(153번 김철영).fm

Similar documents
12.077~081(A12_이종국).fm

( )-129.fm

48.fm

6.fm

( )-103.fm

46.fm

17.fm

9(1) 이채현.fm

untitled

( )-84.fm

14.531~539(08-037).fm

10.fm

85.fm

( )★56.fm

14.fm

( )-47.fm

( )-59.fm

(1)-01(정용식).fm

106.fm

( )-40.fm

19(1) 02.fm

10.063~070(B04_윤성식).fm

( )-68.fm

( )-100.fm

31.fm

17(1)-05.fm

93.fm

17.fm

129.fm

(163번 이희수).fm

10(3)-10.fm

35.fm

7.fm

16(5)-02(57).fm

( )-86.fm

fm

139.fm

132.fm

17(1)-06.fm

( )47.fm

16(5)-04(61).fm

10(3)-09.fm

< D B9DABBF3C8AF29BABCB5E52E666D>

18(3)-10(33).fm

69-1(p.1-27).fm

( )34.fm

53.fm

27(5A)-13(5735).fm

( )-70.fm

< DC1A4C3A5B5BFC7E22E666D>

04.fm

9(3)-4(p ).fm

16(1)-3(국문)(p.40-45).fm

( )-106.fm

47.fm

(154번 김사라은경).fm

( )-124.fm

416.fm

61.fm

( )-121.fm

( )-93.fm

605.fm

64.fm

( )-36.fm

4.fm

fm

16(5)-06(58).fm

17.393~400(11-033).fm

10(3)-12.fm

304.fm

10.fm

16(5)-03(56).fm

( )-123.fm

82-01.fm

( )78(이기성).fm

11(5)-12(09-10)p fm

( )-74.fm

( )67(홍성현).fm

44.fm

( )-77.fm

( )-83.fm

fm

( )42.fm

93-10.fm

한 fm

<30332DB9E8B0E6BCAE2E666D>

29.fm

44(1)-01(이기안).fm

12(3) 10.fm

75.fm

18.fm

( )-101.fm

3.fm

45.fm

50(4)-10.fm

10(3)-02.fm

( )-41.fm

03.209~216(08-002).fm

18(3)-06(09).fm

45.fm

Transcription:

Jurnal f the Krean Ceramic Sciety Vl. 48, N. 4, pp. 269~277, 2011. DOI:10.4191/KCERS.2011.48.4.269 Effect f Varius Oxides n Crystallizatin f Lithium Silicate Glasses Chul Min Kim, Hyung Bng Lim, Yug Su Kim*, Se Hn Kim*, Kyung Sik Oh*, and Chel Yung Kim Department f Materials Science and Engineering, Inha University, Inchen 402-751, Krea *Hass, Crp., Gangneung 210-340, Krea (Received May 12, 2011; Accepted June 10, 2011) w y p³ y e w ½ Á x Á½ *Á½ z*á *Á½ w w œw *( ) w (2011 5 12 ; 2011 6 10 ) ABSTRACT Glass-ceramics based n lithium disilicate(li 2 Si 2 O 5 ) are prepared by heat-treatment f glasses in a system f SiO 2 -Li 2 O-K 2 O-Al 2 O 3 with different cmpsitins. The crystallizatin heat-treatment was cnducted at the temperature range f 700~900 C and samples were analyzed by XRD and SEM. Mechanical prperties were determined by a Vicker's hardness and 4 pint bending strength. When SiO 2 /Li 2 O rati increased, cristbalite and tridymite crystals shwed mre predminate than lithium disilicate crystals. Increase in Al 2 O 3 cntents in the glass suppressed crystallzatin f lithium disilicate crystals. Increase in ZnO, B 2 O 3 cntents in the glass decreased crystallizatin temperature f lithium disilicate crystals, and increased mechanical prperties because f the reductin f the lithium disilicate crystal size. Key wrdsg : Glass-ceramics, Crystallizatin, Artificial tth, Lithium disilicate, Lithium metasilicate 1.» š, q qr w w» w wš. d ù j» w en w, CAD/CAM g, y w ƒ w. 1-3) 1985 Sadun y en w w œe In-ceram w. ù g œ en j. 3 w w z š, n û». 2) 1990 Mrmann w š CEREC system š š g cmputer-aided design/ cmputer-aided manufacturing (CAD/CAM) ƒœw gv w. g 10 w Crrespnding authr : Chel Yung Kim E-mail : chelkim@inha.ac.kr Tel : +82-32-860-7525 Fax : +82-32-862-0129 n w š. ù n ƒ û x j w š, g gv j w» q ( š :80MPa w). 3) 1990 Ivclar vivadent (Schaan, Liechtenstein) y w (KAlSi 2 O 6 ) y w. y ƒ û e ù. z 1998 lithium disilicate (Li 2 Si 2 O 5 ) y w. y lithium disilicate 60~70% x š ù n w ùkü. w, lithium disilicate x š» g j ƒ w. 4) Apel lithium disilicate y Dicr, Leucite sww y, v qk p sww y w w 5,6) Srensen w x ww. 7-9) Clausbruch wx w y ZrO 2, TiO 2 P 2 O 5 269

270 ½ Á x Á½ Á½ zá Á½ w w. 10-14) w š SiO 2 Li 2 O w w š. p³ SiO 2 Li 2 O ƒ y w wš w y w. y X- z 4 f, w y x š w. 2. x 2.1. y r Table 1 kw. lithium disilicate š SiO 2 Li 2 O y x» w K 2 O, Al 2 O 3 š jš SiO 2 Li 2 O 2.5, 5, 7.5, 10 Table 1. Glass Batch Cmpsitins (a) S/L Series (ml%) S/L = 2.5 S/L = 5 S/L = 7.5 S/L = 10 K 2 O 3.0 3.0 3.0 3.0 Al 2 O 3 1.0 1.0 1.0 1.0 Li 2 O 27.4 16 11.3 8.8 SiO 2 68.6 80 84.7 87.2 SiO 2 /Li 2 O 2.5 5 7.5 10 (b) Oxides Series (ml%) 0A 1A 3A 5A 7A K 2 O 3.0 3.0 3.0 3.0 3.0 Al 2 O 3 0.0 1.0 3.0 5.0 7.0 Li 2 O 27.7 27.4 26.9 26.3 25.7 SiO 2 69.3 68.6 67.1 65.7 64.3 1Z 3Z 5Z 7Z K 2 O 3.0 3.0 3.0 3.0 Al 2 O 3 1.0 1.0 1.0 1.0 Li 2 O 27.1 26.6 26.0 25.4 SiO 2 67.9 66.4 65.0 63.6 ZnO 1.0 3.0 5.0 7.0 1B 3B 5B 7B K 2 O 3.0 3.0 3.0 3.0 Al 2 O 3 1.0 1.0 1.0 1.0 Li 2 O 27.1 26.6 26.0 25.4 SiO 2 67.9 66.4 65.0 63.6 B 2 O 3 1.0 3.0 5.0 7.0 Each Cmpsitin + Nucleatin Agent : P 2 O 5 (2 g) w wx P 2 O 5 2g ƒw. š y e y w» w SiO 2 Li 2 O 2.5 š k Al 2 O 3 ƒ 0 % 7 %¾ ƒ g. š ZnO, B 2 O 3, ƒ 0 % 7 %¾ ƒ g w. w» w SiO 2, Li 2 CO 3, Al 2 O 3, K 2 CO 3, ZnO, B 2 O 3, Li 3 PO 4 w. Table 1 ƒƒ» 100 g e w 1 ywwš ƒ ƒƒ (1500 C~1650 C)» w w. ƒ 1 w z q þw z q w. ³ j» w 1 2 w. 2 óù 10 10 100 mm j» xw ü w» w 500 C þ g. z» w ƒƒ r 10 10 2mm j» w r w. r y w»p ü w 5C/ g 700 C~900 C ü w. 2.2. X- z ƒ» w X- z»(rigaku DMAX 2500) w. d ƒ 40 kv, 2θ 10~80 w. w» w xk (0.25 µm) w z 30 vl% H 2 SO 4 3 vl% HF e w r w. ƒ r t w» w x (JEOL JSM-5500) w. r Pt 180 gqw ƒ 15 kv w. 2.3. 4 d ƒ y r KSL 1591 4 x Ì 15) 3.0 ± 0.1 mm, 4.0 ± 0.1 mm ƒ» wš ƒ t s xk (0.25 µm) w wš / x»(instrn, 5569) w ƒ r d w. xr w j x 0.5 mm/min w ƒwš xr q ¾ w d w z w 4 d w. σ f =3Fa/bd 2 (1) w wz

», σ f :4 (MPa), F : xr q w (N), a : p ¼ (10 mm), b : xr s(4 mm), d : xr (3 mm). 2.4. f d ƒ y f t s xk (0.25 µm) w Akashi AVK- CO f w. KSL 1603 f x 16) 5kgf(49.035N) w 15 w w d w. HV = 0.001854 F ---- d 2», HV : f (GPa), F : xw (N), d : f ƒ s³(mm). w y p³ y e w 271 (2) 3. š 3.1. p³ y e SiO 2 /Li 2 O w Table 1(a) ùkü p³ K 2 O w 3 %, Al 2 O 3 1 % š jš SiO 2 Li 2 O 2.5, 5, 7.5, 10 y j w. w 700 C, 800 C, 900 C ƒƒ 1 w w X- z w Fig. 1 ùkü. X- z SiO 2 Li 2 O ƒ 2.5 û 700 C lithium metasilicate cristbalite, lithium disilicate ƒ š ƒ 800 C ƒw lithium metasilicate cristbaliteƒ w lithium disilicateƒ 900 C lithium disilicate. SiO 2 Li 2 O 5, 7.5 ƒ j 700 C lithium metasilicate cristbaliteƒ š 800 C lithium metasilicate lithium disilicateƒ Fig. 1. X-ray diffractin patterns f glass-ceramics with varius f SiO 2 /Li 2 O rati in glasses after heat-treatment fr 1 h. (a) SiO 2 /Li 2 O = 2.5, (b) SiO 2 /Li 2 O = 5, (c) SiO 2 /Li 2 O=7.5, and (d) SiO 2 /Li 2 O = 10. 48«4y(2011)

272 ½ Á x Á½ Á½ zá Á½ cristbalite 900 C lithium disilicate tridymiteƒ. wr SiO 2 Li 2 O 10 ƒ j 700, 800 C cristbaliteƒ 900 C tridymiteƒ š lithium metasilicate lithium disilicate. p³ yw Li 2 O SiO 2 ƒ 1:1 ww lithium metasilicate Li 2 O SiO 2 ƒ 1:2 ww lithium disilicate SiO 2 tridymite, cristbalite. w ü w SiO 2 Li 2 Oƒ ww» SiO 2 Li 2 O ƒ». Höland SiO 2 Li 2 O 2.4 w y w 700~850 C cristbaliteƒ. Beall 17) SiO 2 Li 2 O 4.5 850 C w lithium disilicate tridymiteƒ š šw. ù 18) lithium metasilicate lithium disilicate w x ƒ sw t yƒ ù. w t y P 2 O 5 ƒw j y w. Clausbruch P 2 O 5 ƒ 0.5 % w t y(surface crystallizatin)ƒ ù j y(bulk crystallizatin)ƒ ù š šw. 12) Zheng P 2 O 5 ƒ p³ y mw š w. 13) P 2 O 5 (glass) + 3Li 2 O=2Li 3 PO 4 (crystal) Li 2 O (glass) + SiO 2 (glass) = Li 2 SiO 4 (crystal) Li 2 SiO 3 (crystal) + SiO 2 (glass) = Li 2 Si 2 O 5 (crystal) P 2 O 5 ƒ Li 2 O ww j» Li 3 PO 4 wš w lithium metasilicate lithium disilicate ³ w (hetergeneus nucleatin) mw. x P 2 O 5 ƒ ƒ ³ w mw j yƒ û lithium metasilicate ƒ ƒw lithium disilicate ƒ û. SiO 2 Li 2 O ƒ ƒw lithium disilicate lithium metasilicate ƒ w wš SiO 2 tridymite crystbalite ƒw. wr y w» w 900 C w r x t w Fig. 2 ùkü. SiO 2 Li 2 O ƒ 2.5 x X z Fig. 2. SEM mrphlgy f glass-ceramics with varius f SiO 2 /Li 2 O rati in glasses after heat-treatment at 900 C fr 1 h. (a) SiO 2 /Li 2 O = 2.5, (b) SiO 2 /Li 2 O = 5, (c) SiO 2 / Li 2 O = 7.5, and (d) SiO 2 /Li 2 O = 10. w lithium disilicate š ƒ 7.5, 10 X- z w tridymite. w ƒ 5.0 ƒ e lithium disilicate tridymite yww. 3.2. p³ y e Al 2 O 3 w w ü Al 2 O 3 w y e w» w SiO 2 Li 2 O 2.5, K 2 O w 3 % š wš Al 2 O 3 w 0~7 %¾ y j w. w w 700 C, 800 C, 900 C 1 w zƒ y X- z Fig. 3 ùkü. Al 2 O 3 ƒ 0A lithium disilicateƒ. w Al 2 O 3 1 % ƒw 700 C 800 C lithium metasilicate cristbaliteƒ 900 C lithium disilicate. Al 2 O 3 w 3 % ƒw lithium disilicate wš lithium metasilicateƒ û. Al 2 O 3 5 % ƒƒ 700~900 C lithium metasilicateƒ š 800 C quartzƒ. Al 2 O 3 7 % ƒw Al 2 O 3 ƒ sw Spdumene(LiAlSi 2 O 6 ) lithium metasilicate wì. Al 2 O 3 ƒ ƒ û û SiO 2 ƒ lithium disilicate Al 2 O 3 ƒw ƒ û lithium metasilicate š w lithium disilicate ƒ. w wz

w y p³ y e w 273 Fig. 3. X-ray diffractin patterns f glass-ceramics with varius f Al 2 O 3 cntents in glasses after heat-treatment fr 1 h. (a) 0A, (b) 1A, (c) 3A, (d) 5A, and (e) 7A. 3.3. p³ y e ZnO B 2 O 3 w SiO 2 Li 2 O 2.5 wš Al 2 O 3 1 %, K 2 O 3 % š k z ZnO 1~7 % y g w. 700 C, 800 C, 850 C 1 w X z SEM t w Fig. 4 Fig. 5 ùkü. ZnOƒ 1 % ƒw 1Z 700 C, 800 C w ZnOƒ ƒ w 850 C w lithium metasilicate cristbaliteƒ lithium disilicate w wš û. š ZnO ƒ 3 % ƒw cristbalite š 700 C lithium metasilicate lithium disilicateƒ š 800 C lithium disilicate. ZnO ƒ 5 % ƒw û lithium metasilicate š lithium disilicate lithium disilicate ƒ û. š ZnOƒ 3% sw w SiO 2. ZnO w w ZnO w ƒw lithium disilicate j»ƒ w. ZnO ƒƒ 48«4y(2011)

274 ½ Á x Á½ Á½ zá Á½ Fig. 4. X-ray diffractin patterns f glass-ceramics with varius f ZnO cntents in glasses after heat-treatment fr 1 h. (a) 1Z, (b) 3Z, (c) 5Z, and (d) 7Z. Fig. 5. SEM mrphlgy f glass-ceramics with varius ZnO cntents in glasses after heat treated at 850 C fr 1 h. (a) 1Z, (b) 3Z, (c) 5Z, and (d) 7. g lithium disilicate ƒ û w r w w j»ƒ ƒ. B 2 O 3 ü x w ƒ ƒ û. B 2 O 3 p³ ƒw y r» w SiO 2 /Li 2 O 2.5 wš Al 2 O 3, K 2 O ƒƒ 1 % 3 % š k z B 2 O 3 1~7 % y g w. 700 C, 800 C, 850 C 1 w X z SEM t w Fig. 6, Fig. 7 ùkü. X z B 2 O 3 xw ZnO w B 2 O 3 ƒ ƒw ƒ w lithium disilicate w š lithium disilicate j»ƒ. w wz

w y p³ y e w 275 Fig. 6. X-ray diffractin patterns f glass-ceramics with varius f B 2 O 3 cntents in glasses after heat-treatment fr 1 h. (a) 1B, (b) 3B, (c) 5B, and (d) 7B. Fig. 7. SEM mrphlgy f glass-ceramics with varius B 2 O 3 cntents in glass after heat-treatment at 850 C fr 1 h. (a) 1B, (b) 3B, (c) 5B, and (d) 7B. 3.4. p³ y» p xw ZnO B 2 O 3 ƒ sw 850 C 1 w y w. y t w f d wš 4 x 4 d w Table 2 ù kü. ZnO B 2 O 3 ƒ 1 % f ƒƒ 4.64 GPa, 4.11 GPa ZnO B 2 O 3 ƒ 7 %¾ ƒw f ƒƒ 5.34 GPa, 4.67 GPa ¾ ƒw B 2 O 3 ZnO ƒ j ùkü. 4 ZnO ƒ 1 % 114.9 MPa 7 % ƒw 181.6 MPa¾ ƒw š B 2 O 3 ƒ 1 % 99.7 MPa 4 5 % ƒw 103.7 MPa ƒ w. B 2 O 3 4 j ƒ w 48«4y(2011)

276 ½ Á x Á½ Á½ zá Á½ Table 2. Vickers Hardness and 4 Pint Bending Strength f Varius Glass-ceramics Samples ZnO B 2 O 3 Vickers hardness (GPa) ZnO ƒw 4 1.6. 7B 850 C x w r. y ƒ f 4 ƒ w. Fig. 5 Fig. 7 y ƒ ƒ w j»ƒ w. Apel j q j ƒ lithium disilicate ù wš mw q š ƒw» š w. 6) y ƒ ƒw ƒw. š B 2 O 3 ƒw ZnO ƒw 4 û z w w B 2 O 3 ƒ û» ƒw. 4. 4 pint bending strength (MPa) 1Z 4.64 114.9 3Z 4.75 139.2 5Z 4.99 152.3 7Z 5.34 181.6 1B 4.11 99.7 3B 4.27 94.9 5B 4.08 103.7 7B 4.67 - w SiO 2 -Li 2 O-K 2 O-Al 2 O 3 w y w. 1. p³ y SiO 2 Li 2 O w lithium disilicate ƒ 2.5 ƒ. 2. p³ y w Al 2 O 3 ƒ g lithium disilicate š ZnO, B 2 O 3 g lithium disilicate ƒ û. 3. p³ y ZnO, B 2 O 3 ƒ ƒ» p ùkü ZnO ƒ B 2 O 3 ƒ ƒ». Acknwledgment w»» w. REFERENCES 1. D.-Y. Kim, Y.-S. Lee, and W.-H. Park, Cmparative Study f Fracture Strength Depending n the Thickness f Sme all Ceramic Cres(in Krean), J. Kr. Acad. Prsthdnt., 42 [1] 49-57 (2004). 2. B. T. Sung, Prcessing f Glass-infiltrated Alumina Cre Ceramic (in Krean), pp. 3~26, Chnbuk Univ., Jenju, 2002. 3. M.-S. Chi, Y.-S. Kim, K.-W. Suh, and J.-J. Ryu, Effect f Surface Treatmet n the Shear Bnd Strength f a Zircnia Cre t Veneering Ceramic(in Krean), J. Kr. Acad. Prsthdnt., 47 199-205 (2009). 4. W. Höland, M. Schweiger, M. Frank, and V. Rheinberger, A Cmparisn f the Micrstructure and Prperties f the IPS Empress 2 and the IPS Empress Glass-ceramics, J. Bimed. Mater. Res. (Appl. Bimater.), 53 [4] 297-303 (2000). 5. E. Apel, J. Deubener, A. Bernard, M. Höland, R. Müller, H. Kappert, V. Rheinberger, and W. Höland, Phenmena and Mechanisms f Crack Prpagatin in Glass-ceramics, J. Mech. Behav. Bimed. Mater., 1 313-25 (2008). 6. T. Nakamura, T. Ohyama, A. Imanishi, T. Nakamura, and S. Ishigaki, Fracture Resistance f Pressable Glass-ceramic Fixed Partial Dentures, J. Oral Rehabil., 29 951-55 (2002). 7. J. A. Srensen, M. Cruz, W. T. Mit, O. Raffeiner, H. R. Meredith, and H. P. Fser, A Clinical Investigatin n Three-unit Fixed Partial Dentures Fabricated with a Lithium Disilicate Glassceramic, Pract. Peridnt. Aesthet. Dent., 11 [1] 95-106 (1999). 8. Heather J. Cnrad, W.-J. Seng, and Igr J. Pesun, Current Ceramic Materials and Systems with Clinical Recmmendatins : A Systematic Review, J. Prsthet. Dent., 98 389-404 (2007). 9. D. J. Fasbinder, J. B. Dennisn, D. Heys, and G. Neiva, A Clinical Evaluatin f Chairside Lithium Disilicate CAD/CAM Crwns: A Tw-year Reprt, J. Am. Dent. Assc., 141 10-14 (2010). 10. J.-O. Jung, Effect f TiO 2 n the Crystallizatin and Micr- Structure f Pressable Lithium Disilicate Glass-ceramics in the SiO 2 -Li 2 O-K 2 O-ZnO-ZrO 2 -P 2 O 5 System (in Krean), pp. 10-20, Ph. D. Thesis, Chnbuk Univ., Jenju, 2003. 11. E. Apel, C. van t Hen, V. Rheinberger, and W. Höland Influence f ZrO 2 n the Crystallizatin and Prperties f Lithium Disilicate Glass-ceramics Derived frm a Multi-cmpnent System, J. Eur. Ceram. Sc., 27 1571-77 (2007). 12. S. V. Clausbruch, M. Schweiger,, W. Höland, and V. Rheinberger, The Effect f P 2 O 5 n the Crystallizatin and Micrstructure f Glass Ceramics in the SiO 2 -Li 2 O-K 2 O-Zr 2 O-P 2 O 5 System, J. Nn-Cryst. Slids, 263&264 388-94 (2000). 13. X. Zheng, G. Wen, L. Sng, and X. X. Huang, Effects f P 2 O 5 and Heat Treatment n Crystallizatin and Micrstructure in Lithium Disilicate Glass Ceramics, Acta. Mater., 56 9-58 (2008). 14. F. Wang, J. Ga, H. Wang, and J.-H. Chen, Flexural Strength and Translucent Characteristics f Lithium Disilicate Glass- w wz

w y p³ y e w 277 ceramics with Different P 2 O 5 Cntent, Materials & Design, 31 [7] 3270-74 (2010). 15. Fine Ceramics(Advanced Ceramics, Advanced Technical Ceramics)-Test Methd fr Flexural Strength f Mnlithic Ceramics at Rm Temperature, Krean Industrial Standards, KS L 1591, Krean Agency fr Technlgy and Standards, 2008. 16. Fine Ceramics(Advanced Ceramics, Advanced Technical Ceramics)- Test Methd fr Hardness f Mnlithic Ceramics at Rm Temperature, Krean Industrial Standards, KS L 1603, Krean Agency fr Technlgy and Standards, 2008. 17. W. Höland, E. Apel, Ch. van t Hen, and V. Rheinberger, Studies f Crystal Phase Frmatins in High-strength Lithium Disilicate Glass-ceramics, J. Nn-Cryst. Slids, 352 4041-50 (2006). 18. G. Beall, Glass-ceramics Cntaining Lithium Disilicate and Tridymite, U.S. Patent, 5,744,208 (1998). 48«4y(2011)