - 용품빌리기 검정결론 : 위의모든값은앞에서이론으로공부한방법으로모두얻을수있다. 검정통계량의. 이기때문에영가설이기각되고대립가설즉경조사참석과용품빌리기는 아무련관련이없으며경조사참석을생활용품빌리는것보다더많이하고있음을알수있다. 7

G Power

G Power G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2

More information

statistics

statistics 수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지

More information

R t-..

R t-.. R 과데이터분석 집단의차이비교 t- 검정 양창모 청주교육대학교컴퓨터교육과 2015 년겨울 t- 검정 변수의값이연속적이고정규분포를따른다고할때사용 t.test() 는모평균과모평균의 95% 신뢰구간을추청함과동시에가설검증을수행한다. 모평균의구간추정 - 일표본 t- 검정 이가설검정의귀무가설은 모평균이 0 이다 라는귀무가설이다. > x t.test(x)

More information

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포

생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포 생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................

More information

자료의 이해 및 분석

자료의 이해 및 분석 어떤실험이나치료의효과를측정할때독립이아닌표본으로부터관찰치를얻었을때처리하는방법 - 동일한개체에어떤처리를하기전과후의자료를얻을때 - 가능한동일한특성을갖는두개의개체에서로다른처리를하여그처리의효과를비교하는방법 (matching) 1 예제 : 혈청 cholesterol 치를줄이기위해서 12 명을대상으로운동과함께식이요법의효과를 측정하기위한실험실시 2 식이요법 - 운동실험전과후의

More information

(001~006)개념RPM3-2(부속)

(001~006)개념RPM3-2(부속) www.imth.tv - (~9)개념RPM-(본문).. : PM RPM - 대푯값 페이지 다민 PI LPI 알피엠 대푯값과산포도 유형 ⑴ 대푯값 자료 전체의 중심적인 경향이나 특징을 하나의 수로 나타낸 값 ⑵ 평균 (평균)= Ⅰ 통계 (변량)의 총합 (변량의 개수) 개념플러스 대푯값에는 평균, 중앙값, 최 빈값 등이 있다. ⑶ 중앙값 자료를 작은 값부터 크기순으로

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 13 장상관분석 1. 상관계수 2. 상관분석의가정과특성 3. 모상관계수의검정과신뢰한계 4. 순위상관 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 - 실습 - 상관분석 지금까지한가지확률변수에의한현상을검정하였다.

More information

모수검정과비모수검정 제 6 강 지리통계학

모수검정과비모수검정 제 6 강 지리통계학 모수검정과비모수검정 제 6 강 지리통계학 통계적추정의목적 연구자가주장하는연구가설을입증하기위한것 1 연구목적에맞는연구가설을설정 2 연구목적과수집된자료에부합되는적절한통계적검정방법을선택 3 귀무가설과연구가설 ( 대립가설 ) 을진술 4 유의수준을결정한후각분포유형에따라분포표를이용하여임계치를구하고기각역을설정 5 통계적검정유형에필요한통계량을각검정유형의공식을이용하여계산 6

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 15 장공분산분석 1. 공분산분석의통계적모형 2. 공분산분석에의한처리효과검정 3. 공분산분석과정 - 실습 - 회귀분석 두확률변수간에관계가있는지검정

More information

3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료

3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료 3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료 분포형태, 상대적위치, 극단값 분포형태 z-값 체비셰프의원리 경험법칙 극단값찾기 분포형태 : 왜도 (skewness) 분포형태를측정하는중요한척도중하나를 왜도 라고한다. 자료집합의왜도를구하는계산식은조금복잡하다. 통계프로그램을사용하여왜도를쉽게계산할수있다.

More information

이다. 즉 μ μ μ : 가아니다. 이러한검정을하기위하여분산분석은다음과같은가정을두고있다. 분산분석의가정 (1) r개모집단분포는모두정규분포를이루고있다. (2) r개모집단의평균은다를수있으나분산은모두같다. (3) r개모집단에서추출한표본은서로독립적이다. 분산분석은집단을구분하는

이다. 즉 μ μ μ : 가아니다. 이러한검정을하기위하여분산분석은다음과같은가정을두고있다. 분산분석의가정 (1) r개모집단분포는모두정규분포를이루고있다. (2) r개모집단의평균은다를수있으나분산은모두같다. (3) r개모집단에서추출한표본은서로독립적이다. 분산분석은집단을구분하는 제 12 강분산분석 분산분석 (ANOVA) (1) 1. 개요 비교하는집단의수가 3개이상일경우에사용되는통계기법이분산분석이다. 두표본 t검증에서는문제의단순성때문에야기되지않는문제들이다수의표본으로확대됨에따라문제들이야기되기도한다. 다음과같은 r개의모집단이있다고가정하자..... ~ N( μ σ ) ~ N( μ σ ).... ~ N ( μ σ )...... 위의그림과같이여러번에걸쳐두표본의

More information

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63> 제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0

More information

제장 2 비모수 검정(NONPARAMETRIC ANALYSIS) ③ 연구자는 SPSS 출력결과에서 유의확률을 확인하여 귀무가설(H0 )의 기각, 채택 여부를 결정한다. 예를 들어 연구자가 연구자료의 정규성을 검정하기 위하여 유 의수준을 α = 0.05로 설정하고 SPS

제장 2 비모수 검정(NONPARAMETRIC ANALYSIS) ③ 연구자는 SPSS 출력결과에서 유의확률을 확인하여 귀무가설(H0 )의 기각, 채택 여부를 결정한다. 예를 들어 연구자가 연구자료의 정규성을 검정하기 위하여 유 의수준을 α = 0.05로 설정하고 SPS 제장 비모수 검정(nonparametric analysis) 모집단의 분포를 알 수 없거나 모집단이 정규분포를 따른다고 가정할 수 없는 경우에는 모수적 검정을 사용할 수 없다. 이 경우에 자료의 부호나 순위로 가설 검정을 실시하며 이러한 검정 방법을 비모수 검정이라고 한다. 제절 적합도 검정(goodness of fit test) 주어진 자료가 어떠한 통계적

More information

중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed

중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed 중심경향치 (measure of central tendency) 대표값이란용어이외에자료의중심값또는중심위치의척도 (measure of central location) 라고도함. 예 : 평균 (mean= 산술평균 ; arithmetic mean), 절사평균 (trimmed mean), 가중평균 (weighted mean), 기하평균 (geometric mean),

More information

... —... ..—

...   —... ..— 통계학 통계적추론 한국보건사회연구원 2017 년 5 월 29 일 ( 월요일 ) 강의슬라이드 7-1 1/ 72 목차 1 서론 2 신뢰구간을이용한통계적추론 3 통계적유의성검정 4 유의성검정과관련해서유의해야할점 2/ 72 지난시간복습 왜 x 가 µ 와완벽하게일치하지않고또어떤표본을추출했냐에따라 x 값이달라지는데이 x 를이용해서모집단 µ 를추정할까? 두가지사실때문 :

More information

Microsoft PowerPoint - SBE univariate5.pptx

Microsoft PowerPoint - SBE univariate5.pptx 이상치 (outlier) 진단및해결 Homework 데이터 ( Option.XLS) 결과해석 치우침? 평균이중앙값에비해다소크다. 그러나이상치때문이지치우친것같지않음. Toys us 스톡옵션비율이이상치 해결방법 : Log 변환? 아니다치우쳐있지않기때문에제거 제거후 : 평균 :.74, 중위수 :.7 31 치우침과이상치 데이터 : 노트북평가점수 우로치우침과이상치가존재

More information

untitled

untitled R 과함께하는통계학의이해 빅북이라명명된이책은지식공유의세계적인흐름에동참하고지적인업적들이세상과인류의지식이되도록하며, 누구나쉽게접근하고활용할수있는환경을만들고자한다. 이책의저작권은빅북 (www.bigbook.or.kr) 에있으며모든용도로활용할수있다. 다만상업용출판을하고자하는경우에는사전에문서로된허락을받아야한다. 공유와협력의교과서만들기운동본부 R 과함께하는 통계학의이해

More information

1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut

1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut 경영학을 위한 수학 Fial Eam 5//(토) :-5: 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오.. (각 6점) 다음 적분을 구하시오 4 ( ) (a) ( )4 8 8 (b) d이 성립한다. d C C log log (c) 이다. 양변에 적분을 취하면 log C (d) 라 하자. 그러면 d 4이다. 9 9 4 / si (e) cos si

More information

PowerPoint Presentation

PowerPoint Presentation 09 th Week Correlation Analysis 상관관계분석 Jongseok Lee Business Administration Hallym University 변수형태와통계적분석방법 H 0 : X ㅗ Y H 1 : X ~ Y X Categorical Y Categorical Chi-square Test X Categorical Y Numerical

More information

Microsoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt

Microsoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt 수명분포및신뢰도의 통계적추정 포항공과대학교산업공학과전치혁.. 수명및수명분포 수명 - 고장 까지의시간 - 확률변수로간주 - 통상잘알려진분포를따른다고가정 수명분포 - 확률밀도함수또는 누적 분포함수로표현 - 신뢰도, 고장률, MTTF 등신뢰성지표는수명분포로부터도출 - 수명분포추정은분포함수관련모수의추정 누적분포함수및확률밀도함수 누적분포함수 cumulav dsbuo

More information

<B4EBC7D0BCF6C7D02DBBEFB0A2C7D4BCF62E687770>

<B4EBC7D0BCF6C7D02DBBEFB0A2C7D4BCF62E687770> 삼각함수. 삼각함수의덧셈정리 삼각함수의덧셈정리 삼각함수 sin (α + β ), cos (α + β ), tan (α + β ) 등을 α 또는 β 의삼각함수로나 타낼수있다. 각 α 와각 β 에대하여 α >0, β >0이고 0 α - β < β 를만족한다고가정하 자. 다른경우에도같은방법으로증명할수있다. 각 α 와각 β 에대하여 θ = α - β 라고놓자. 위의그림에서원점에서거리가

More information

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은

공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은 2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영

More information

Microsoft Word - EDA_Univariate.docx

Microsoft Word - EDA_Univariate.docx 일변량분석개념 일변량분석은개체의특성을 측정한변수가하나인 통계분석 방법 변수의 종류 ( 수리 통계 ) 이산형 (discrete): 측정결과를셀수있는경우이다. 성별, 직업, 교통량, 나이등이여기해당된다. 연속형 (continuous): 측정결과가무한이 (infinite) 많은변수를연속형형변수라한다. 즉변수의범위 (range) 중어떤구간을설정하더라도측정치가발생할할수있는경우로키,

More information

... —....—

...   —....— 통계학 추출분포 한국보건사회연구원 2017 년 5 월 22 일 ( 월요일 ) 강의슬라이드 6 1/ 36 목차 1 들어가며 2 표본평균의추출분포 3 추출분포결론 2/ 36 추출분포와통계적추론 통계량의추출분포모집단분포 통계적추론이어떤표본을토대로모집단에대한결론을내리게끔해줌 어떤표본을토대로모집단에대한결론을내릴때, 이표본이모집단을잘대표해야한다는것은이제두말하면잔소리 =

More information

01

01 2019 학년도대학수학능력시험 9 월모의평가문제및정답 2019 학년도대학수학능력시험 9 월모의평가문제지 1 제 2 교시 5 지선다형 1. 두벡터, 모든성분의합은? [2 점 ] 에대하여벡터 의 3. 좌표공간의두점 A, B 에대하여선분 AB 를 로외분하는점의좌표가 일때, 의값은? [2점] 1 2 3 4 5 1 2 3 4 5 2. lim 의값은? [2점] 4. 두사건,

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

고객관계를 리드하는 서비스 리더십 전략

고객관계를 리드하는  서비스 리더십 전략 제 13 장분산분석 1 13.1 일원분산분석 13. 분산분석 - 무작위블럭디자인 13.3 이원분산분석 - 팩토리얼디자인 분산분석 (ANOVA) - 두개이상의집단들의평균값을비교하는데사용. 일원분산분석 - 처치변수가한개인분산분석. 1. 분산분석의원리 A 3.0 8.0 7.0 5.0 5.0 6.0 4.0 7.0 6.0 4.0 평균 5.0 6.0 B 3.0 9.0

More information

JAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 ( ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각

JAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 (   ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각 JAVA 프로그래밍실습 실습 1) 실습목표 - 메소드개념이해하기 - 매개변수이해하기 - 새메소드만들기 - Math 클래스의기존메소드이용하기 ( http://java.sun.com/javase/6/docs/api ) 문제 - 직사각형모양의땅이있다. 이땅의둘레, 면적과대각선의길이를계산하는메소드들을작성하라. 직사각형의가로와세로의길이는주어진다. 대각선의길이는 Math클래스의적절한메소드를이용하여구하라.

More information

10. ..

10. .. 점추정구간추정표본크기 차례 점추정구간추정표본크기 1 점추정 2 구간추정 3 표본크기 추정의종류 점추정구간추정표본크기 점추정 (point estimation): 모수를어떤하나의값으로추측하는것 구간추정 (interval estimation): 모수를어떤구간으로추측하는것 예 ) 피그미족 (Pygmytribe) 의평균키는모수 µ 표본을추출하여평균을구해보니 135cm

More information

용역보고서

용역보고서 신뢰성샘플링검사의설계방법 ( 정수관측중단시험 ) 9.. ( 주 ) 한국신뢰성기술서비스 목차 신뢰성샘플링검사의설계방법 ( 정수관측중단시험 ).... 개요.... 기호및용어정의.... 샘플링검사의설계방법... 3. 정수중단시샘플링검사설계방법...4 4. 신뢰성샘플링시험계획예제...5 hp://www.kors.co.kr 신뢰성샘플링검사의설계방법 ( 정수관측중단시험

More information

제 8 장. 통계적추정 개요 : 통계적추정 ( 추론 ) 은모집단에서추출된표본의정보로모집단에대한값의추측또는그값에대한확신을결정하는과정이며다음의두단계가있다. 2 통계적추정 (statistical estimation): 모수인평균 ( m), 분산 ( s ), 표준편차 ( s

제 8 장. 통계적추정 개요 : 통계적추정 ( 추론 ) 은모집단에서추출된표본의정보로모집단에대한값의추측또는그값에대한확신을결정하는과정이며다음의두단계가있다. 2 통계적추정 (statistical estimation): 모수인평균 ( m), 분산 ( s ), 표준편차 ( s 제 8 장. 통계적추정 개요 : 통계적추정 ( 추론 ) 은모집단에서추출된표본의정보로모집단에대한값의추측또는그값에대한확신을결정하는과정이며다음의두단계가있다. 통계적추정 (statistical estimati): 모수인평균 ( m), 분산 ( s ), 표준편차 ( s ), 상관계수 ( r ) 가갖 는값과범위를추정. 가설검정 (hypthesis testig): 모수에대한통계적추정값의옳고그름을판단.

More information

한국보건사회연구원통계학및계량경제학의기초및응용 강의노트 2017 년 4 월 5 월 통계학 : 통계적추론 (Statistical Inference) I. 들어가며 이제통계학에서가장중요한토픽이라고할수있는통계적추론에대해서본격적으로공부를해보도록하겠습니다. 통계적추론을통해연구와관

한국보건사회연구원통계학및계량경제학의기초및응용 강의노트 2017 년 4 월 5 월 통계학 : 통계적추론 (Statistical Inference) I. 들어가며 이제통계학에서가장중요한토픽이라고할수있는통계적추론에대해서본격적으로공부를해보도록하겠습니다. 통계적추론을통해연구와관 통계학 : 통계적추론 (Statistical Inference) I. 들어가며 이제통계학에서가장중요한토픽이라고할수있는통계적추론에대해서본격적으로공부를해보도록하겠습니다. 통계적추론을통해연구와관련한두가지중요한일을할수가있습니다. i) 한개표본의통계량을토대로모집단에대한결론을내릴수있고 ii) 그결론에어느정도의신뢰를부여할수있는지에대한판단을할수있습니다. 통계적추론은두가지방식으로할수있습니다.

More information

FGB-P 학번수학과권혁준 2008 년 5 월 19 일 Lemma 1 p 를 C([0, 1]) 에속하는음수가되지않는함수라하자. 이때 y C 2 (0, 1) C([0, 1]) 가미분방정식 y (t) + p(t)y(t) = 0, t (0, 1), y(0)

FGB-P 학번수학과권혁준 2008 년 5 월 19 일 Lemma 1 p 를 C([0, 1]) 에속하는음수가되지않는함수라하자. 이때 y C 2 (0, 1) C([0, 1]) 가미분방정식 y (t) + p(t)y(t) = 0, t (0, 1), y(0) FGB-P8-3 8 학번수학과권혁준 8 년 5 월 9 일 Lemma p 를 C[, ] 에속하는음수가되지않는함수라하자. 이때 y C, C[, ] 가미분방정식 y t + ptyt, t,, y y 을만족하는해라고하면, y 는, 에서연속적인이계도함수를가지게확 장될수있다. Proof y 은 y 의도함수이므로미적분학의기본정리에의하여, y 은 y 의어떤원시 함수와적분상수의합으로표시될수있다.

More information

장연립방정식을풀기위한반복법 12.1 선형시스템 : Gauss-Seidel 12.2 비선형시스템 12.1 선형시스템 : Gauss-Seidel (1/10) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정

장연립방정식을풀기위한반복법 12.1 선형시스템 : Gauss-Seidel 12.2 비선형시스템 12.1 선형시스템 : Gauss-Seidel (1/10) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정 . 선형시스템 : GussSedel. 비선형시스템. 선형시스템 : GussSedel (/0) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. GS 방법은선형대수방정식을푸는반복법중에서 가장보편적으로사용되는방법이다. 개의방정식에서 인 ( 대각원소들이모두 0 이아닌 ) 경우를다루자. j j b j j b j j 여기서 j b j j j 현재반복단계

More information

Microsoft PowerPoint - 26.pptx

Microsoft PowerPoint - 26.pptx 이산수학 () 관계와그특성 (Relations and Its Properties) 2011년봄학기 강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계

More information

슬라이드 1

슬라이드 1 장연립방정식을 풀기위한반복법. 선형시스템 : Guss-Sedel. 비선형시스템 . 선형시스템 : Guss-Sedel (/0) 반복법은초기근을가정한후에더좋은근의값을추정하는체계적인절차를이용한다. G-S 방법은선형대수방정식을푸는반복법중에서 가장보편적으로사용되는방법이다. 개의방정식에서 인 ( 대각원소들이모두 0 이아닌 ) 경우를다루자. j j b j b j j j

More information

OCW_C언어 기초

OCW_C언어 기초 초보프로그래머를위한 C 언어기초 4 장 : 연산자 2012 년 이은주 학습목표 수식의개념과연산자및피연산자에대한학습 C 의알아보기 연산자의우선순위와결합방향에대하여알아보기 2 목차 연산자의기본개념 수식 연산자와피연산자 산술연산자 / 증감연산자 관계연산자 / 논리연산자 비트연산자 / 대입연산자연산자의우선순위와결합방향 조건연산자 / 형변환연산자 연산자의우선순위 연산자의결합방향

More information

Microsoft Word - SAS_Data Manipulate.docx

Microsoft Word - SAS_Data Manipulate.docx 수학계산관련 함수 함수 형태 내용 SIN(argument) TAN(argument) EXP( 변수명 ) SIN 값을계산 -1 argument 1 TAN 값을계산, -1 argument 1 지수함수로지수값을계산한다 SQRT( 변수명 ) 제곱근값을계산한다 제곱은 x**(1/3) = 3 x x 1/ 3 x**2, 세제곱근 LOG( 변수명 ) LOGN( 변수명 )

More information

마지막 변경일 2018년 5월 7일 ** 이항분포와 정규분포의 관계 ** Geogebra와 수학의 시각화 책의 3.2소절 내용임. 가장 최근 파일은 링크를 누르면 받아 보실 수 있습니다.

마지막 변경일 2018년 5월 7일 ** 이항분포와 정규분포의 관계 ** Geogebra와 수학의 시각화 책의 3.2소절 내용임.   가장 최근 파일은 링크를 누르면 받아 보실 수 있습니다. 마지막 변경일 2018년 5월 7일 ** 이항분포와 정규분포의 관계 ** Geogebra와 수학의 시각화 책의 3.2소절 내용임. http://min7014.iptime.org/math/2017063002.htm 가장 최근 파일은 링크를 누르면 받아 보실 수 있습니다. https://goo.gl/edxsm7 http://min7014.iptime.org/math/2018010602.pdf

More information

LaTeX. [width=1em]Rlogo.jpg Sublime Text. ..

LaTeX. [width=1em]Rlogo.jpg Sublime Text. .. L A TEX 과 을결합한문서작성 Sublime Text 의활용 2015. 01. 31. 차례 1 L A TEX 과활용에유용한 Sublime text 2 LaTeXing 과 Extend 3 LaTeXing 의 Snippet 을활용한 L A TEX 편집 4 L A TEX 과을결합한문서작성 5 Reproducible Research 의응용 활용에 유용한 Sublime

More information

Microsoft PowerPoint - IPYYUIHNPGFU

Microsoft PowerPoint - IPYYUIHNPGFU 분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준

More information

예제 1.1 ( 경기값과공정한경기 ) >> A = [5 3 9; 8 10 11; 6 2 8], P = [0 1 0], Q = [1 0 0]' % 3x3 행렬경기 A = 5 3 9 8 10 11 6 2 8 P = 0 1 0 Q = 1 0 0 >> E = P * A * Q % 경기자 R은항상 2행을선택하고 C는항상 1열을선택하면, % R은 $8을얻는것이보장되고

More information

= ``...(2011), , (.)''

= ``...(2011), , (.)'' Finance Lecture Note Series 사회과학과 수학 제2강. 미분 조 승 모2 영남대학교 경제금융학부 학습목표. 미분의 개념: 미분과 도함수의 개념에 대해 알아본다. : 실제로 미분을 어떻게 하는지 알아본다. : 극값의 개념을 알아보고 미분을 통해 어떻게 구하는지 알아본다. 4. 미분과 극한: 미분을 이용하여 극한값을 구하는 방법에 대해 알아본다.

More information

위에서 100 단위이상을줄기로하기로결정하였고자료의최소값이 58, 최대값이 1103 이므로 0 부터 11 까지줄기를한열에크기순으로적는다. 줄기 (stem) 옆에잎을그린다. 잎을그리는방법은간단하다. 줄기바로뒤의숫자를줄기옆에차례로적으면된다. CEO 연봉자료는잎이두자리이지만앞

위에서 100 단위이상을줄기로하기로결정하였고자료의최소값이 58, 최대값이 1103 이므로 0 부터 11 까지줄기를한열에크기순으로적는다. 줄기 (stem) 옆에잎을그린다. 잎을그리는방법은간단하다. 줄기바로뒤의숫자를줄기옆에차례로적으면된다. CEO 연봉자료는잎이두자리이지만앞 줄기잎그림 stem and leaf + 진단내용 1) 분포의개략적인형태를알수있다. (1) 좌우대칭인가? 아니면 skewed 되었는가? (2) 봉우리 (modal) 는하나인가? 아니면여러개인가? 2) 이상치의존재여부를쉽게파악할수있다. + 데이터 ( 정렬 ) ( 정렬않음 ) + 그리는순서 자료를크기순으로정리한다. 자료의수가많을때는자료정렬을수작업하기어려움으로이단계는무시해도되지만자료를크기순으로정렬해놓으면

More information

모수 θ의 추정량은 추출한 개의 표본값을 어떤 규칙에 의해 처리를 해서 모수의 값을 추정하는 방법입니다. 추정량에서 사용되는 규칙은 어떤 표본을 추출했냐에 따라 변하는 것이 아닌 고정된 규칙입니다. 예를 들어 우리의 관심 모수가 모집단의 평균이라고 하겠습니다. 즉 θ

모수 θ의 추정량은 추출한 개의 표본값을 어떤 규칙에 의해 처리를 해서 모수의 값을 추정하는 방법입니다. 추정량에서 사용되는 규칙은 어떤 표본을 추출했냐에 따라 변하는 것이 아닌 고정된 규칙입니다. 예를 들어 우리의 관심 모수가 모집단의 평균이라고 하겠습니다. 즉 θ 수리통계학(Mathematical Statistics)의 기초 I. 들어가며 지금부터 계량경제학이나 실험 및 준실험 연구설계 기법을 공부할 때 도움이 되는 수리통계 학의 기초에 대해 다룰 것입니다. 이 노트에서 다루게 될 내용은 어떤 추정량(estimator)이 지니고 있는 성질입니다. 한 가지 말씀 드릴 것은 이 노트에 나오는 대부분의 성질들은 지금까 지

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2

비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2 비트연산자 1 1 비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2 진수법! 2, 10, 16, 8! 2 : 0~1 ( )! 10 : 0~9 ( )! 16 : 0~9, 9 a, b,

More information

3.2 함수의정의 Theorem 6 함수 f : X Y 와 Y W 인집합 W 에대하여 f : X W 는함수이다. Proof. f : X Y 가함수이므로 f X Y 이고, Y W 이므로 f X W 이므로 F0이만족된다. 함수의정의 F1, F2은 f : X Y 가함수이므로

3.2 함수의정의 Theorem 6 함수 f : X Y 와 Y W 인집합 W 에대하여 f : X W 는함수이다. Proof. f : X Y 가함수이므로 f X Y 이고, Y W 이므로 f X W 이므로 F0이만족된다. 함수의정의 F1, F2은 f : X Y 가함수이므로 3.2 함수의정의 Theorem 6 함수 f : X Y 와 Y W 인집합 W 에대하여 f : X W 는함수이다. Proof. f : X Y 가함수이므로 f X Y 이고, Y W 이므로 f X W 이므로 F0이만족된다. 함수의정의 F1, F2은 f : X Y 가함수이므로성립한다. Theorem 7 두함수 f : X Y 와 g : X Y 에대하여, f = g f(x)

More information

용역보고서

용역보고서 여러고장모드를갖는자료분석방법 2009. 1. ( 주 ) 한국신뢰성기술서비스 목차 여러고장모드를갖는자료분석방법...3 1. 개요...3 2. 분석방법및예제...4 2.1 CFM(Competing Failure Mode) 분석...4 2.2 Mixed Weibull 분석...4 2.3 Mixed Weibull 예제...5 3. 요약정리...9 ii http://www.korts.co.kr

More information

<C5EBB0E8C0FBB0A1BCB3B0CBC1F5C0C7C0FDC2F7BFCDB9AEC1A6C1A1B1D7B8AEB0EDB4EBBEC E687770>

<C5EBB0E8C0FBB0A1BCB3B0CBC1F5C0C7C0FDC2F7BFCDB9AEC1A6C1A1B1D7B8AEB0EDB4EBBEC E687770> 통계적가설검증의절차와문제점그리고대안 서울대학교심리학과, 인지과학협동과정교수조사연구편집위원장조사연구학회이사서울대사회과학대학교무부학장역임 주요연구 : Self-efficacy in information security : Its influence on end users information security practice behavior When fit indices

More information

제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Wint

제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Wint 제 3 장평활법 지수평활법 (exponential smoothing) 최근자료에더큰가중값, 과거로갈수록가중값을지수적으로줄여나가는방법 시스템에변화가있을경우변화에쉽게대처가능 계산이쉽고많은자료의저장이필요없다 예측이주목적단순지수평활법, 이중지수평활법, 삼중지수평활법, Winters의계절지수평활법 이동평균법 (moving average method) 평활에의해계절성분또는불규칙성분을제거하여전반적인추세를뚜렷하게파악

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

Microsoft PowerPoint - LN05 [호환 모드]

Microsoft PowerPoint - LN05 [호환 모드] 계량재무분석 I Chapter 6 & 7 Probability Distribution II 경영대학재무금융학과 윤선중 0 Objectives 확률변수 이산확률분포 (Discrete Random Variables): 셀수있는확률변수 연속확률분포 (Continuous Random Variables): 셀수없는경우의수 이산확률변수 분포의대표값 기대치 (Expected

More information

Microsoft Word - Chapter6.doc

Microsoft Word - Chapter6.doc CHAPTER 6 기초통계량분석 분류형 ( 범주형 ) 변수데이터에대한정리방법으로는숫자요약인빈도분석과그래프요약인파이차트, 바차트가이용된다. 측정형변수에대한숫자요약은일반적으로자료의중앙위치와자료의흩어진정도를나타내는두개의값으로축약된다. 즉, 크기 n 개의데이터의가진정보가 2 개숫자요약으로축약 (data reduction) 된다. 데이터의중앙위치에대한통계량평균 (mean)

More information

수리통계학

수리통계학 제 강통계학 Revew Part I. 확률론 (Probablty Theory) I. 확률변수 (Radom Varable) 와확률분포 A. 확률변수 는표본공간 Ω 상에서정의되는 real valued fucto 임. 어떤확률적실험의결과로나올수있는모든가능한결과에대해어떤. 실수값이대응되어야함 하나의실험에대해여러가지의확률변수가정의될수있음. 주사위던지는실험 : 던진결과나오는값을대응시켜주는확률변수

More information

ANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행

ANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행 Ch4 one-way ANOVA ANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행 One-way ANOVA 란? Group Sex pvas NSAID

More information

스무살, 마음껏날아오르기위해, 일년만꾹참자! 2014학년도대학수학능력시험 9월모의평가 18번두이차정사각행렬 가 를만족시킬때, 옳은것만을 < 보기 > 에서있는대로고른것은? ( 단, 는단위행렬이다.) [4점] < 보기 > ㄱ. ㄴ. ㄷ. 2013학년도대학수학능력시험 16번

스무살, 마음껏날아오르기위해, 일년만꾹참자! 2014학년도대학수학능력시험 9월모의평가 18번두이차정사각행렬 가 를만족시킬때, 옳은것만을 < 보기 > 에서있는대로고른것은? ( 단, 는단위행렬이다.) [4점] < 보기 > ㄱ. ㄴ. ㄷ. 2013학년도대학수학능력시험 16번 친절한하영쌤의 수학 A형 약점체크집중공략오답률 Best 5 정복 하기! - 보충문제 행렬 2015학년도대학수학능력시험 9월모의평가 19번두이차정사각행렬 가 를만족시킬때, < 보기 > 에서옳은것만을있는대로고른것은? ( 단, 는단위행렬이고, 는영행렬이다.) [4점] < 보기 > ㄱ. 의역행렬이존재한다. ㄴ. ㄷ. 2015학년도대학수학능력시험 6월모의평가 19번두이차정사각행렬

More information

Microsoft PowerPoint - PDF3 SBE 20080417.pptx

Microsoft PowerPoint - PDF3 SBE 20080417.pptx 연속형 확률밀도함수 연속형 확률분포함수? 데이터 히스토그램의 정상을 연결하면 확률분포함수가 된다. 이를 이용하여 데이터(표본)의 분포(이는 모집단의 분포와 동일)를 구 하게 된다. 그러나 함수를 구하는 것은 불가능해 보인다. 그래서 현실에서는 확률분포를 가정하게 된다. (예)기다리는 시간: 지수분포, 측정 오 차: 정규분포 Gauss(천문학자): 행성들간 거리

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

한국정책학회학회보

한국정책학회학회보 한국정책학회보제 22 권 2 호 (2013.6): 181~206 정부신뢰에대한연구 - 대통령에대한신뢰와정부정책에대한평가비교를중심으로 * - 주제어 : 민주화이후정부신뢰, 대통령신뢰, 정부정책만족도 Ⅰ. 서론 182 한국정책학회보제 22 권 2 호 (2013.6) 정부신뢰에대한연구 183 Ⅱ Ⅲ Ⅳ Ⅴ Ⅱ. 정부신뢰에대한이론적논의 184 한국정책학회보제 22

More information

- 1 - - 2 - 3) 공표효과란기업이배당지급을공표하게되면투자자및이해관계자에게기업의긍정적인이미지개선등부수적인효과가발생하는것을말함. - 3 - - 4 - - 5 - - 6 - - 7 - α β β β β β β β β β ε - 8 - α β β β β β β β β β ε - 9 - α β β β β β β β β β β β ε 세무보고이익 법인세부담액

More information

Microsoft PowerPoint - chap_2_rep.ppt [호환 모드]

Microsoft PowerPoint - chap_2_rep.ppt [호환 모드] 제 강.1 통계적기초 확률변수 (Radom Variable). 확률변수 (r.v.): 관측되기전까지는그값이알려지지않은변수. 확률변수의값은확률적실험으로부터결과된다. 확률적실험은실제수행할수있는실험뿐아니라가상적실험도포함함 (ex. 주사위던지기, [0,1] 실선에점던지기 ) 확률변수는그변수의모든가능한값들의집합에대해정의된알려지거나알려지지않은어떤확률분포의존재가연계됨 반면에,

More information

통계자료분석강희모 2013 년 11 월 29 일

통계자료분석강희모 2013 년 11 월 29 일 통계자료분석강희모 2013 년 11 월 29 일 목차 제 1 장 여러가지평균비교 1 1.1. 단일표본검정.............................. 2 1.2. 독립인두표본검정........................... 4 1.3. 대응표본검정.............................. 9 제 2 장 분산분석 (ANalysis Of

More information

수도권과비수도권근로자의임금격차에영향을미치는 집적경제의미시적메커니즘에관한실증연구 I. 서론

수도권과비수도권근로자의임금격차에영향을미치는 집적경제의미시적메커니즘에관한실증연구 I. 서론 수도권과비수도권근로자의임금격차에영향을미치는 집적경제의미시적메커니즘에관한실증연구 I. 서론 Ⅱ. 선행연구고찰 집적경제메커니즘의유형공유메커니즘매칭메커니즘학습메커니즘 내용기업이군집을형성하여분리불가능한생산요소, 중간재공급자, 노동력풀등을공유하는과정에서집적경제발생한지역에기업과노동력이군집을이뤄기업과노동력사이의매칭이촉진됨에따라집적경제발생군집이형성되면사람들사이의교류가촉진되어지식이확산되고새로운지식이창출됨에따라집적경제발생

More information

국가기술자격 재위탁 효율성 평가

국가기술자격 재위탁 효율성 평가 - i - - ii - - iii - - iv - - v - - vi - - vii - - viii - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - Ⅱ - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ

More information

저작자표시 - 비영리 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물

저작자표시 - 비영리 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물 저작자표시 - 비영리 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 귀하는, 이저작물의재이용이나배포의경우, 이저작물에적용된이용허락조건을명확하게나타내어야합니다.

More information

Survey Analyst 2013 년 1 회사회조사분석사 2 급필기 제 1 과목조사방법론 1 1. 질문지문항작성원칙에부합하는질문을모두짝지은것은? 2. 연역법과귀납법에관한설명으로옳은것은? 3. 설문조사에관한옳은설명을모두짝지은것은? 제공카페 : Daum 사회조사분석사 G

Survey Analyst 2013 년 1 회사회조사분석사 2 급필기 제 1 과목조사방법론 1 1. 질문지문항작성원칙에부합하는질문을모두짝지은것은? 2. 연역법과귀납법에관한설명으로옳은것은? 3. 설문조사에관한옳은설명을모두짝지은것은? 제공카페 : Daum 사회조사분석사 G Survey Analyst 2013 년 1 회사회조사분석사 2 급필기 제 1 과목조사방법론 1 1. 질문지문항작성원칙에부합하는질문을모두짝지은것은? 2. 연역법과귀납법에관한설명으로옳은것은? 3. 설문조사에관한옳은설명을모두짝지은것은? 1 사회조사분석사 2 급조사방법론 1 상반기 4. 비표준화 ( 비구조화 ) 면접의장점을모두짝지은것은? 5. 종단연구와비교한횡단연구의장점과가장거리가먼것은?

More information

제 4 장회귀분석

제 4 장회귀분석 회귀의역사적유래 (historical origin of the regression) 회귀 (regression) 라는용어는유전학자 Francis Galton(1886) 에의해처음사용된데서유래함. 그의논문에서 비정상적으로크거나작은부모의아이들키는전체인구의평균신장을향해움직이거나회귀 (regression) 하는경향이있다. 고주장 회귀의역사적유래 (historical

More information

Microsoft Word - ntasFrameBuilderInstallGuide2.5.doc

Microsoft Word - ntasFrameBuilderInstallGuide2.5.doc NTAS and FRAME BUILDER Install Guide NTAS and FRAME BUILDER Version 2.5 Copyright 2003 Ari System, Inc. All Rights reserved. NTAS and FRAME BUILDER are trademarks or registered trademarks of Ari System,

More information

확률과통계6

확률과통계6 확률과통계 6. 이산형확률분포 건국대학교스마트 ICT 융합공학과윤경로 (yoonk@konkuk.ac.kr) 6. 이산형확률분포 6.1 이산균일분포 6.2 이항분포 6.3 초기하분포 6.4 포아송분포 6.5 기하분포 6.6 음이항분포 * ( 제외 ) 6.7 다항분포 * ( 제외 ) 6.1 이산균일분포 [ 정의 6-1] 이산균일분포 (discrete uniform

More information

<3235B0AD20BCF6BFADC0C720B1D8C7D120C2FC20B0C5C1FE20322E687770>

<3235B0AD20BCF6BFADC0C720B1D8C7D120C2FC20B0C5C1FE20322E687770> 25 강. 수열의극한참거짓 2 두수열 { }, {b n } 의극한에대한 < 보기 > 의설명중옳은것을모두고르면? Ⅰ. < b n 이고 lim = 이면 lim b n =이다. Ⅱ. 두수열 { }, {b n } 이수렴할때 < b n 이면 lim < lim b n 이다. Ⅲ. lim b n =0이면 lim =0또는 lim b n =0이다. Ⅰ 2Ⅱ 3Ⅲ 4Ⅰ,Ⅱ 5Ⅰ,Ⅲ

More information

실험. Multimeter 의사용법및기초회로이론 Multimeter 의사용법 멀티미터 (Multimeter) 는저항, 전압, 전류등을측정할수있는계측기로서전면은다음그림과같다. 멀티미터를이용해서저항, 전압, 전류등을측정하기위해서는다음그림과같은프로브 (probe) 를멀티미터

실험. Multimeter 의사용법및기초회로이론 Multimeter 의사용법 멀티미터 (Multimeter) 는저항, 전압, 전류등을측정할수있는계측기로서전면은다음그림과같다. 멀티미터를이용해서저항, 전압, 전류등을측정하기위해서는다음그림과같은프로브 (probe) 를멀티미터 실험. Multimeter 의사용법및기초회로이론 Multimeter 의사용법 멀티미터 (Multimeter) 는저항, 전압, 전류등을측정할수있는계측기로서전면은다음그림과같다. 멀티미터를이용해서저항, 전압, 전류등을측정하기위해서는다음그림과같은프로브 (probe) 를멀티미터의전면패널에꼽는다. 통상적으로검은색프로브는전면패널의검은단자 (COM) 에꼽으며, 빨간색프로브는빨간색단자에꼽는다.

More information

슬라이드 제목 없음

슬라이드 제목 없음 계량치 Gage R&R 1 Gage R&R 의변동 반복성 (Equipment Variation) : EV- 계측장비에의한변동 - 동일측정자가동일조건에서반복하여발생된측정값의범위로부터계산되므로 Gage의변동을평가하게됨. 재현성 (Operator / Appraiser Variation) : AV- 평가자에의한변동 - 서로다른측정자가동일조건에서측정한값의차이로부터 계산되므로측정자에의한변동을평가함.

More information

exp

exp exp exp exp exp exp exp exp exp exp exp exp log 第 卷 第 號 39 4 2011 4 투영법을 이용한 터빈 블레이드의 크리프 특성 분석 329 성을 평가하였다 이를 위해 결정계수값인 값 을 비교하였으며 크리프 시험 결과를 곡선 접합 한 결과와 비선형 최소자승법으로 예측한 결과 사 이 결정계수간 정도의 오차가 발생하였고

More information

제 2 교시 2019 학년도 3 월고 1 전국연합학력평가문제지수학영역 1 5 지선다형 1. 의값은? [2점] 일차방정식 의해는? [2 점 ] 두수, 의최대공약수는? [2 점 ] 일차함수 의그래프에서

제 2 교시 2019 학년도 3 월고 1 전국연합학력평가문제지수학영역 1 5 지선다형 1. 의값은? [2점] 일차방정식 의해는? [2 점 ] 두수, 의최대공약수는? [2 점 ] 일차함수 의그래프에서 제 2 교시 2019 학년도 3 월고 1 전국연합학력평가문제지 1 5 지선다형 1. 의값은? [2점] 1 2 3 4 5 3. 일차방정식 의해는? [2 점 ] 1 2 3 4 5 2. 두수, 의최대공약수는? [2 점 ] 1 2 3 4 5 4. 일차함수 의그래프에서 절편과 절편의합은? [3 점 ] 1 2 3 4 5 1 12 2 5. 함수 의그래프가두점, 를지날때,

More information

untitled

untitled 통계청 통계분석연구 제 3 권제 1 호 (98. 봄 ) 91-104 장기예측방법의비교 - 전도시소비자물가지수를중심으로 - 서두성 *, 최종후 ** 본논문의목적은소비자물가지수와같이시간의흐름에따라변동의폭이크지않은시계열자료의장기예측에있어서쉽고, 정확한예측모형을찾고자하는데에있다. 이를위하여네가지의장기예측방법 - 1회귀적방법 2Autoregressive error 방법

More information

고차원에서의 유의성 검정

고차원에서의 유의성 검정 고차원에서의유의성검정 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 1 / 15 학습내용 FDR(false discovery rate) SAM(significance analysis of microarray) FDR 에대한베이지안해석 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 2 / 15 서론 I 고차원데이터에서변수들에대한유의성검정

More information

<B0A3C3DFB0E828C0DBBEF7292E687770>

<B0A3C3DFB0E828C0DBBEF7292E687770> 초청연자특강 대구가톨릭의대의학통계학교실 Meta analysis ( 메타분석 ) 예1) The effect of interferon on development of hepatocellular carcinoma in patients with chronic hepatitis B virus infection?? -:> 1998.1 ~2007.12.31 / RCT(2),

More information

제 1 절 two way ANOVA 제1절 1 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라

제 1 절 two way ANOVA 제1절 1 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라 제 절 two way ANOVA 제절 two way ANOVA 두 요인(factor)의 각 요인의 평균비교와 교호작용(interaction)을 검정하는 것을 이 원배치 분산분석(two way ANalysis Of VAriance; two way ANOVA)이라고 한다. 교호작용은 두 변수의 곱에 대한 검정으로 유의확률이 의미있는 결과라면 두 변수는 서로 영향을

More information

Microsoft PowerPoint Relations.pptx

Microsoft PowerPoint Relations.pptx 이산수학 () 관계와그특성 (Relations and Its Properties) 2010년봄학기강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계

More information

실험 5

실험 5 실험. OP Amp 의기초회로 Inverting Amplifier OP amp 를이용한아래와같은 inverting amplifier 회로를고려해본다. ( 그림 ) Inverting amplifier 위의회로에서 OP amp의 입력단자는 + 입력단자와동일한그라운드전압, 즉 0V를유지한다. 또한 OP amp 입력단자로흘러들어가는전류는 0 이므로, 저항에흐르는전류는다음과같다.

More information

목차 1. 통계학이란무엇인가? 2. 통계학의응용분야 3. 통계학의분야들 4. 강의소개 5. 그리고..

목차 1. 통계학이란무엇인가? 2. 통계학의응용분야 3. 통계학의분야들 4. 강의소개 5. 그리고.. 경영통계학 경영통계학에서는무엇을배우게될까? 2014 년도 2 학기 목차 1. 통계학이란무엇인가? 2. 통계학의응용분야 3. 통계학의분야들 4. 강의소개 5. 그리고.. 1. 통계학이란무엇인가? 매일접하는통계적결과들 연극티켓의평균가격은 18,670원이며우리나라가정의연평균관람횟수는 3.4회이다. 지난해투신사들의평균수익률은 26.5% 였으며투신사에예금한금액은 230억원이증가하였다.

More information

31. 을전개한식에서 의계수는? 를전개한식이 일 때, 의값은? 을전개했을때, 의계수와상수항의합을구하면? 을전개했을때, 의 계수는? 를전개했을때, 상수항을 구하여라. 37

31. 을전개한식에서 의계수는? 를전개한식이 일 때, 의값은? 을전개했을때, 의계수와상수항의합을구하면? 을전개했을때, 의 계수는? 를전개했을때, 상수항을 구하여라. 37 21. 다음식의값이유리수가되도록유리수 의값을 정하면? 1 4 2 5 3 26. 을전개하면상수항을 제외한각항의계수의총합이 이다. 이때, 의값은? 1 2 3 4 5 22. 일때, 의값은? 1 2 3 4 5 27. 를전개하여간단히 하였을때, 의계수는? 1 2 3 4 5 23. 를전개하여 간단히하였을때, 상수항은? 1 2 3 4 5 28. 두자연수 와 를 로나누면나머지가각각

More information

통계학입문

통계학입문 통계학입문 ( 기초통계학 ) 1. 1 개요 통계학 (statistics) 관심의대상에대해관련된자료를수집하고그 자료를요약, 정리하여이로부터불확실한사실에 대한결론이나일반적인규칙성을추구하는학문 Statistic : 통계치, 통계량 CH 1-2 1. 1 개요 통계학 (statistics) 기술통계학 (descriptive stat) 수집된자료의정리및요약방법을다룸

More information

행정학석사학위논문 공공기관기관장의전문성이 조직의성과에미치는영향 년 월 서울대학교행정대학원 행정학과행정학전공 유진아

행정학석사학위논문 공공기관기관장의전문성이 조직의성과에미치는영향 년 월 서울대학교행정대학원 행정학과행정학전공 유진아 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

슬라이드 1

슬라이드 1 예제 7-6 어떤전기조립품을만들어내는전자회사에서완성품의잡음을측정하여그평균값과산포를관리하고자한다. 각로트에서의시료를뽑아잡음레벨을측정한데이터는 < 표 7.5> 와같다. 미니탭을사용하여 -R 관리도를그리고관리상태를판정하라. X 풀이 ) 1. C1(x1), C2(x2), C3(x3), C4(x4), C5(x5) 에데이터를입력 2. 통계분석 > 관리도 > 부분군에대한계량형관리도

More information

<B3EDB4DC28B1E8BCAEC7F6292E687770>

<B3EDB4DC28B1E8BCAEC7F6292E687770> 1) 초고를읽고소중한조언을주신여러분들게감사드린다. 소중한조언들에도불구하고이글이포함하는오류는전적으로저자개인의것임을밝혀둔다. 2) 대표적인학자가 Asia's Next Giant: South Korea and Late Industrialization, 1990 을저술한 MIT 의 A. Amsden 교수이다. - 1 - - 2 - 3) 계량방법론은회귀분석 (regression)

More information

연구보고서 2009-05 일반화선형모형 (GLM) 을이용한 자동차보험요율상대도산출방법연구 Ⅰ. 요율상대도산출시일반화선형모형활용방법 1. 일반화선형모형 2 연구보고서 2009-05 2. 일반화선형모형의자동차보험요율산출에적용방법 요약 3 4 연구보고서 2009-05 Ⅱ. 일반화선형모형을이용한실증분석 1. 모형적용기준 < > = 요약 5 2. 통계자료및통계모형

More information

<BCF6B8AEBFB5BFAA28B0A1C7FC295FC2A6BCF62E687770>

<BCF6B8AEBFB5BFAA28B0A1C7FC295FC2A6BCF62E687770> 제 2 교시 2013 학년도대학수학능력시험문제지 수리영역 ( 가형 ) 1 짝수형 5 지선다형 1. 두행렬, 모든성분의합은? [2 점 ] 에대하여행렬 의 3. 좌표공간에서두점 A, B 에대하여선분 AB 를 로내분하는점의좌표가 이다. 의값은? [2점] 1 2 3 4 5 1 2 3 4 5 2. sin 일때, sin 의값은? ( 단, 이다.) [2 점 ] 1 2 3

More information

제 12강 함수수열의 평등수렴

제 12강 함수수열의 평등수렴 제 강함수수열의평등수렴 함수의수열과극한 정의 ( 점별수렴 ): 주어진집합 과각각의자연수 에대하여함수 f : 이있다고가정하자. 이때 을집합 에서로가는함수의수열이라고한다. 모든 x 에대하여 f 수열 f ( x) lim f ( x) 가성립할때함수수열 { f } 이집합 에서함수 f 로수렴한다고한다. 또 함수 f 을집합 에서의함수수열 { f } 의극한 ( 함수 ) 이라고한다.

More information

전자회로 실험

전자회로 실험 전자회로실험 2 조 고주현허영민 BJT의고정바이어스및 부품 * 실험목적 1) 고정바이어스와 회로의직류동작점을결정한다. 다이오드의특성 * 실험장비 계측장비 - Digital Multi Meter 부품 -저항 다이오드의특성 부품 - 트랜지스터

More information

슬라이드 1

슬라이드 1 대한의료관련감염관리학회학술대회 2016년 5월 26일 ( 목 ) 15:40-17:40 서울아산병원동관 6층대강당서울성심병원김지형 기능, 가격, 모든것을종합 1 Excel 자료정리 2 SPSS 학교에서준다면설치 3 통계시작 : dbstat 4 Web-R : 표만들기, 메타분석 5 R SPSS www.cbgstat.com dbstat 직접 dbstat 길들이기

More information

완벽한개념정립 _ 행렬의참, 거짓 수학전문가 NAMU 선생 1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에

완벽한개념정립 _ 행렬의참, 거짓 수학전문가 NAMU 선생 1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에 1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에대하여 AB=BA 1 가성립한다 2 3 (4) 이면 1 곱셈공식및변형공식성립 ± ± ( 복호동순 ), 2 지수법칙성립 (은자연수 ) < 거짓인명제 >

More information

<4D F736F F F696E74202D20C4C4C8B031B1DEC7CAB1E22DC0FCC3BCB1B3C0E72D D3133B3E232C8B8B1EEC1F6202D20BAB9BBE7BABB2E707074>

<4D F736F F F696E74202D20C4C4C8B031B1DEC7CAB1E22DC0FCC3BCB1B3C0E72D D3133B3E232C8B8B1EEC1F6202D20BAB9BBE7BABB2E707074> [ 엑셀총정리 (3)] 구분 주요 정보 ISBLANK, ISERROR, CELL, ISERR, ISEVEN, ISLOGICAL, ISNONTEXT, ISNUMBER, ISODD, ISTEXT, N, TYPE 데이터베이스 DSUM, DAVERAGE, DCOUNT, DCOUNTA, DMAX, DMIN, DVAR, DSTEDEV, DGET, DPRODUCT VLOOKUP,

More information

Communications of the Korean Statistical Society Vol. 15, No. 4, 2008, pp 국소적 강력 단위근 검정 최보승1), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는

Communications of the Korean Statistical Society Vol. 15, No. 4, 2008, pp 국소적 강력 단위근 검정 최보승1), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는 Communications of the Korean Statistical Society Vol 5, No 4, 2008, pp 53 542 국소적 강력 단위근 검정 최보승), 우진욱2), 박유성3) 요약 시계열 자료를 분석할 때, 시계열 자료가 가지고 있는 추세를 제거하기 위하여 결 정적 추세인 경우 회귀모형을 이용하고, 확률적 추세인 경우 차분하는 방법을

More information

벡터(0.6)-----.hwp

벡터(0.6)-----.hwp 만점을위한 수학전문가남언우 - 벡터 1강 _ 분점의위치벡터 2강 _ 벡터의일차결합 3강 _ 벡터의연산 4강 _ 내적의도형적의미 5강 _ 좌표를잡아라 6강 _ 내적의활용 7강 _ 공간도형의방정식 8강 _ 구의방정식 9강 _2014년수능최고난도문제 좌표공간에 orbi.kr 1 강 _ 분점의위치벡터 01. 1) 두점 A B 이있다. 평면 에있는점 P 에대하여 PA

More information

Microsoft Word - LectureNote.doc

Microsoft Word - LectureNote.doc 5. 보간법과회귀분석 . 보간법 Iterpolto. 서론 응용예 : 원자간 pr-wse tercto Tlor Seres oe-pot ppromto 를사용할수없는이유 Appromte / t 3 usg Tlor epso t.! P! 3 4 5 6 7 P 3-3 -5-43 -85 . Newto Tlor Seres 와의관계 te dvded derece Forwrd

More information

..(..) (..) - statistics

..(..) (..) - statistics 수치 ( 數値 ) 를이용한자료요약 ( 要約 ) statistics hmkang@hallym.ac.kr 한림대학교 한중시장분석 강희모 ( 한림대학교 ) 수치 ( 數値 ) 를이용한자료요약 ( 要約 ) 1 / 26 수치를 통한 자료의 요약 요약(要約,summary) 많은 자료를 몇 개의 의미(意味)있는 수치로 요약 자료의 분포상태(分布狀態)를 알 수 있는 통계기법(統計技法)

More information