한국산업위생학회지, 제 23 권제 2 호 (2013) 우리나라특수건강진단대상물질에대한 6개기관의직업적노출기준비교 이상윤 1 서춘희 2 김세영 2 예병진 3 설진곤 4 손준석 5 윤종완 6 홍석우 1 류지영 1 김대환 1 * 1 인제대해운대백병원 2 인제대부산백병원 3 고신대복음병원 4 좋은삼선병원 5 성균관대삼성창원병원 6 가천대길병원 Comparison of Occupational Exposure Limits in Six Agencies for Hazardous Substances Related Workers' Periodic Health Examination in South Korea Sangyoon Lee 1 Chun-Hui Suh 2 Se-Yeong Kim 2 Byeong Jin Ye 3 Jingon Sul 4 Jun-Seok Son 5 Jongwan Yoon 6 Sukwoo Hong 1 Ji Young Ryu 1 Dae-Hwan Kim 1 * 1 Haeundae Paik Hospital, Inje University 2 Pusan Paik Hospital, Inje University 3 Gospel Hospital, Koshin University 4 Good Samsun Hospital 5 Samsung Changwon Hospital, Sungkyunkwan University 6 Gil Hospital, Gachon University ABSTRACT Objectives: This study was performed in order to compare the average levels and similarity of occupational exposure limits in South Korea, the U.S., the E.U., Germany, Japan and Finland. Methods: In this study, occupational exposure limits (OELs) for one hundred and seventy seven hazardous substances which are managed in the workplace by the Occupational Safety and Health Act in South Korea were matched with those of other countries. The units for the exposure limits of the same substance (identical CAS number) were unified and the exposure limits in each country were compared with threshold limit values (TLVs) of the American Conference of Governmental Industrial Hygienists (ACGIH) using a geometric mean method. Geometric similarity was calculated to assess the association by each country. Results: The exposure limits according to ACGIH TLVs in South Korea, the E.U., Germany, Japan, and Finland were 148, 37, 76, 90, and 110, respectively. When using TLVs of ACGIH as a standard, the geometric mean ratios of Germany, Finland, the E.U., South Korea, and Japan were 0.79, 0.80, 0.82, 1.19, and 1.27, respectively. Geometric similarity with TLVs of ACGIH was highest in South Korea (0.75) followed by Japan (0.56), the E.U. (0.52), Finland (0.50), and Germany (0.46). Conclusions: Through the comparison of levels of OELs and similarities among South Korea, the U.S., the E.U., Germany, Japan, and Finland, we could better understand the characteristics of occupational exposure limits by country. Key words : occupational exposure limits, threshold limit values I. 서론근로자들은작업장에서여러유해물질에노출되게되는데, 각나라의여러기관들은노출에따른건강의부정적인위험을줄이고, 질환발생을예방하기위해직업적노출기준을설정하고있다. 이들기관들은각물질의독성과생물학적기전에대한정보가축적됨에 따라꾸준히개정하며관리하고있다 (Nielsen, 2008). 영국에서작업과관련하여면분진, 석면과같은몇가지물질의대기중노출기준을 1930대에설정하였지만, 체계적직업적노출기준은 American Conference of Governmental Industrial Hygienists(ACGIH) 가 Threshold Limit Values(TLVs) 을 1948년에처음발표하였고계속개정되고있다 (Topping, 2001). 많은나라에서 *Corresponding author: Dae-Hwan Kim, Tel: 051-797-0386, E-mail: kimdh@paik.ac.kr, Department of Occupational and Environmental Medicine, Haeundae Paik Hospital. #1435, Jwa-Dong, Haeundae-gu, Busan 612-896 Received: April 30, 2013, Revised: June 8, 2013, Accepted: June 18, 2013 148
우리나라특수건강진단대상물질에대한 6 개기관의직업적노출기준비교 149 는이를받아들여사용되고있으며 (Ruden, 2003), 미국의 Occupational Safety and Health Branch of Labor (OSHA) 는 Permissible Exposure Limits(PELs), 미국 National Institute for Occupational Safety and Health (NIOSH) 는 Recommended Exposre limits(rels), 독일의 German Research Foundation(Deutsche Forschungsgemeinschaft, DFG) 은 Maximum Allowable Concentrations(Maximale Arbeitsplatzkonzentrationen, MAK) 과 Biological Tolerance Values(Biologische Arbeitsstofftoleranzwerte, BATs), 유럽연합의 Scientific Committee on Occupational Exposure Limits(SCOEL) 등각나라의여러기관들은자체적인직업적노출기준을꾸준히개발해오고있다. 우리나라도 1972년노동청에서 유해물질허용농도및동측정요령 을제정할때 57종에물질에대해최초로규정하였고, 1983년 작업환경측정방법 을제정하면서유기용제 16종, 특정화학물질 31종그리고소음, 분진, 납을포함한 50종에대한허용기준을규정하였다. 이후 1986년 화학물질및물리적인자의허용기준 을별도규정하면서 ACGIH 등외국기준을참고하여유기용제등 274종을추가하여 324종의유해물질로확대하였다. 1988년에는원진레이온이황화탄소중독사건을계기로 373종의유해물질을추가하면서총 697 종이되었다. 1998년 화학물질및물리적인자의노출기준 으로용어를변경하며, 2-브로모프로판의 1종의노출기준을추가하였고 2002년 2월석면의노출기준을 2 f/cm 3 에서 0.1 f/cm 3 로강화하였으며, 같은해 5 월에는벤젠의노출기준을 10 ppm에서 1 ppm으로개정하였다. 2007년의경우선진외국과차이가큰물질을대상으로노동부연구용역결과를바탕으로 9종을제정하고, 79종을개정하였고, 안전보건공단연구용역결과 2008년 11종을제정, 29종을개정하였다. 2011 년에발암성물질정보를 ACGIH에서 Globally Harmonized System(GHS) 분류체계로변경하였고, 2012년에는발암성물질정보외에생식독성물질에대한유해성정보도추가하여현재까지우리나라의노출기준은 14회개정되었다 (Chung, 2007). 본연구는우리나라특수건강진단대상물질에대한한국을비롯해미국, 독일, 핀란드, 유럽연합, 일본의주요 6개국의여러기관들의직업적노출기준을비교하여국가별수준의정도를평가하고또한노출기준의연관성을살펴보고자하였다. II. 연구대상및방법 한국의산업안전보건법시행규칙제82조의 2에따른 화학물질및물리적인자의노출기준 (MoEL, 2012) 에해당되는 702종중우리나라에서특수건강진단등으로관리하고있는유해인자 177종을대상으로 2011 년에서 2012년에발표된다른나라의최근노출기준중같은인자들을정리하였다. 외국의노출기준정보선택은가장많이인용된다고판단되는기준으로미국 ACGIH, 미국 OSHA, 미국 NIOSH, 유럽연합의 SCOEL, 독일의 DFG, 그리고비교적독립성은갖는다고생각되는스웨덴, 핀란드기준등의후보중나라별대표성과유사성그리고접근성을기준으로미국에서는 ACGIH(659종 ), 독일에서는 DFG(1,115종 ), 북유럽의핀란드 (760종), 유럽연합의 SCOEL(187종 ), 그리고우리나라에서많이참고하고있는일본 JSOH의기준 (216종 ) 을포함하였다 (Table 1). CAS(Chemical Abstracts Service) 번호를통해서기관에따라다르게사용되는물질명을동일물질로인식하도록하였다. ppm과 mg/m 3 로서로단위가다른경우다음식을이용하여변환하였다. 농도 (mg/m 3 )= [ 농도 (ppm) 물질의분자량 ]/24.45 1. 기하평균비교법 (The geometric means method) 두기관의노출기준의수준을비교하기위한방법으로양쪽기관에모두노출기준이있는물질만을선택한후각각기하평균을구한후한기관을기준으로다른기관의값을나누었을때몫이구해지고그값이두기관의차이의지표로삼는다 (Hansson, 1998). 예를들 Table 1. The lists of occupational exposure limits selected for this study Country Agency Year South Korea Ministry of Employment and Labor 2012 USA EU Germany American Conference of Governmental Industrial Hygienists (ACGIH) Scientific Committee on Occupational Exposure Limits (SCOEL) German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) 2011 2012 2012 Japan The Japan Scociety for Occupational Health (JSOH) 2012 Finland Ministy of Social Affairs and Health 2011 http://www.kiha.kr/
150 이상윤, 서춘희, 김세영, 예병진, 설진곤, 손준석, 윤종완, 홍석우, 류지영, 김대환 Table 2. The geometric mean of ratios and the geometric similarity of different Agency, using the ACGIH list as a comparison list Country(Agency) Total no. of OELs No * Geometric mean of ratio Geometric similarity South Korea(Ministry of Employment and Labor) 702 148 1.19 (1.99/1.67) 0.75 EU(SCOEL) 187 37 0.82 (7.22/5.93) 0.52 Germany(DFG) 1115 76 0.79 (4.48/3.53) 0.46 Japan(JSOH) 216 90 1.27 (2.15/2.74) 0.56 Filand(Ministy of Social Affairs and Health) 760 110 0.80 (2.37/1.89) 0.50 * Number of substances both on the individual list and the ACGIH list. Geometric mean of Individual list/geometric mean of ACGIH list Table 3. Comparison of occupational exposure limits in South Korea with USA South Korea(Ministry of Employment and Labor, 2012) USA(ACGIH, 2011) Substance CAS no TWA STEL TWA STEL ppm mg/m 3 ppm mg/m 3 ppm mg/m 3 ppm mg/m 3 Nickel carbonyl, as Ni * 13463-39-3 0.001 - - - 0.05 - - - Dihydroxybenzene 123-31-9-2 - - - 1 - - Manganese & Inorganic 7439-96-5 compounds, as Mn - 1 - - - 0.2 - - 2-Methoxyethanol 109-86-4 5 - - - 0.1 - - - Beryllium & Compounds 7440-41-7-0.002 - - - 0.00005 - - Benzene 71-43-2 1 - - - 0.5 - - - Fluorine * 7782-41-4 0.1 - - - 1 - - - 1-Bromopropane 106-94-5 25 - - - 10 - - - Cyclohexanone 108-94-1 25 - - - 20 - - - Cyclohexane 110-82-7 200 - - - 100 - - - Acetone 67-64-1 500 - - - 200 - - - Ethylenimine 151-56-4 0.5 - - - 0.05 - - - Ethyl benzene 100-41-4 100 - - - 20 - - - Nitrogen dioxide 10102-44-0 3 - - - 0.2 - - - Sulfur dioxide 7446-09-5 - - 5 - - - 0.25 - Carbon disulfide 75-15-0 10 - - - 1 - - - Carbon monoxide 630-08-0 30 - - - 25 - - - Cadmium and compounds, as Cd 7440-43-9-0.03 - - - 0.01 - - Tetraethyl lead, as Pb * 78-00-2-0.075 - - - 0.1 - - Toluene 108-88-3 50 - - - 20 - - - Trichloroethylene 79-01-6 50 - - - 10 - - - Pyridine 110-86-1 2 - - - 1 - - - Hydrazine 302-01-2 0.05 - - - 0.01 - - - Hexone 108-10-1 50 - - - 20 - - - Hydrogen sulfide 7783-06-4 10 - - - 1 - - - * Occupational exposure limits are lower in South Korea than ACGIH Geometric mean of ratio (Ministry of Employment and Labor/ACGIH) in this 25 substances is 2.89 (2.73/0.94) http://www.kiha.kr
우리나라특수건강진단대상물질에대한 6 개기관의직업적노출기준비교 151 어 A기관의물질 I의노출기준이 0.5 ppm이고 II의노출기준이 8 ppm이고, B기관의 Ⅰ과 II의노출기준이모두 1 ppm이라면 A기관의기하평균은 2이고 B기관의두물질의기하평균 1에대해 A기관과 B기관의전체를비교할때 A/B인 2가기하평균의비 (Geometric mean ratio) 가된다. 산술평균과기하평균을예를들어비교해보면 A가 1과 1000, B가 10과 100의값을가지면 A와 B의기하평균의비는 1이지만산술평균의비는 5.05로전체수준을비교하기위해서는기하평균이유용하다. 2. 기하학적유사성 (Geometric similarity) 하나의기준기관과다른기관의값들이얼마나유사한지보기위한값으로한기관의값과다른기관의값의차이의기하평균을의미한다. 실제로두리스트의각각의물질노출기준의비 (A/B) 를구한후 1을넘지않으면그대로두고, 1이넘으면역전시킨값 (B/A) 을구하여새로운값인 similarity ratio를구하여이들의기하평균을구하는방식이다. 1에가까울수록기준과유사한것을의미하고, 0으로가까워질수록이질적임을의미한다 (Schenk et al., 2008). 예를들어 A기관의물질 I의노출기준이 0.5 ppm이고 II의노출기준이 8 ppm 이며, B기관의 I의기준이 80 ppm, II의기준이 0.05 ppm이고 C기관의 I과 II의노출기준이모두 1 ppm 이라면, A, B 기관의물질들의 C기관에비해기하평균의비는모두 2이지만, geometric similarity는 A기관은 C기관의물질과비교했을때 0.25( 0.5 8-1 ), B기관은 0.025( 80-1 0.05) 가된다. III. 연구결과 국내에서근로자의건강에영향을줄수있어특수건강진단등으로관리되고있는 177개유해인자중 ACGIH를기준으로 CAS번호가일치하고노출기준을비교해볼수있는물질수는한국이 148개, 유럽연합이 37개, 독일이 76개, 일본이 90개, 핀란드가 110 개였다 (Table 2). 1. 한국과미국의비교우리나라의 화학물질및물리적인자의노출기준 ( 고용노동부고시, 제 2012-31호 ) 이미국 (ACGIH, 2011) 과일치하는 148종물질중 123종은노출기준이동일하였고, 25종에서차이가있었는데그중 22종은미국 의 ACGIH가우리나라보다낮았고, 니켈카르보닐, 불소, 테트라알킬연의 3종에서는우리나라가더낮은기준치를보였다 (Table 3). 2. 미국과유럽연합의비교미국 (ACGIH, 2011) 와유럽연합 (SCOEL, 2012) 에서는 37종의물질이 CAS번호가일치하였고, 노출기준이동일한물질은 15종, 미국의기준이높은물질은니트로글리세린, 니트로벤젠, 디메틸포름아미드, 디에틸에테르, o-디클로로벤젠, 아닐린, 아세트산 2-에톡시에틸, 2-에톡시에탄올, 크실렌, 트리클로로메탄, 페놀, 헥산, 황산, 포스핀의 14종, 유럽연합의기준이높은물질은시클로헥산, 아세톤, 에틸벤젠, 이황화탄소, 초산 2-메톡시에틸, 톨루엔, 퍼클로르에틸렌, 헵탄의 8종이었다 (Table 4). 3. 미국과독일, 일본, 핀란드의비교미국과독일과는동일물질로모두노출기준을가지고있는물질이 76종이었고, 그중 25종은미국기준이더높은수치였고, 34종은동일하였으며, 17종은미국의기준이독일보다더낮은것으로나타났다. 미국과일본과의비교에서는 15종은미국기준값이높은수치였고, 44종은동일하였으며, 31종은일본기준이더높은수치였다. 미국과핀란드의비교에서는미국노출기준이높은수치인물질은 40종, 동일한물질은 49종, 핀란드보다미국이노출기준이낮은값의물질은 21종이었다 (Table 5). 노출수준을비교하기위한기하평균의비는미국 (1) 을기준으로하였을때일본 (1.27), 한국 (1.19) 은더높았고, 유럽연합 (0.82), 핀란드 (0.80), 독일 (0.79) 의순서로노출기준값이낮았다. 유사성을비교하기지표인 Geometric similarity는미국과비교하였을때한국 (0.75), 일본 (0.56), 유럽연합 (0.52), 핀란드 (0.50), 독일 (0.46) 의순서로가까운유사성을나타내었다 (Table 2). IV. 고 찰 여러나라의기관들은직업적노출기준이정의방법적인요인부터기술적인요소나사회경제적인이유로다르게설정되었다. 같은연구를바탕으로하여도다른임상효과를고려하여측정되기도하는데, 산화에틸렌의경우, 독일에서는발암성에대해우선시하는반면영국에서는자연유산이나태아사망에대한역 http://www.kiha.kr/
152 이상윤, 서춘희, 김세영, 예병진, 설진곤, 손준석, 윤종완, 홍석우, 류지영, 김대환 Table 4. Comparison of occupational exposure limits in USA with EU USA (ACGIH, 2011) EU (SCOEL, 2012) Substance CAS no TWA STEL TWA STEL ppm mg/m 3 ppm mg/m 3 ppm mg/m 3 ppm mg/m 3 Nitroglycerin * 55-63-0 0.05 - - - 0.01 - - - Nitrobenzene * 98-95-3 1 - - - 0.2 - - - Dimethylformamide * 68-12-2 10 - - - 5 - - - Diethyl ether * 60-29-7 400 - - - 100 - - - o-dichlorobenzene * 95-50-1 25 - - - 20 - - - Cyclohexane 110-82-7 100 - - - 200 - - - Aniline & homologues * 62-53-3 2 - - - 0.5 - - - Acetone 67-64-1 200 - - - 500 - - - 2-Ethoxyethyl acetate * 111-15-9 5 - - - 2 - - - 2-Ethoxyethanol * 110-80-5 5 - - - 2 - - - Ethyl benzene 100-41-4 20 - - - 100 - - - Carbon disulfide 75-15-0 1 - - - 5 - - - 2-Methoxyethyl acetate 110-49-6 0.1 - - - 1 - - - Xylene * 1330-20-7 100 - - - 50 - - - Toluene 108-88-3 20 - - - 50 - - - Trichloromethane * 67-66-3 10 - - - 2 - - - Perchloroethylene 127-18-4 25 - - - 20 - - - Phenol * 108-95-2 5 - - - 2 - - - Hexane * 110-54-3 50 - - - 20 - - - Heptane 142-82-5 400 - - - 500 - - - Sulfuric acid * 7664-93-9-0.2 - - - 0.05 - - Phosphine * 7803-51-2 0.3 - - - 0.1 - - - * Occupational exposure limits are lower in E.U than ACGIH Geometric mean of ratio(scoel/acgih) in this 22 substances is 0.72(5.50/7.68) Table 5. Comparison of occupational exposure limits in U.S. with Germany, Japan and Filand Germany<USA(n=25) Japan<USA(n=15) Filand<USA(n=40) Gasoline (0.33) Nitroglycerin(0.6) Glutaraldehyde (0.6) Nitrobenzene(0.2) 4,4 -Diamino-3,3-dichlorodipheny Dinitrotoluene(0.1) lmethane (0.045) Dimethylformamide (0.5) Nitroglycerin (0.2) * Dimethylformamide (0.5) o-dichlorobenzene (0.4) Methylene bisphenyl isocyanate (0.9) Methyl chloroform (0.57) 2-Butoxyethanol (0.5) 2-Butoxyethanol acetate (0.5) Carbon tetrachloride (0.1) 2-Ethoxyethyl acetate (0.4) 2-Ethoxyethanol (0.4) Ethyleneglycol (0.25) Chlorodiphenyls (42% chlorine) (0.1) Chlorodiphenyls (54% chlorine) (0.1) Isoamyl alcohol (0.2) Trichloromethane (0.05) Copper(Dust & mist, as Cu) (0.1) Nickel(Metal) (0.01) Manganese & Inorganic compounds, as Mn (0.1) Aluminum(Metal dust) (0.4) Zirconium compounds, as Zr (0.2) Sodium cyanide (0.76) Sulfuric acid (0.5) Hydrogen cyanide (0.4) Nitrogen oxide(0.02) Phosphine (0.33) 1,4-Dioxane(Diethyl dioxide) (0.5) Cyclohexanol (0.5) Aniline (0.5) Xylene (0.5) Trichloromethane (0.3) Formaldehyde (0.33) Hexane (0.8) Heptane (0.5) Nickel(Metal) (0.13) Antimony (0.2) Arsenic & Inorganic compounds, as As (0.3) Benzotrichloride (0.5) * Quotient Germany/U.S. Quotient Japan/U.S. Quotient Finland/U.S Diethyl ether (0.25) 1,4-Dioxane (Diethyl dioxide) (0.5) o-dichlorobenzene (0.4) Methyl ethyl ketone (0.4) Methyl chloroform (0.29) 1,3-Butadiene (0.5) Carbon tetrachloride (0.2) 2-Ethoxyethyl acetate (0.4) 2-Ethoxyethanol (0.4) Ethyleneglycol (0.5) Ethylene glycol dinitrate (0.6) Biphenyl chloride (42% chlorine) (0.5) Dichloroethylene (0.1) Xylen (0.5) Chlorobenzene (0.5) Trichloromethane (0.2) Phenol (0.4) Phthalic acid anhydride (0.03) Hexane (0.4) Heptane (0.75) Hydroquinone (0.5) Nickel(Metal) (0.13) Mercury(Metal) (0.8) Tetraethyl lead, as Pb (0.75) anadium pentoxide (0.4) Zirconium compounds, as Zr (0.2) Nitric acid (0.25) Sulfuric acid (0.25) Fluorine (0.03) Bromine (0.03) Hydrogen cyanide (0.2) Ozone (0.63) Phosgene (0.2) Phosphine (0.33) Benzotrichloride (0.12) Grain dust (0.5) http://www.kiha.kr
우리나라특수건강진단대상물질에대한 6 개기관의직업적노출기준비교 153 학적연구결과에따라노출수준을설정하였다. 또한쥐를이용한동일한실험을바탕으로영국에서는백혈병과고환암에비중을두지만독일에서는그외에뇌암까지포함하여양-반응관계에따라산화에틸렌의기준을결정한다. 또한임상적인반응의결과의기준에따라달라지기도하는데북유럽의국가들은자극증상을일으키는수준을기준으로하는반면 (Homberg 1989; Lundberg 1991), 다른기관들은자극반응보다더심한임상증상의수준을반영하여기준을삼기도한다. 예를들면트리클로로에틸렌의경우스웨덴이나핀란드에서는자극반응을기준으로 10 ppm인반면영국에서는중추신경계반응을유발하는 100 ppm으로노출기준을설정한다. 또한아크릴로니트릴, 벤젠과같이유전독성이나감작물질로역치를정하기어려운경우나라에따라기술적인고려나사회경제적인요인을포함하여다르게설정될수있다 (Seeley 등, 2001). 여러기관의수준을평가하는방법으로기하평균을이용한방법을이용하였는데, 중앙값이나산술평균에비해기하평균은두기관 A와 B의물질들이있다고할때 A/B나 B/A의비를통해쉽게비교가되지만, 산술평균은어느쪽이분자가되느냐에따라높고낮은수준이결정될수있기때문에만족스럽지못하다 (Hansson, 1998). Geometric similarity는한기관과다른기관의차이의기하평균을의미하는개념으로범위는 0에서 1까지이며값이 1이라면한기관과다른기관의노출기준이동일함을의미하고 0에가까워질수록차이가남을의미한다. 기하평균의비가두기관의노출기준의높고낮음을반영하는반면, geometric similarity는두기관의유사성의정도를평가하는지표로사용되었다. 이번연구에서는미국 ACGIH 를기준으로비교하였는데, 기준기관이달라짐에따라매칭되는물질의종류및개수가달라져수치는조금씩변화할가능성이있다. ACGIH의 TLV는 1942년허용농도를처음제정하고, 1946년 144종에대한 Maximum Allowable Concentration 을처음발표한후, 1948년 Threshold Limit Values 로용어를변경하였고, 1962년 Documentation of TLVs 의첫출판후현재에이르고있으며 (Ziem, 1989) 전세계적으로많은행정기관에서사용되고있다 (Piney, 1998; Hansson, 1998). 하지만, 많은사례에서과학적자료의적절성이충분치않은점과자료의질에대한비판이있어왔다 (Castleman & Ziem, 1988; Ziem & Castleman, 1989). 또한경제적이고접근성이용이한자료를일차적바탕으로하여건강에부정적인결과를예방하기에는불완전하다는지적도제기되었다 (Roach, 1990; Rappaport, 1993; Hansson, 1998; Ruden 2003). 미국의행정부처인 OSHA는법적인강제성을가지는 PEL을발표하고있고, NIOSH도 OSHA와긴밀히협조하며 REL 을제시하고있다 (Perkins et al., 1979). 독일은 German Research Foundation(DFG) 에서 1958 에 MAK를처음발표하였지만대부분 ACGIH기준에의존했고, 1969년부터자체적인자료와평가를통해서 Health-based OELs를만들어오고있고, 현재는과학적인저술이나보고서를넓게이용하고필요하다면발표되지않은내부회사의자료도이용하고있다 (Stouten et al., 2008). 북유럽에서는스웨덴이 1969년직업적노출기준을발표하였고, 핀란드는 1972년 Ministry of Social Affairs and Health에서 OELs를처음발표하였는데, 미국, 스웨덴과독일의기준치중가장낮은기준을선택하는방식으로정하였다 (Holmberg et al., 1977). 유럽공동체는 1978년근로자의건강보호를위한제도와규정을일치시키는 Action programme을발표한후 1995년에 SCOEL이라는공식적인기구를설립하고직업적노출기준을제시해오고있는데오로지과학적증거에기반하여건강에기초한관점과실용주의적직업적노출기준의두가지관점으로기준을설정하고있으며 (Topping, 2001), 많은유럽국가의노출기준을포함하며점차비슷한수준으로설정되고있다 (Schenk et al., 2008). 일본은 Japan Society for Occupational Health(JSOH) 에서노출기준을제시하고있고또한 Ministry of Health, Labor and Welfare(MHLW) 에서 Administrative Control(AC) level을제시하고있다. AC level 은법적인강제성이있고, 작업환경의관점에서관리되고있는반면, JSOH 에서제시하는 Recommended OELs 은개별적근로자의부정적인영향을예방하려는측면의성격을가지는데 ACGIH의기준을많이참조하지만최근의국내문헌까지고려하여자국의관점에서정하려고노력하고있다 (Takahasi et al., 2006). 우리나라의노출기준은일본산업위생학회의기준도일부참고하였지만, 주로미국 ACGIH의기준을많이반영하였고일부는 OSHA의기준을참고하였다. 2- 브로모프로판의독성을밝혀노출기준을최초로정 http://www.kiha.kr/
154 이상윤, 서춘희, 김세영, 예병진, 설진곤, 손준석, 윤종완, 홍석우, 류지영, 김대환 하기도하였고, 2002년에석면의노출기준을종류에관계없이 2개 /cm 3 에서 0.1개 /cm 3 로, 벤젠의노출기준을 10 ppm에서 1 ppm으로강화되었고, 2012년에는생식세포변이원성및생식독성에대한유해정보를추가하며지속적으로개정을하며발전하여왔다. 또한산업안전보건법시행령제 31조에따라납, 니켈및포름알데히드, 노말헥산등 13종은 허용기준이하유지유해인자 로설정하여행정적인규제가가능하다. 직업적노출기준은기관마다정의가다르고, 산업분포에따른주요관심물질및생의학적범위의설정, 연구역량, 사회경제적요소에의한정책적결정등에따라다르게설정되고있는데실제로위험으로부터안전한명확한값이라고단정짓기는어려워꾸준한연구와고찰로지속적인개정이필요하다. 우리나라는일부국가의정보를주로많이의지하고있는데외국의다양한정보를활용하여보완사항을제시하는것은중요하다. 그리고, 노출기준의설정뿐아니라실제작업현장에서관리와운용이중요하다고할수있는데, 이를위해선진국에비해미미한숫자인 허용기준이하유해인자 의범위를늘리고노출기준설정유해인자들도적절히관리될수있는방안및대책에대한노력이필요하다. 이번연구의한계점은실제산업장에서많이사용되고우리나라에서작업환경측정및근로자특수검진의규제에적용받는유해물질로한정으로평가하였는데, 각기관의전체대상물질로한다면더욱세밀하고의미있는해석이가능할것이다. 또한, 각기관의시간에따른노출기준의살펴볼수있다면변화의경향성을살펴볼수있으리라예상된다. 지금까지우리나라의직업적노출기준을개별적으로비교평가한사례는많이있었지만, 전체적인수준으로평가해본연구는없었다는측면에서이번연구는의의가있고, 또한유럽의각국들은미국의자료를바탕으로자체적인자료와관점으로발전해가는것을알수있었다. V. 결론본연구는근로자들의건강에영향을미치는우리나라의유해인자의노출기준이다른나라와비교하여어느정도수준인지평가하고, 서로얼마나유사한지살펴보기위해진행하였다. 우리나라의직업적관리하의 177개유해인자중 ACGIH( 미국 ) 를기준으로일치하는물질수는한국이 148개, 유럽연합이 37개, 독일이 76개, 일본이 90개, 핀란드가 110개였으며, 노출수준을비교하기위한기하평균의비는미국 (1) 을기준으로하였을때일본 (1.27), 한국 (1.19) 은더높았고, 유럽연합 (0.82), 독일 (0.79), 핀란드 (0.80), 의순서로노출기준값이낮았다. 유사성을비교하기지표인 Geometric similarity는미국과비교하였을때한국 (0.75), 일본 (0.56), 유럽연합 (0.52), 핀란드 (0.50), 독일 (0.46) 의순서로가까운유사성을나타내었다. 우리나라와유럽의여러나라들의직업적노출기준은미국 ACGIH의기준을많이참고하여발전하여왔지만, 유럽의나라들은자체의설정기준을설정하고미국보다더엄격한기준을설정하며발전하고있다. 따라서, 유럽의직업적노출기준도더욱관심을가지고평가해볼필요가있으며, 우리나라도노출기준에대한정의설정과자체적인연구결과와노력으로여러기술적인접근에대한모색, 그리고, 사회경제적인요인의고려까지포함하여직업적노출기준의발전의고민이필요하다. 감사의말씀 본논문은 2011년도인제대학교학술연구조성비보조에의한것임 (This work was supported by Grant from Inje University, 2011) 참고문헌 Castleman BI, Ziem GE. Corporate influence on threshold limit values. Am J Ind Med. 1988;13(5):531-559 Chung EK, A Review on chemical occupational exposure limits in Korea, J Korean Scoc Occup Environ Hyg. 2007;17(2):160-165 Hansson SO. Setting the limit: Occupational health standards and the limits of science. Oxford University Press, USA; 1998. p. 123-124 Holmberg B, Lundberg P. Assessment and management of occupational risks in the nordic (scandinavian) countries. Am J Ind Med. 1989;15(6):615-626 Holmberg B, Winell M. Occupational health standards: An international comparison. Scand J Work Environ Health. 1977:1-15 Lundberg P. The nordic expert group, an inter-nordic project http://www.kiha.kr
우리나라특수건강진단대상물질에대한 6 개기관의직업적노출기준비교 155 for assessment of occupational risks. Sci Total Environ. 1991;101(1):17-24 Ministry of Employment and Labor. Exposure limits for Chemical Substances and Physical Agents(MoEL Public Notice No. 2012-31); 2012. p. 6-33 Nielsen GD, Øvrebø S. Background, approaches and recent trends for setting health-based occupational exposure limits: A minireview. Regulatory Toxicology and Pharmacology. 2008;51(3):253-269 Perkins JL, Rose VE. Occupational health priorities for health standards: The current NIOSH approach. Am J Public Health. 1979 May;69(5):444-448 Rappaport S. Threshold limit values, permissible exposure limits, and feasibility: The bases for exposure limits in the united states. Am J Ind Med. 1993;23(5):683-694 Roach S, Rappaport S. But they are not thresholds: A critical analysis of the documentation of threshold limit values. Am J Ind Med. 1990;17(6):727-753 Rudén C. Scrutinizing ACGIH risk assessments: The trichloroethylene case. Am J Ind Med. 2003;44(2): 207-213 Schenk L, Hansson SO, Rudén C, Gilek M. Are occupational exposure limits becoming more alike within the european union? Journal of Applied Toxicology. 2008;28(7):858-866 Seeley M, Tonner-Navarro L, Beck B, Deskin R, Feron V, Johanson G, et al. Procedures for health risk assessment in europe. Regulatory Toxicology and Pharmacology. 2001;34(2):153-169 Stouten H, Ott H, Bouwman C, Wardenbach P. Reassessment of occupational exposure limits. Am J Ind Med. 2008;51(6):407-418 Takahashi K, Higashi T. The development and regulation of occupational exposure limits in japan. Regulatory Toxicology and Pharmacology. 2006;46(2):120-125 Topping M. Occupational exposure limits for chemicals. Occup Environ Med. 2001;58(2):138-144 Ziem GE, Castleman BI. Threshold limit values: Historical perspectives and current practice. Journal of Occupational and Environmental Medicine. 1989;31(11): 910-918 http://www.kiha.kr/