13.fm

Similar documents
57.fm

( )-113.fm

87.fm

10(3)-10.fm

12.077~081(A12_이종국).fm

14.531~539(08-037).fm

82.fm

10(3)-09.fm

10(3)-02.fm

85.fm

10(3)-12.fm

605.fm

< DC1A4C3A5B5BFC7E22E666D>

83.fm

304.fm

14.fm

fm

105.fm

fm

( )-77.fm

untitled

62.fm

50(1)-09.fm

82-01.fm

3.fm

93.fm

( )-83.fm

120.fm

9(3)-4(p ).fm

16(4)-05.fm

10(1)-08.fm

17.393~400(11-033).fm

05.581~590(11-025).fm

16(5)-04(61).fm

DBPIA-NURIMEDIA

89.fm

19(1) 02.fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

27(5A)-07(5806).fm

( )-103.fm

12(4) 10.fm

(163번 이희수).fm

( )-69.fm

( )-123.fm

12(2)-04.fm

14(4) 09.fm

16(1)-3(국문)(p.40-45).fm

10(3)-11.fm

27(5A)-13(5735).fm

416.fm

4.fm

16(5)-03(56).fm

75.fm

( )-94.fm

11(5)-12(09-10)p fm

15.101~109(174-하천방재).fm

50(5)-07.fm

untitled

12(3) 10.fm

23(2) 71.fm

69-1(p.1-27).fm

( )-53.fm

18103.fm

48.fm

16(2)-7(p ).fm

16(5)-06(58).fm

41(6)-09(김창일).fm

07.051~058(345).fm

( )-84.fm

( )-71.fm

31(3B)-07(7055).fm

07.045~051(D04_신상욱).fm

51(4)-13.fm

64.fm

10.063~070(B04_윤성식).fm

14(2) 02.fm

한 fm

06.177~184(10-079).fm

<312D303128C1B6BAB4BFC1292E666D>

Æ÷Àå½Ã¼³94š

49(6)-06.fm

<30332DB9E8B0E6BCAE2E666D>

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

DBPIA-NURIMEDIA

( )-122.fm

144.fm

15.fm

fm

Microsoft Word - KSR2012A038.doc

139.fm

( )-36.fm

8(2)-4(p ).fm

( )-101.fm

03-서연옥.hwp

hwp

인문사회과학기술융합학회

11(1)-15.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

( )-74.fm

15(2)-07.fm

Transcription:

Journal of the Korean Ceramic Society Vol. 46, No. 1, pp. 58~68, 2009. Rheological Properties of Ordinary Portland Cement - Blast Furnace Slag - Fly Ash Blends Containing Ground Fly Ash Hyo Sang Park, Dong woo Yoo*, Seung Ho Byun, and Jong Taek Song Department of Materials Science and Engineering, Dankook University, Cheonan 330-714, Korea *Major of Materials Science and Engineering, Kunsan National University, Kunsan 573-701, Korea (Received October 28, 2008; Revised December 9, 2008; Accepted December 15, 2008) v yww 3 p p z Á *Á yá k w œw * w œw (2008 10 28 ; 2008 12 9 ; 2008 12 15 ) ABSTRACT In this study, rheological properties of ternary system cement containing ground fly ash(f3, Blaine specific surface area 8,100 cm 2 /g) were investigated using mini slump, coaxial cylinder viscometer and conduction calorimeter. In the results, the segregation resistance was observed at high W/B and PC area while the replacement ratio of F3 was increasing. The 2:5:3 system was shown in higher fluidity and lower hydration heat than 3:4:3 system. The segregation range of cement pastes occurred over 175 mm in average diameter by mini slump and below 10 dynesec/cm 2 of the plastic viscosity or below 50 cp of the yield stress by coaxial cylinder viscometer. It was observed that even if BFS and FA blended together admixture properties would remaine as they were separately. The properties of admixture would not be changed. On the above results, the decreased replacement ratio of OPC and increased replacement ratio of admixtures would be possible. Key words : Fly ash, Blast furnace slag, Rheological properties, Blended cement, Fluidity 1. šdy xy š gj p w ƒ ƒw. ü 2000 š k 1,2) r w r šd w. w šd, 2, k, DMC j 100d šd z š. w p 3) gj p št y š» y p y š, p š yƒ š. p gj p w ¾ š, š gj p ƒ w w ù š ƒ. p r p w gj p v w, g Corresponding author : Jong-Taek Song E-mail : song8253@dankook.ac.kr Tel : +82-41-550-3533 Fax : +82-41-550-3530 j p,,, w š š4) š. gj p t w j» w ƒ yw w 5-7)ƒ w š, t v, š, e{, ke. š š Ÿ, gj z sw p yw š. ü ky ƒ w y š, t yw v ky š. ky k z ƒ w Ì,» w z kz(ash, z) w. w w gj p yw š v (fly ash), m p yw wš. ù k w t r ƒ j» š w y w 58

v yww 3 p p 59 Table 1. Chemical Compositions of Raw Materials (wt%) Chemical Compositions Average Particle Blaine Al 2 O 3 SiO 2 Fe 2 O 3 CaO MgO TiO 2 K 2 O Na 2 O SO 3 LOI Size (µm) (cm 2 /g) OPC 4.19 17.76 3.24 67.16 2.26 0.23 1.21 0.09 2.99 0.84 13.70 3,350 B F S1 14.55 29.98 0.50 45.92 4.90 0.73 0.60 0.21 - - 7.83 3,950 S F F1 23.66 49.83 9.03 8.77 1.83 1.62 1.97 0.72 0.96 2.88 10.70 3,060 A F2 23.68 51.58 8.7 8.00 1.83 1.37 1.8 0.68 0.77 2.84 3.52 8,100 õ OPC : Ordinary Portland Cement, BFS : Blast Furnace Slag, FA : Fly Ash v w w v w ƒ m š š w v w w. w v 3 w p wš w. š v w / w (W/B) s e p š y (PC) w y w p w OPC30:BFS40:FA30 System OPC w jš BFS w ƒ k OPC20 :BFS50:FA30 System v (8,100 cm 2 /g) 0~30%¾ eyw W/B PCw y p yw p w y p v,, y d mw mw. 2. x 2.1. x p S m sp p( w OPC w) w, yw S š ( w BFS w) w. v ( w FA w) s y w. BFS Blaine t 3,950, 7,910 cm 2 /g( w S1, S2 w) w š, w FA Blaine t 3,060 cm 2 /g( w F1 w) 4,120, 8,100 cm 2 /g( w F2, F3 w) w w, OPC BFS, FA yw Table 1 ùkü. š y ü L s e p š y ( w PC w) w. x ey Table 2 ùkü, w Table 3 ùkü. 2.2. v x d 8) v x» w p r p w W/B PC ƒ w d w. x v x 8) k p r p p w yw z w» w š x. w w v g v g š v v w y ùküš 9) p. x 2-3-2 w v g p r p 1 ew z, v g r p r ù ƒ 4 w s³ w t w. w, 90 ¾ Table 2. Experimental Factors Levels Factors OPC-BFS-FA W/B 50, 70 (wt%) Admixtures BFS(S1), FA(F1, F2) Replacement ratios of mineral admixture 0, 10, 20, 30 (wt%) Dosages of Polycarboxylate 0, 0.3, 0.5 (wt%) Table 3. Mixing Ratio of Cement Pastes System Name OPC BFS F1 F2 OPC30%-BFS40% -FA30% system OPC20%-BFS50% -FA30% system (30: 0) (20: 10) (10: 20) (0: 30) (30: 0) (20: 10) (10: 20) (0: 30) 30 40 20 50 30 0 20 10 10 20 0 30 30 0 20 10 10 20 0 30 46«1y(2009)

60 z Á Á yá k y d w d 1 w. v x mw yy ƒ w p w. p r p OPC, š (S1) v (F1, F2) PC š r Fig. 1. Change of mini-slump as a function of PC dosage in cement pastes. (3 : 4 : 3 System) w wz

p 3 yww w, w ƒ w mx» š z 1rpm v yww 3 p p 61 š 150 rpm¾ w g p w. x z Brookfield Fig. 2. Change of mini-slump as a function of PC dosage in cement pastes. (2 : 5 : 3 System) 46«1y(2009)

62 z Á Á yá k RVDV II+(USA), spindle SC4-29 w. 2.3. y d 3:4:3 System 2:5:3 System y p» w W/B 0.5, 20 w y (Tokyo Ricko TCC-26) w 24 y d w w. 3. x š 3.1. p r p v x w 3:4:3 System 2:5:3 System F3 eyw W/B PCw y Figs. 1, 2 ùkü. W/B PCw ƒ ƒw, p w w x w BFS FA Ÿ p w v ey ƒw w w ƒw. v Blaine t ƒ v w» yy ƒ ƒwš FA yy ƒw» p w x w š, SCC(self-compacting concrete) w e yy w p 10,11) w x yy w FA yw r p x yw ƒw w w ùkü ù, w F2 ƒw w w ƒ. x W/B 70 wt% PC 0.3 wt% 0.5 wt% ƒ s³ 175 mm l w. W/B PC ƒ w x ƒ» w x W/B 70 wt% w x w w x w w wz Fig. 3. Rheological curves as a function of PC dosage for the samples with various W/B. (3 : 4 : 3 System)

v yww 3 p p 63 Fig. 4. Rheological curves as a function of PC dosage for the samples with various W/B. (2 : 5 : 3 System) š w. x w v 3:4:3 System 2:5:3 System w ùkü. OPC w 10 wt% jš BFS w 10 wt% ƒ k BFS ƒwš FA w w ƒ. BFS FA Ÿ p yww w Ÿ š p w š û» 11) d OPC š yw ƒ w š ƒ. 3.2. p 3 yw p d m w y w. v w w ƒw p r p š d mw Figs. 3, 4 ùkü. x y ùkü., w š w š»», r w w. w l v(hysteresis Loop) z ƒ w š w, w w p r p yƒ w q (structural breakdown) ùkü ƒ w. 12) š w w w Figs. 5, 6 ùkü. v x PC ƒ W/B ƒ w w š, ƒ 46«1y(2009)

64 z Á Á yá k Fig. 5. Change of plastic viscosity and yield stress as a function of PC dosage for the samples with various replacement ratio of F2. (3 : 4 : 3 System, þ : Segregation) w ùkü W/B 70 wt%, PC 0.3 wt% ƒ û w ùkü. w 3:4:3 system 2:5:3 system û w ùkü x w w ùküš. w x 50 cp w, w 10 dynesec/cm 2 w ƒƒ w. W/B 70 wt%, PC 0.3 wt%, 0.5 wt% 0 w ù v ù kü. W/B 50% 3:4:3 System 2:5:3 system PC 0 wt% 3:4:3 system 2:5:3 system w w ƒw ù, PC 0.3 wt% ƒ w w ù kû. w BFSƒ OPC PC w yy w j ƒ. 11) v W/B 50 wt%, PC 0.3 wt% w ùk ù d ew. w W.B 50 wt%, PC 0.3 wt% ƒ 3:4:3 system w wz F1(20):F2(10) 2:5:3 system F1(10):F3(20)ƒ v, w w d ù kü system w p ƒ. 3.3. xz PC ƒ W/B y xz w w d ww y š wš Fig. 7 ùkü. y w, v d w w š, ƒƒ R 2 ( ) 3:4:3 system 0.691 0.787 ùkü š, 2:5:3 system 0.729 0.852 ùkü 2:5:3 system ƒ. 3.4. y p y z

v yww 3 p p 65 Fig. 6. Change of plastic viscosity and yield stress as a function of PC dosage for the samples with various replacement ratio of F2. (2 : 5 : 3 System, þ : Segregation) gj p üyw en w ü ƒ k, gj p w š. 3 p sp 3) p yw w w ƒ ƒ w ù kü» w s yw ƒ g w. 13,14) x w 3:4:3 system 2:5:3 system y p w» w ƒ w W/B 70, 50 wt%, PC 0.3 wt% F1(10):F2(20) y w d w š Fig. 8 ùkü. š y y Table 4 ùkü. x w OPC>3:4:3 system >2:5:3 system y ùkû, W/B OPC>3:4:3 system >2:5:3 system ùkû. y j OPC w wš y j BFS ƒw 2:5:3 system p ùkü ƒ. w 2:5:3 system 3:4:3 system w ùkü pƒ w ùkü š ew. 13,15) 4. v yww sp p-š -v yw p p q w» w x w. 1. x 50 cp w, w 10 dynesec/cm w 2., W/B 70 wt% PC 0.3, 0.5 wt%, 3 w š, 3:4:3 system W/B 50 wt%, PC 0.5 wt% F1(0): F2(30) wš ù w. 2. ƒ ƒw 3 w ƒw. 3. w v 3:4:3 system 2:5:3 system w ùkü. 4. W/B 50 wt%, PC 0 wt% ƒ 3:4:3 system 2:5:3 system w ƒw š, PC 46«1y(2009)

66 z Á Á yá k Fig. 7. Correlation between plastic viscosity, yield stress and minislump. ( : segregation) Table 4. Hydration Heat Comparision of the Hydrated Cement Pastes Hydration heat OPC 100% (W/B 50%) Notation 3:4:3 System 2:5:3 System (10: 20) (10: 20) OPC 100% (W/B 70%) W/B 50% W/B 70% W/B 50% W/B 70% Total (J/g) 123.58 37.19 34.16 28.99 25.58 91.52 w wz

v yww 3 p p 67 Fig. 8. Heat evolution rate of the cement pastes. 0.3 wt% ƒ w w. BFSƒ OPC PC yy w j ƒ. 5. w F2 ey 3:4:3 system 2:5:3 system w d ùk ü. 6. 2:5:3 system 3:4:3 system û y ù kü. REFERENCES 1. K. Habel, M. Viviani, E. Denarie, and E. Bruhwiler, Development of the Mechanical Properties of an Ultra-High Performance Fiber Reinforced Concrete (UHPFRC), Cem. Concr. Res., 36 [7] 1362-70 (2006). 2. J. Yammine, M. Chaouche, M. Guerinet, M. Moranville, and N. Roussel, Form Ordinary Rheology Concrete to Self Compacting Concrete: A Transition between Frictional and Hydrodynamic Interactions, Cem. Concr. Res., 38 [7] 890-96 (2008). 3. J. H. Kim, and K. I. Lee, Necessity of Blended Cement(in Korean), J. Korea Concrete Institute, 20 [3] 10-2 (2008). 4. T. H. Park, M. H. Noh, and C. K. Park, Characterization of Rheology on the Multi-Ingredients Paste Systems Mixed with Mineral Admixtures(in Korean), J. Korea Concrete Institute, 16 [2] 241-48 (2004). 5. C. K. Park, S. H. Lee, H. J. Kim, S. J. Kim, and T. W. Lee, The Characteristics of Strength of Development and Hydration Heat on High Volume Fly-Ash Concrete(in Korean), J. Korea Concrete Institute, 20 [1] 417-20 (2008). 6. G. Bar-Nes, A. Katz, Y. Peled, and Y. Zeiri, The Mechanism of Cesium Immobilization in Densified Silical-fume Blended Cement Pastes, Cem. Concr. Res., 38 [5] 667-74 (2008). 7. Z. Jing, F. Jin, T. Hashida, N. Yamasaki, and E. H. Ishida, 46«1y(2009)

68 z Á Á yá k Influence of Additions of Coal Fly Ash and Quartz on Hydrothermal Solidfication of Blast Furnace Slag, Cem. Concr. Res., 38 [7] 976-82 (2008). 8. S. Ramachandran, Mini Slump of Research Techniques, pp. 78-9, Concrete Admixtures Handbook, 1995. 9. V. S. Ramachandran, Z. Shihua, and J. J. Beaudoin, Application of Miniature Tests for Workability of Superplasticizer Cement Systems, Il Cemento., 85 83-8 (1988). 10. S. K. Yang, W. J. Lee, D. S. Kim, Y. S. Chung, J. S. Ryu, and J. R. Lee, Rheological Properties of Cement Using Admixtures(in Korean), J. Korea Concrete Institute, 15 [1] 271-75 (2003). 11. Y. W. Choi, D. J. Moon, H. J. Kang, and W. Y. Jung, Rheological Properties of Admixture which an Influence on the Self-Compacting Concrete(in Korean), KSCE J. of Civil Engineering, 2523-26 (2006). 12. Y. W. Choi, Y. J. Kim, W. Choi, and K. M. Lee, A Study on the Rheological Properties of Superfluidity Self Compacting Concrete Utilizing Tailings from the Tungsten Mine(in Korean), J. Korea Concrete Institute, 18 [1] 89-92 (2006). 13. D. H. Lee, J. H. Noh, Y. S. Song, C. K. Park, and B. K. Kim, Low Heat Cement(in Korean), J. Korea Concrete Institute, 9 [3] 48-56 (1997). 14. W. S. Joung, K. J. Kim, H. S. Nah, B. C. Oh, and J. M. Noh, An Experimental Study on the Hydration Heat of Self- Compacting Concrete(in Korean), J. Korea Concrete Institute, 16 [1] 152-55 (2004). 15. B. S. Lee, S. K. Kim, S. Y. Kim, S. M. Choi, and G. S. Lee, Examination on Application of High-Performance Concrete using Fine Fly Ash as Replacement Material of Silica Fume(in Korean), J. Kor. Ceram. Soc., 44 [9] 502-09 (2007). w wz