Journal of the Korean Ceramic Society Vol. 8, No. 1, pp. 0~5, 011. DOI:10.191/KCERS.011.8.1.00 Solidification of Heavy Metal Ions Using Magnesia-phosphate Cement HunG Choi, Hyun Ju Kang, Myung Shin Song, Eui Dam Jung*, and Ju Seng Kim** Research Institute and Department of Chemical Engineering Construction Material Laboratory, Kangwon National University, Samcheok 5-711, Korea *Doctoral Program Completion and Department of Orban Planning, Chungbuk University, Cheong ju 361-763, Korea **Graduate Student, Professional Graduation School of Disaster Prevention, Kangwon National University, Samcheok 5-711, Korea (Received September 1, 010; Accepted September 17, 010) p w š y zá x Á Á *Á½ ** w er ywœw * w œw ** w er» w (010 9 1 ; 010 9 17 ) ABSTRACT Since 1980's, many mines have been closed and abandoned due to the exhaustion of deposits and declining prices of international mineral resources. Because of the lack of post management for these abandoned mines, Farm land and rivers were contaminated with heavy metal ions and sludge. We studied on the solidification/stabilization of heavy metal ions, chromium ions and lead ions, using magnesia-phosphate cement. Magnesia binders were used calcined-magnesia and dead-burned magnesia. Test specimens were prepared by mixing magnesia binder with chromium ions and lead ions and activators. We analyzed the hydrates by reaction between magnesiaphosphate cement and each heavy metal ions by XRD and SEM-EDAX, and analyzed the content of heavy metal ions in the eruption water from the specimens for the solidification and stabilization of heavy metal ions by ICP. The results was shown that calcined magnesia binder is effective in stabilization for chromium ions and dead-burned magnesia binder is effective in stabilization for lead ions. Key words : Phosphate magnesia cement, Heavy metal, Solidification, Contamination, Stabilization 1. 1980 z Ÿ š Ÿ ƒ w x Ÿ sÿ e e sÿ ƒ sÿ Ÿ w w m w w ƒ». 199 Ÿ 1) x w k w ùkû. wr y ù 96 ) l m š œ w 6 w PCB 5 sww m 11, y 5 10 Corresponding author : Myong Shin Song E-mail : msong0@kangwon.ac.kr Tel : +8-33-570-6558 Fax : +8-33-570-6535 e w. 0.3%ƒ y w. ù ù š y» w w» l w yw» w e y š» w y. 3) w p p p w š y y y wš w.. x.1. x x w p 800~900 o C 0
p w š y 1 Table 3. Heavy Metals Ration Adding to Dead-Burned Magnesia MgO:MAP 6: Cr(NO 3 ) 3 9 O(wt%), Pb(NO 3 ) (wt%) 5 10 15 Water ratio (wt%) Table. Heavy Metals Ration Adding to Calcined Magnesia MgO:MgCl Cr(NO 3 ) 3 9 O(wt%), Pb(NO 3 ) (wt%) 5:5 5 10 15 50 Fig. 1. XRD result of calcined magnesia. Fig.. XRD result of dead-burned magnesia. 100 o C w. XRD Figs. 1,, Tables 1, ùkü y y 1 w 1 yw NH PO œ» wš 1.803, ph.3~5.0 w q š. ) y y y yw MgCl, 71 o C, ò 1,1 o C,.35 (5 o C). wš, g. x mw ƒƒ y y w w : 1 =6:, : y =5:5 w ƒw û, j w š y y z XRD, ICP, SEM-EDAX mw y w... x..1. x w w š y z y w» w w 1 (MAP)=6: yww W/C 50 wt% x ww ƒw j û Table 1. XRF Result of Calcined Magnesia Calcined -Magnesia element Na O MgO Al O 3 SiO P O 5 SO 3 Cl % 0.03 93.30 0.5 3.1 0.0 0.11 0.06 element K O CaO TiO MnO Fe O 3 NiO La O 3 % 0.0.06 0.0 0.0 0.60 0.00 0.05 Table. XRF Result of Dead-Burned Magnesia Deadburned -Magnesia element Na O MgO Al O 3 SiO P O 5 SO 3 Cl % 0.0 93.60 0.63 3.03 0.0 0.07 0.01 element K O CaO TiO MnO Fe O 3 NiO V O 5 % 0.0 1.78 0.03 0.10 0.6 0.01 0.05 8«1y(011)
zá x Á Á Á½ w 5 wt%, 10 wt%, 15 wt% ƒw x ww. y (MgCl ) 8 Baume w 1:1 w x w w ƒw j û w 5%, 10%, 15% ƒw KS L 5109 x w.... ƒƒ y y w k r 3, 7, 8 XRD w ƒ z y w, w w r SEM-EDAX mw xk sw y w. ) w r e k z 3, 7, 8 5 w ICP w. 3. š 3.1. XRD Fig. 3 j ƒw w Fig. 3. XRD patterns of calcined magnesia (chromium addition). Fig.. XRD patterns of calcined magnesia (lead addition). Fig. 5. XRD patterns of dead-burned magnesia (chromium addition). r XRD y w Mg(OH) ƒ w Mg(OH) ƒw y w. w j w MgCrO ƒ XRD mw y w. Fig. û ƒw w r XRD y w Mg(OH) w Mg(OH) ƒw y w. w PbMg(CO 3 ) û w XRD mw y w. Fig. 5 j ƒw w r XRD 1 w NH MgPO 6 Oƒ w NH MgPO 6 O Intensityƒ w ùk ù y w. w MgCrO O NH F) O ƒw j w XRD mw y w, NH F)- O 3 y ù 7 y.,» j 1 w MgCrO O NH F) O w ù 3 z l w j ƒ w MgCrO O x w q.,, 1 j j w MgCrO O 1 j w NH F) O w, NH F) O w w w MgCrO O w q. ü mw j š y MgCrO O w wz
인산염 마그네시아 시멘트에 의한 중금속 이온 고정화 Fig. 6. XRD patterns of dead-burned magnesia (lead addition). 에 의한 것으로 판단된다. MgO Mg + O MgCrO H O (1) Fig. 6은 사소 마그네시아에 납을 첨가하여 제작한 시 편의 XRD 분석결과로서 사소 마그네시아와 제1인산암모 늄이 반응하여 NH MgPO 6H O가 생성되며 재령일이 경 과함에 따라 NH MgPO 6H O의 peak Intensity가 강하게 나타나는 것을 확인하였다. 또한 G와 H 및 I로 표기한 PbMg(CO ), Mg Pb 및 (NH ) PbP O 은 첨가한 중금속인 납 이온이 사소 마그네 시아와의 반응에 의하여 생성됨을 XRD를 통하여 확인하 였다. 그러나 (NH ) PbP O 은 재령 3일에서는 확인되었 으나 재령 7일에서는 확인되지 않았다. 이는 재령 3일 이전 즉 반응 초기에는 납 이온은 마그 네시아 또는 제1인산암모늄과 반응하여 PbMg(CO ), Mg Pb 및 (NH ) PbP O 을 생성하나 (NH ) PbP O 은 재령 3일 이후부터 다시 분해되어 납 이온과 마그네시아가 반응하 여 Mg Pb와 PbMg(CO ) 을 형성하는 것으로 판단된다. 즉, 사소마그네시아와 제1인산암모늄의 납 이온과 반응 은 사소마그네시아와 납 이온의 반응을 통하여 Mg Pb, Mg + O + CrO + H O 3 3 1 1 3 3 1 1 1 3 Fig. 7. 3 1 생성하게 되고 또한 제1인산암모늄과 납 이온과의 반응에 의해 (NH ) PbP O 이 생성되며, (NH ) PbP O 는 재령이 경과함에 따라 다시 분해되면서 마그 네시아와 반응하여 PbMg(CO ) 와 Mg Pb를 생성하는 것 으로 판단된다. 즉 납 이온의 고정화는 Mg Pb와 PbMg(CO ) 의 생성에 의한 것으로 판단된다. 3.. SEM-EDAX 분석결과 Fig. 7은 경소 마그네시아에 크로뮴과 납을 시약으로 첨 3 SEM-EDAX resultof dead-burned magnesia. Fig. 8. PbMg(CO ) 을 + + 3 SEM-EDAX result of calcined magnesia. Fig. 9. ICP result of calcined magnesia (chromium addition). Fig. 10. ICP result of dead-burned magnesia (chromium addition). 제 8 권 제1호(011)
zá x Á Á Á½ Fig. 11. ICP result of calcined magnesia (chromium addition). Fig. 13. ICP result of calcined magnesia (lead addition). Fig. 1. ICP result of dead-burned magnesia (chromium addition). Fig. 1. ICP result of dead-burned magnesia (lead addition). ƒw r SEM-EDAX ƒw j û w MgCrO, PbMg(CO 3 ) w ƒƒ y w. Fig. 8 j û ƒw r SEM-EDAX ƒw j û w MgCrO O, PbMg(CO 3 ), Mg Pb w ƒƒ y w. 3.3. ICP j û w 5%, 10%, 15% ƒw w r 3, 7, 8 ù ICP mw y w š w. Fig. 9 Fig. 10 r ù j ƒ ùkü v. w Fig. 11 Fig. 1 w j ùkü v w j y wš w, w j ƒ w v w w y w. j ƒ w w v w w w ùkþ. ù 3 j wù 7 ùkù y w XRD j 1 w NH F) O wù 7 peak y w. (1) ùkü» NH F) Oƒ w w MgCrO O j q. 7 z j w ùkû NH F) Oƒ w z w j w MgCrO O w» q. j w ƒ j ùkû ƒ j š yw z q. w wz
Fig. 15. ICP result of calcined magnesia (lead addition). Fig. 16. ICP result of dead-burned magnesia (lead addition). w j œ x» e wzw y w. 5) Fig. 13 Fig. 1 w r ù û ƒ ƒ ùkü v w û ƒ ùkü v. Fig. 15 Fig. 16 w û ùkü v. ƒw û w û ƒ x w w û v w w w ùkü y w. ù 3 û wù 7 ùkù y w, XRD û 1 w (NH ) PbP O 1 wù 7 peak y w.» (NH ) PbP O 1ƒ w w PbMg(CO 3 ) Mg Pb û q. p w š y 5 7 z û w ùkû, (NH ) PbP O 1ƒ w z û w PbMg(CO 3 ) Mg Pb w» q. û w ƒ j ùkû ƒ û š yw z q. w û œ x» e wz w y w. 5). w š y. 1) XRD SEM-EDAX ƒ ƒƒ y y w ƒw j û MgCrO, MgCrO O, PbMg(CO 3 ), Mg Pb û j y j q. ) y ƒ w û j û š y 1 w w š y j q. 3) û š y ƒ k w z ƒ j š y ƒ k w z ƒ ùkû. REFERENCES 1. Y. H. Park and K. W. Seo, Policy Suggestions for Soil Contamination Prevention and Management of Inactive or Abandoned Metal Mines, J. Kor. Soil and Groundwater Environment Soc., 11G [3] 1-11 (006).. J. I. Ham and Y. S. Shim, Observed Acid Mine Drainages of Closed Coal Mine and Treatment Methods, J. Kor Institute of Chemical Eng., [] 1975-78 (1996). 3. M. Y. Kwak, Prospect and Present Status of Soil Environmental Remediation Industry, J. Kor. Environmental Engineers Soc., 9 [3] 71-7 (007).. I. S. Kang, M. Y. Ahn, M. S. Paik, and S. J. Jung A Study on Field and Hydration Properties Ultra Rapid Hardening Mortar Using Magnesia-Phosphate Cement, J. Kor. Arch. Ins., [] 79-86 (008). 5. Contamination in Standard Method for Examination of Soil in Korea, pp. -3, 007. 8«1y(011)