Microsoft Word - method.doc

Similar documents
45(1)-05.fm

???? 1

Manufacturing6

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -

Microsoft PowerPoint - AC3.pptx

OR MS와 응용-03장

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

ISO17025.PDF

abstract.dvi

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1

, ( ) 1) *.. I. (batch). (production planning). (downstream stage) (stockout).... (endangered). (utilization). *

산선생의 집입니다. 환영해요

<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>

부문별 에너지원 수요의 변동특성 및 공통변동에 미치는 거시적 요인들의 영향력 분석

Main Title

ETL_project_best_practice1.ppt

학습영역의 Taxonomy에 기초한 CD-ROM Title의 효과분석

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

QbD 적용을위한품질심사해설서 ( 예시 )

김기남_ATDC2016_160620_[키노트].key

( )실험계획법-머리말 ok

09권오설_ok.hwp


methods.hwp

(Table of Contents) 2 (Specifications) 3 ~ 10 (Introduction) 11 (Storage Bins) 11 (Legs) 11 (Important Operating Requirements) 11 (Location Selection)

歯삼성SDI개요

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

(2) : :, α. α (3)., (3). α α (4) (4). (3). (1) (2) Antoine. (5) (6) 80, α =181.08kPa, =47.38kPa.. Figure 1.

03 장태헌.hwp

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

À±½Â¿í Ãâ·Â

¼º¿øÁø Ãâ·Â-1

< C6AFC1FD28B1C7C7F5C1DF292E687770>

Buy one get one with discount promotional strategy

untitled

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45

Intra_DW_Ch4.PDF

08원재호( )

(specifications) 3 ~ 10 (introduction) 11 (storage bin) 11 (legs) 11 (important operating requirements) 11 (location selection) 12 (storage bin) 12 (i

untitled

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

04-다시_고속철도61~80p

<352E20BAAFBCF6BCB1C5C320B1E2B9FDC0BB20C0CCBFEBC7D120C7D1B1B920C7C1B7CEBEDFB1B8C0C720B5E6C1A1B0FA20BDC7C1A120BCB3B8ED D2DB1E8C7F5C1D62E687770>

LIDAR와 영상 Data Fusion에 의한 건물 자동추출

±è¼ºÃ¶ Ãâ·Â-1

歯Trap관련.PDF

Software Requirrment Analysis를 위한 정보 검색 기술의 응용

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

Å©·¹Àγ»Áö20p

<C3D6C1BE2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D32C8A3292E687770>

hwp

nonpara6.PDF

DBPIA-NURIMEDIA

유한차분법을 이용한 다중 기초자산 주가연계증권 가격결정

I

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

의정연구_36호_0828.hwp

., (, 2000;, 1993;,,, 1994), () 65, 4 51, (,, ). 33, 4 30, 23 3 (, ) () () 25, (),,,, (,,, 2015b). 1 5,

Orcad Capture 9.x

년AQM보고서_Capss2Smoke-자체.hwp

<C3D6C1BE5F2D FBCF6C1A42E687770>



Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구

untitled

강의10

<303720C7CFC1A4BCF86F6B2E687770>

歯메뉴얼v2.04.doc

Microsoft Word - KSR2012A021.doc

<3031C8ABB5E6C7A52E687770>

<31325FB1E8B0E6BCBA2E687770>

untitled

DBPIA-NURIMEDIA

untitled

. PC DP-1VR P15 1ch 1 Input Tool 4ch RS-232C RS-232C. Input Tool P14 MUX-10F P16 MeasureReport P21 GO/NG 2 MeasurLink Real-Time P19 MeasurLink STATMea

istay

유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

제 출 문 문화체육관광부장관 귀하 본 보고서를 문화예술분야 통계 생산 및 관리 방안 연구결과 최종 보고서로 제출합니다. 2010년 10월 숙명여자대학교 산학협력단 본 보고서는 문화체육관광부의 공식적인 견해와 다를 수 있습니다

<313920C0CCB1E2BFF82E687770>

대구전시컨벤션센터 전시행사의 지역경제 파급효과 분석

µðÇÃ24-Ç¥Áö´Ü¸é

164

untitled

PJTROHMPCJPS.hwp

untitled

<31372DB9DABAB4C8A32E687770>

PowerPoint 프레젠테이션

05( ) CPLV12-04.hwp


확률과통계 강의자료-1.hwp

슬라이드 제목 없음

-

DBPIA-NURIMEDIA

Journal of Educational Innovation Research 2016, Vol. 26, No. 2, pp DOI: * The Mediating Eff

<C7A5C1F620BEE7BDC4>

DBPIA-NURIMEDIA

No Title

Transcription:

Online Monitoring Methods,, 1. DCS(Distributed Control System). (fault detection), (diagnosis). 1), 2) - 3) Shewart charts, CUSUM charts EWMA charts (Statistical Process Control; SPC).. ( ). -.

,. -.. SPC. Fig. 1. SPC. chemometrics (Principal Component Analysis(PCA) Partial Least Squares(PLS) ) Fevotte McKenna PCA polymerisation reactors parameter estimation on-line monitoring Nomikos Kosanovich Multiway PCA. Piovoso PLS, Miller photographic paper sensitization Skagerberg Multiblock PLS LDPE, Kresta fluidized bed reactor extractive distillation column. 96 European Symposium on Computer Aided Process Engineering chemometrics 10.

2. I. 2-1. Statistical Process Control(SPC) (Statistical Process Control, SPC) [4,5,6]. SPC 1930 Walter Shewhart[1] Shewhart SPC.. y t = μ + ε t (y t, μ ε t σ 2 random error) Fig. 1 99%, 95% (control lines; UCL, UWL, CL, LCL, LWL). Fig. 1 (in statistical control state) (out of control). Out of control UCL 2 3 UW CL LWL LCL Sample Number or Time Fig. 1 Shewhart Chart

. ( i ) Fig. 1 Shewhart. (Fault detection ) ( ii ). ( Diagnosis ) e.g. tank leaking, valve malfunction, controller malfunction... ( iii ). ( Correction ) SPC.[4] 2-2. Multivariate Statistical Process Control(MSPC)[6] ( SPC). SPC (multiivariate). Shewart SPC..... SPC (T) (P) Shewart. Fig. 2 (T) (P) Shewart.

. x. ( ). Shewhart x. P T Fig. 2 Bivariate Plot. Principal Component Analysis (PCA) Partial Least Squares (PLS). 2-3. Principal Component Analysis (PCA) Pearson[2] PCA Hotelling[3]

. Wold[9,14] review. PCA X (data matrix). r r r x11 x12......... x1 r r r x21 x22......... x2 : : : : X = : : : : : : : : r r r xn1 xn2......... x K K NK N (object),. K (variable),, ph. PCA. PCA PC (projection). PCA Fig. 4 system ( ). PCs score vector. Fig. 4 PC. PCA (PCs) (score vectors) system a linear combination system system.

4 1st PC 3 Variable 3 2 1 2nd PC 20 0-5 0 Variable 1 5 10 0 10 V a ria b le 2 Fig. 4 PCA a PC NxK Fig. 5. X = M 1 + M 2 + M 3 +... + M a m m m m X = M 1 + M 2 +... + M a n n n n m 1 m 1 m 1 m a m p T 1 p T 2 p T a p T a 1 1 1 X = t 1 + t 2 +... + t a = T a a n n n n n Fig. 5 PC score vector. Fig. 6 X PC. a PC PC X PC a PC a. score vectors(t) PC observation a

t a PC. a a score linear sum X Fig 5. 3 (system) PCA PC. PC PC. PC system PC, PC(a PC) linear sum system PCA. m m 1 t n n n m 1 p T Fig. 6 Score vectors loading vectors PCA. (X) 0 1 centering scaling.

Centering scaling (X) X T X covariance (S) covariance (column space). covariance (S=X T X) span (eigenvectors) span PC (PC) (eigenvalue) PC. (covariance ) (PC) (PC) PC, PC. a PC Fig. 5.. X = T a P a T + E (E : residual) E = X - T a P a T N K SSQ = E = E ( n, k) n =1 k =1 2 PCA system (a ) PCs. PC validation F-test residual(e) random error PCs. PCA Nonlinear iterative partial least squares(nipals). NIPALS a PC a PC X t 1 p T 1 residual E 1 X t 1 p T 1 E 1 t 2 p T 2 E random error a PCs. E 1 = X - t 1 p T 1, E 2 = E 1 - t 2 p T 2,..., E h = E h-1 - t h p T h NIPALS.

1. X column x j t h : t h = x j 2. p h T = t h T / t h T t h 3. normalize p h T to length 1 : p h T new = p h T / p h T 4. t T T h = X p hnew / p h new p hnew 5. compare the t h used in step 2 with that obtained in step 4. If they are the same, stop (the iteration has converged). If they still differ, go to step 2. 6. E = X - t h p T h ; X = E 7. go to step 1 PC SPC. Hotelling s T 2 statistic.. 2. Hotelling s T 2 statistic.[3] n covariance S. x i i x (mean vector). n T i i (3) i=1-1 S=(n-1) ( x -x)( x -x) x Hotelling s T 2 statistic Jackson[2].

T = ( x τ ) S ( x τ ) (4) 2 T -1 τ (target value). T 2 (UCL). T 2 UCL = ( n 1)( n + 1) a Fα ( a, n a) (5) n( n a ) Fα ( a, n a ) a n-a F upper 100α % critical point n, a PC α. PC p 2 sample n 15 1-α 95%(α=0.05) F 2,13,.05 =3.81 T 2 UCL 8.21.. Fig. 7 PCA. SIMPLIFICATION DATA REDUCTION MODELING OUTLIER DETECTION VARIABLE SELECTION CLASSIFICATION PREDICTION Fig. 7 PCA PCA a (PC) system ( ) Simplification Data reduction. input output (prediction). score plot(t 1 vs t 2 ) classification group outlier loading vector plot(p T 1 vs p T 2)

outlier. otulier detection variable selection.[8, 9] PCA Dunia[10] Tong[11], Heyen[23] measurement reconciliation Sensitivity calculations variance analysis, Fevotte McKenna[24] polymerisation reactors parameter estimation on-line monitoring. 2-4. Multiway Principal Component Analysis (MPCA) PCA data. PCA. MSPC PCA MPCA.[12, 15, 16],, image.. batct(i=1, 2,...,I) (j = 1, 2,...,J) k (k=1, 2,...,K). batch k Fig. 8 (IxKxJ). Batches I X Measurement s J Tim e R r=1 t r Ix1x1 1xJxK P r E IxJxK Fig. 8 MPCA Three-way array arrangement decomposition Fig. 8 batch run

. batch (i) (j) K x J time interval (k) batch N x K. MPCA PCA. MPCA PCA MPCA (three-way array) X (unfolding) PCA. X Fig. 9 X (N x K). (N x KJ). X batch variability. k 1 2 3 4 i X j t X p + E t p + E Fig 9. MPCA MPCA three-way array X Fig. 6 unfolding PCA

score vector (t r ) loading matrix(p r ) systematic part ( R r = 1 t r p r ) residual part (E). MPCA Nomikos MacGregor[15, 16] SPE score Fig. 10. MPCA Kosanovich(1996) Gallagher N.B. B.M. Wise[12]. Fig. 10 2-5. Partial Least Squares or Projection to Latent Structures (PLS) [14, 17, 18] PCA (X) PC system. product PLS. PCA (X) PLS (Y). (Y). (X) (Y),, PCA X Y

PLS. X Y mapping transfer matrix PLS Multiple Linear Regression(MLR) Principal Component Regression(PCR). MLR centering scaling collinearity singularity(wold, S. et al., 1984) PCR X score vectors(or PCs) y regression collinearity singularity X PC score vector Y PCR. Y PCR X ( PC) Y. X PC. Partial Least Squares(PLS). X Y PCA Fig. 11. outer relation. m a m m X T a P T E n n n p a p p Q T F* Y U a n n n Fig. 11 X Y Outer relations PLS PCR X score vector(t h ) Y score vector(u h ) u h =b h t h inner relation. inner relation X score vector Y X Y. X score vector weight(w h ) Y

. PLS score vector regression collinearity singularity X Y contribution weight PCR. PCA loading vector covariance (S=X T X) PLS loading vector (X T Y)(Y T X). PLS PCA NIPALS. outer relation PCA. X = T P T + E, Y = UC T + F, U = T B + G B=(T T T) -1 T T U. 1. Start: set u equal to a column of Y 2. w T = u T X / u T u (regress columns of X on u) 3. Normalize w to unit length 4. t = Xw / w T w (calculate the scores) 5. q T = t T Y / t T t (regress columns of Y on t) 6. Normalize q to unit length 7. u = Yq / q T q (calculate new u vector) 8. Check convergence: if YES to 9, if NO to 2 9. X loadings: p = X T t / t T t 10. Regression: b = u T t / t T t 11. Calculate residual matrices: E = X - tp T and F = Y - btq T 12. To calculate the next set of latent vectors replace X & Y by E and F and repeat. t 1-8 9. 1-8 t PCA NIPALS t 9 t. t PCR PCA.

(10 ) 10 PLS. PLS PCA a PLS cross validation PRESS. PLS [17, 19] Wise industrial ceramic melter, Piovoso, Slama fluid bed catalitic cracking fractionation section, Miller photographic paper sensitization, Dayal industrial pulp digester, Hodouin mineral crushing, grinding, and flotation circuit,,,. 2-6. Multiblock Partial Least Squares or Projection to Latent Structures (MPLS)[19] PLS PLS MPLS.. multiblock projection method multiway PCA multiblock PLS. MPCA PCA multiblock MPLS PLS multiblock (Herman Wold[4] Svante Wold[4]). MPCA unfolding MPLS

.... MPLS NIPALS PLS. iteration score vector score projection score vector(t c ) t c Y score vector PLS. MPLS off-line process yield( ). 2 X 1 Y. M PLS. 1) Y u. 2) (w1,t1), (w2,t2), X1,X2 PLS. 3) score vectors t1, t2 T matrix. 4) T matrix loading vector v, score vector tc, Y matrix loading vector q, new score vector u T matrix X PLS. 5) u. (2). 6) X1,X2 loading vector. (p1=x1 T t1/t1 T t1, p2=x2 T t2/t2 T t2) 7) Residual matrix. (E1=X1-t1p1 T, E2=X2-t2p2 T, F=Y-tcq T ) 8) X1,X2,Y E1,E2,F (1).

Fig 12. Multiblock PLS a PLS. A T X1= t1ap1a + E1 X2 = t2ap2 T a + E2 Y = tc a q a = 1 A a = 1 Macgregor[19] LDPE 2 contribution plot (1) batch polymerization batch data batch set-up data batch trajectory data 2 batch batch (2). Kresta[20] (1991) fluidized bed reactor extractive distillation column. ^ A a = 1 a T II. 3. PCA, PLS chemometrics. chemometrics (PCA, PLS)

compression complexity reduction [10, 25] deterministic. data reconciliation[23], gross error detection parameter estimation[24] MPCA MPLS. 90. PLS (1995,, ) 96 Chemometric Gross Error Detection(,, ). monitoring (Kresta[20], Jackson[8] ) Nomikos MacGregor[15, 16].. PLS MMAVA On-line Quality Monitoring PCA MPCA system. PCA classification, outlier detection, variable selection PLS prediction PLS cross validation PRESS. MacGregor review paper.

1. Shewhart, W. A., Economic Control of Quality of Manufactured Product, Van Nostrand, Princeton, NJ (1931) 2. Pearson, K., On lines and planes of closest fit to systems of points in space, Phil Mag, ser 6, 2, pp.559~572, (1901) 3. Hotelling, H., Analysis of a complex of statistical variables into principal components, J. Educat Psychol., 24, pp. 417~441, (1933) 4. MacGregor, J. F., Statistical Process Control for the Process Industries, the 4 th International Symp. on PSE, Montebello, Quebec, Canada August 5-9 (1991) 5. Montgomery D. C., Introduction to Statistical Quality Control, 2 nd Ed., John Wiley & Sons, INC., New York (1991). 6. Kourti T., J. Lee and J.F. MacGregor, Experiences with industrial applications of projection methods for multivariate statistical process control, Comp. Chem. Eng. Vol. 20, suppl., pp. S745~S750,1996 7. Neter, J., W. Wasserman and M.H. Kutner, Applied Linear Statistical Models, 3 rd ed., Richard D. IRWIN, INC., (1990) 8. Jackson J. E., A User s Guide To Principal Components, John Wiley & Sons, INC., (1991) 9. Wold, S. K. Esbensen and P. Geladi, Principal Component Analysis, Chemometrics and Intel. Lab. Sys. 2, 37~52 (1987) 10. Dunia R., S. J. Qin, T. F. Edgar and T. J. McAvoy, Use of principal component analysis for sensor fault identification, Comp. Chem. Eng. Vol. 20, suppl., pp. S713~S718,(1996) 11. Tong H. and C.M. Crowe, Detection persistent gross errors by sequential analysis of principal components, Comp. Chem. Eng. Vol. 20, suppl., pp. S733~S738,(1996) 12. Gallagher N.B. and B.M. Wise, Application of multi-way principal components analysis to nuclear waste storage tank monitoring, Comp. Chem. Eng. Vol. 20, suppl., pp. S739~S744,(1996) 13. Martin E.B., A.J. Morris, M.C. Papazoglou and C. Kiparissides, Batch process monitoring for consistent production, Comp. Chem. Eng. Vol. 20, suppl., pp. S599~S604,(1996) 14. Wold, S., P. Geladi, K. Esbensen and J. Ohman, Multi-way Principal Components and PLS-

Analysis, J. Chemometrics 1,41~56 (1987) 15. Nomikos, P. and J. F. MacGregor, Monitoring Batch Processes Using Multiway Principal Component Analysis, AIChE J. 40, 8, 1361~1375(1994) 16. Nomikos, P. and J.F. MacGregor, Multivariate SPC Charts for Monitoring Batch Processes, Technometrics 37,1, 41~59(1995) 17. Wold, S., A. Ruhe, H. Wold and W. J. Dunn III, The Collinearity Problem in Linear Regression. The Partial Least Squares(PLS) Approach to Generalized Inverses, SIAM J. Sci. Stat. Comput. 5, 3(1984) 18. Geladi, P. and B. R. Kowalski, Partial Least-Squares Regression: A Tutorial, Analytica Chimica Acta 185,1~17 (1986) 19. MacGregor J. F., C. Jaeckle, C. Kiparissides and M. Koutoudi, Process Monitoring and Diagnosis by Multi-block PLS Methods, AIChE J. 40, 5, 826~838 (1994) 20. Kresta J. V., J. F. MacGregor and T. E. Marlin, Multivariate Statistical Monitoring of Process Operating Performance, The Can. J. Chem. Eng. 69, 35~47 (1991) 21. Zullo L., Validation and verification of continuous plants operating modes using multivariate statistical methods, Comp. Chem. Eng. Vol. 20, suppl., pp. S683~S688,1996 22. Bandoni J.C.A. and J.A. Romagnoli, Robust statistical process monitoring, Comp. Chem. Eng. Vol. 20, suppl., pp. S497~S502,1996 23. Heyen G., E. Marechal and B. Kalitventzeff, Sensitivity calculations and variance analysis in plant measurement reconciliation, Comp. Chem. Eng. Vol. 20, suppl., pp. S539~S544,1996 24. Fevotte G., I. Varudio and T.F. McKenna, Computer-aided parameter estimation and on-line monitoring of emulsion and solution polymerisation reactors, Comp. Chem. Eng. Vol. 20, suppl., pp. S581~S586,1996 25. Raich, A. and A. Cinar, Statistical Process Monitoring and Disturbance Diagnosis in Multivariable Continuous Processes, AIChE J., 42, 4, pp.995~1009 (1996)