한수지 47(6), 1026-1036, 2014 Original Article Kor J Fish Aquat Sci 47(6),1026-1036,2014 2011 년 11 월고성만굴 (Crassostrea gigas) 양식장수질환경모니터링을통한이산화탄소수지평가 심정희 * 예미주 임재현 권정노 국립수산과학원어장환경과 Evaluation of Simple CO 2 Budget with Environmental Monitoring at an Oyster Crassostrea gigas Farm in Goseong Bay, South Coast of Korea in November 2011 JeongHee Shim*, Miju Ye, Jae-Hyun Lim and Jung-no Kwon Marine Environment Research Division, National Fisheries Research and Development Institute, Busan 619-705, Korea Abstract: Real-time monitoring for environmental factors (temperature, salinity, chlorophyll-a, etc.) and fugacity of carbon dioxide (fco 2 ) was conducted at an oyster Crassostrea gigas farm in Goseong Bay, south coast of Korea during 2-4th of November, 2011. Surface temperature and salinity were ranged from 17.9-18.7 and 32.7-33.8, respectively, with daily and inter-daily variations due to tidal currents. Surface fco 2 showed a range of 390-510 μatm and was higher than air CO 2 during the study period. Surface temperature, salinity and fco 2 are showed significant correlations with chl.-a and nutrients, respectively. It means when chl.-a value is high in surface water of the oyster farm, active biological production consume CO 2 and nutrients from environments and produce oxygen, suggesting a tight feedback between biological processes and environmental reaction. Thus, factors affecting the surface fco 2 were evaluated using a simple mass balance. Temperature and biological productions by phytoplankton are the main factors for CO 2 drawdown from afternoon to early night, while biological respiration increases seawater CO 2 at night. Air-sea exchange fraction acts as a CO 2 decreasing gear during the study period and is much effective when the wind speed is higher than 2-3 m s -1. Future studies about organic carbon and biological production/respiration are required for evaluating the roles of oyster farms on carbon sink and coastal carbon cycle. Key words: Realtime Monitoring, Oyster, Aquaculture Farm, Fugacity of carbon dioxide (fco 2 ) in seawater, Carbon budget (mass balance) 서론 (Crassostrea gigas) 1980 29 1990 20, 2000. 2007 30 28. 19%, (2011 1940,, http://fs.fips.go.kr),. 1970,,, (Cho, 1979; Bae and Han, 1998; NFRDI, 1998, 2009),.,, 2000 (Park et al., 2002; Oh et al., 2002; Jeong et al., 2009). 30-40% http://dx.doi.org/10.5657/kfas.2014.1026 Kor J Fish Aquat Sci 47(6) 1026-1036, December 2014 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licens (http://creativecommons.org/licenses/by-nc/3.0/)which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Received 7 November 2014; Revised 19 December 2014; Accepted 22 December 2014 *Corresponding author: Tel: +82. 51. 720. 2543 Fax: +82. 51. 720. 2515 E-mail address: jshim@korea.kr Copyright 2014 The Korean Society of Fisheries and Aquatic Science 1026 pissn:0374-8111, eissn:2287-8815
고성만굴양식장이산화탄소 (CO 2 ) 수지 1027 (Park et al., 2002).. (Kang et al., 1993), (Lee et al., 2011a). 1970 (Lim et al., 1975; Choi et al., 1997; Lee et al., 2011b). (ocean acidification) (deoxygenation) (IPCC 2007)., ph,,, (Hoegh-Guldberg et al., 2007; Kroeker et al., 2013).,,, (Miller et al., 2009; Parker et al., 2011; Barton et al., 2012)., (Salisbury et al., 2008; Borges and Gypens, 2010).,. /,.,.,.,,,, (ocean acidification).,,. 2011 11 2 ~11 4 ( ) (34 54.85 N, 128 19.2 E) 10 (Fig. 1). 2-3 km, 6.5-7.8 m ( 7 m). 11 3 2 22.9 11 4 7 16.5, 11 3 4 3-4 m s -1 2 m s -1 (http://www.kma.go.kr). 105-191 cm, 11 3 2, 15, 4 4, 11 2 20, 3 8, 22, 4 9 (http://www.khoa.go.kr).,. 실시간연속관측시스템 (thermosalinograph) (SBE45, Sea-Bird Electronics, USA), pco 2 (NDIR840, LiCor, USA), (TriLux, Chelsea Technologies Group Ltd., UK) (Shim et al., 2012), ( 10, )., 2 ph, CO 2. 재료및방법 연구지역 (Crassostrea gigas) 24 (ton) 90% (2009-2012 ).,, Fig. 1. Location of oyster Crassostrea gigas farm (star symbol) for environmental monitoring at Goseong Bay, south coast of Korea in November 2011.
1028 심정희ㆍ예미주ㆍ임재현ㆍ권정노 CTD (19 plus, Sea-Bird Electronics, USA). pco 2 (equilibrator) (shower), (air CO 2 ) CO 2 (Non-dispersive Infra-red Analyzer, NDIR) (KORDI, 2010; Weiss, 1981). pco 2 12 (300, 350, 450 atm),., -a. 수질분석 2 CTD (19plus, SBE, USA) 8 m, (YSI6000, YSI, USA).,, 2 /. (Dosimat 876 system, Metrohm, Switzerland) Winkler (Parsons et al., 1984). GF/ F (QuAAtro system with 4 channel, BranLuebbe, Germany), (OSIL & Wako ). (MLTM, 2010). (total alkalinity, TA) (KORDI, 2010), A. Dickson CRM Batch #99 #113. (Dissolved inorganic carbon, DIC) (http://cdiac. ornl.gov/ftp/co2sys, Lewis and Wallance, 1998)., (Anderaa, Norway). 이산화탄소단순수지식과관련상수 (simple mass balance equation). C t+ t = C t + C (1) C/ t = ( C/ t) T + ( C/ t) F + ( C/ t) B + ( C/ t) R (2) (1) C t t, C t t+ t. t 2, 3 4 0 6 4. (2) ( C/ t) T, ( C/ t) F -, ( C/ t) B, ( C/ t) R (,, ). - Wanninkhof (1992) F CO2 = k s pco 2 k (cm h -1 ) s Weiss(1974), pco 2 - (pco 2sea - pco 2air ). (k) 1. 결과 2011 11 2 ~ 4 (Fig. 2). 17.9-18.7, 11 2 20 3 8 17.9-18.0, 9 15 (18.7 ) [Fig. 2(a)]., 11 3 22 4 4. 11 4 4 9 18.2. 11 4 (3-6 ) 18.2, 11 3 0.3 8-9. 32.65-33.75 psu. 11 2 3 3 [Fig. 2(a)]. 11 3 14 (33.7 psu), 3. (inter-daily). 390-510 atm, (398-420 atm) 5-75 atm [Fig. 2(b)]. 470 10 atm, 11 3 6 8 400 atm 4 3. 10-20, 11 3 13 21, 10 4 [Fig. 2(b)]., 2-4 -a 0.6-1.2 g L -1
고성만굴양식장이산화탄소 (CO 2 ) 수지 1029 Fig. 2. Variations of (a) temperature (blue open circle), salinity (black filled circle) and tidal height (dashed line), (b) fluorescence value (blue open circle) and fco 2 (black filled circle), (c) dissolved oxygen and chlorophyll-a, (d) nitrate, phosphate and silicate and (e) total alkalinity, dissolved inorganic carbon and ph measured in surface seawater at oyster Crassostrea gigas farm with timely high resolution using real-time monitoring system in November 2011.
1030 심정희ㆍ예미주ㆍ임재현ㆍ권정노 11 3 2 4 0 (6.7 g L -1 ) 4 [Fig. 2(c)]. -a (R 2 =0.65)., -a. 6.2-8.4 mg L -1, 7.0 mg L -1, 3 2 6 [Fig. 2(c)]. 11 4 4, -a. 1.2-9.6 mg L -1, -a 3 [Fig. 2(c)]. Fig. 2(d). 2.4-7.8 mol L -1, 0.3-1.2 mol L -1, 22.0-32.6 mol L -1. 11 3, 24, 4, -a. 2,000-2,110 mol kg -1,, 4 8~10 [Fig. 2(e)]. 1,830-1,910 mol kg -1, [Fig. 2(e)]. ph 8.07-8.14, 11 3 8 20 [Fig. 2(e)]. ph 4 8. 2011 11,,,, -a, ph. 고찰 굴양식장표층수의일반성분과탄소계인자사이의상관성 (Table 1).. (11 3 14 ), Table 1. Correlations between environmental parameters measured at an oyster Crassostrea gigas farm in Goseong Bay in Nov. 2011 (*, P<0.05; **, P <0.001) Temperature Salinity DO COD Chl-a SS NO3 PO4 SiO2 TN T P TA ph ( ) (psu) (mg/l) (mg/l) (μg/l) (mg/l) (μmol/l) (μmol/l) (μmol/l) (mg/l) (mg/l) (μmol/kg) (NBS) Temperature 1-0.461.501 (*) 0.322.774 (**).645 (**) -.685 (**) -.671 (**) -.509 (*) -0.144-0.378-0.274 0.203 Salinity 1 -.823 (**) -.698 (**) -.714 (**) -.498 (*).789 (**).895 (**).796 (**).514 (*).862 (**) 0.217 -.554 (*) DO 1.558 (*).637 (**) 0.387 -.638 (**) -.742 (**) -.593 (**) -0.137 -.649 (**) -0.23 0.392 COD 1.474 (*).705 (**) -.487 (*) -.544 (*) -0.428-0.416 -.489 (*) -0.022 0.335 Chl-a 1.754 (**) -.947 (**) -.923 (**) -.798 (**) -0.262 -.629 (**) -0.37 0.429 SS 1 -.667 (**) -.626 (**) -.549 (*) -0.244-0.342-0.201 0.312 NO3 1.971 (**).917 (**) 0.435.814 (**) 0.408-0.431 PO4 1.915 (**) 0.439.854 (**) 0.368 -.530 (*) SiO2 1.508 (*).906 (**).496(*) -0.38 TN 1.626 (**) 0.172-0.048 T P 1 0.461-0.319 TA 1 0.327 ph 1
고성만굴양식장이산화탄소 (CO 2 ) 수지 1031. -a,. -a,. -a (P<0.01) (P<0.01). -a, (Lee et al., 2011b). (total nitrogen, TN) (total phosphorus, TP) (P<0.01). (P<0.01). 45% (DIN, dissolved inorganic nitrogen), 72%.,., -a,. - - ( ). 1970,,, (,, ) (Lim et al., 1975).. -a (R 2 =0.70), (R 2 =0.76), (R 2 =0.82) (Fig. 3)., -a.,. (1 ), -a., (salt). 2011 11,. 이산화탄소분포에영향미치는인자정량평가 390-510 atm, -a,, (Fig. 3)., -, (biological pump), (Bakker et al., 1997; Louanchi et al., 1996; Shim et al., 2006; Shim et al., 2012). (1) (2). (2) t ( C), -25~53 atm. C t 2 3, 3 (10 ~20 ). (thermodynamic), 1 4.23% (Takahashi et al., 1993). ( C/ t) T t t+ t /. [( C/ t) T ] -14.5~18.9 atm 6 2, 2 6 (Fig. 5).. (190 cm) 3 14 ( C/ t) T.., ( 5 ) ( C/ t) T (-11~12 atm, Shim et al., 2012),. 2011 11 405 atm 11 (2012 11 403 ppm, KMA, 2013).
1032 심정희ㆍ예미주ㆍ임재현ㆍ권정노 Fig. 3. Relationships between fco 2 and temperature (a), salinity (b), chlorophyll-a (c), dissolved oxygen (d), nitrate (e) and phosphate (d) measured in surface seawater at oyster Crassostrea gigas farm in November 2011. The points in a circle are excluded for calculating each relationship. (flux) 0.01-2.4 mmol m -2 d -1. - [( C/ t) F ] 0.1-18.5 atm ( 5.0 atm), 2-3 m sec -1 3 10 atm
고성만굴양식장이산화탄소 (CO 2 ) 수지 1033 Fig. 4. Vertical distributions of seawater temperature and salinity measured at 2-hour intervals at an oyster Crassostrea gigas farm located Goseong Bay, south coast of Korea, in November 2011. Fig. 5. Evaluations of environmental factors affecting fco 2 variations for each time interval at an oyster Crassostrea gigas farm located Goseong Bay, south coast of Korea in November 2011. (Fig. 5). ( C) [( C/ t) T ], - [( C/ t) F ], (2) [( C/ t) B+R ]. -23.1~56.8 atm (Fig. 5),,,.., ( CaCO 3 ). (mesocosm)
1034 심정희ㆍ예미주ㆍ임재현ㆍ권정노. ( 7 m),., Oh et al. (2002) 40-50 cm s -1, 10 cm s -1, 5 cm s -1., 0.3-3.0 cm s -1.. 11 3 14 1 0.2 (Fig. 4).., [( C/ t) B+R ]., 15 m (3-5 ) 10 atm ( 4 atm) (Shim et al., 2012),.,. ( C/ t) B+R, t 2 3,. -a ( C/ t) B+R (Fig. 6) ( C/ t) B+R.,,. 10 11 0.15-0.17 gc m -2 day -1,, 11 0.6 (Lee, 2009). Shim et al. (2012) [ C/ t) B ] 5-21 7-28 atm ( 12 atm). Fig. 6. Relationships between chlorophyll-a and CO 2 variation by biological and residual factors calculated for the daytime of study period..,,,, [( C/ t) B ], (biological pump). 2011 11,,. - 2-3 m s -1. (Tang et al., 2011).. 사사 (RP-2014-ME-055). (R/V 10 ).. References Bae PA and Han CH. 1998. Effects of nursery environmental factors on the growth of pacific oyster, Crassostrea gigas. J
고성만굴양식장이산화탄소 (CO 2 ) 수지 1035 Aquaculture 11, 391-400. Bakker DCE, de Baar JJW and Bathmann UV. 1997. Changes of carbon dioxide in surface waters during spring in the Southern Ocean. Deep-Sea Res II 44, 91-127. Barton A, Hales B, Waldbusser GG, Langdon C and Feely RA. 2012. The pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limnol Oceanogr 57, 698-710. Borges AV and Gypens N. 2010. Carbonate chemistry in the coastal zone responds more strongly to eutrophication than to ocean acidification. Limnol Oceanogr 55, 346-353. Cho CH. 1979. Mass mortalitys of oyster due to red tide in Jinhae Bay in 1978. Bull Korean Fish Soc 12, 27-33. Choi WJ, Chun YY, Park JH and Park YC. 1997. The influence of environmental characteristics on the fatness of pacific oyster, Crassostrea gigas, in Hansan-Koje Bay. J Korean Fish Soc 30, 794-803. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A and Hatziolos ME. 2007. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737-1742. IPCC (Intergovernmental Panel on Climate Change). 2007. Climate Change 2007: The physical science basis. In: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (ed. Solomon S), pp. 996, Cambridge University Press, Cambridge UK. Jeong WG, Cho SM and Lee SJ. 2009. Studies for the sustainable management of oyster farms in Pukman Bay, Korea: Estimation of carrying capacity from food availability. Fish Aquat Sci 12, 118-129. Kang CK, Lee PY, Kim PJ and Choi HG. 1993. Daily variation of particulate organic carbon in Wonmun Bay on the south coast of Korea in late summer. Bull Korean Fish Soc 26, 279-287. KMA (Korea Meteorological Adminitration). 2013. Report of global atmosphere watch 2012. Taean, Korea, 22-25. KORDI (Korea Ocean Research and Development Institute). 2010. Guide to best practices for Ocean CO 2 measurements. Bumsin Press, Ansan, Korea, 73-90. Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM and Gattuso JP. 2013. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biol 19, 1884-1896. Lee JS, Kim YT, Shin KH, Hyun JH and Kim SY. 2011a. Benthic nutrient fluxes at longline sea squirt and oyster aquaculture farms and their role in coastal ecosystems. Aquacult Int 19, 931-944. Lee SJ. 2009. Estimation of ecological carrying capacity for farming oysters in Goseungman, Korea. Ph. D. Thesis, Gyeongsang National University, Tongyoung, Korea. Lee YS, Lim WA, Jung CS and Park J. 2011b. Spatial distributions and monthly variations of water quality in coastal seawater of Tongyeong, Korea. J Korean Soc Mar Environ Engineer 14, 154-162. Lewis E and Wallance DWR. 1998. Program developed for CO 2 system calculations, ORNL/CDIAC-105. Carbon dioxide information analysis center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN, http://cdiac.esd. ornl.gov/oceans/co2rprt.html. Lim DB, Cho CH and Kwon WS. 1975. On the oceanographic conditions of oyster farming area near Chungmu. Bull Korean Fish Soc 8, 61-67. Louanchi F, Metzl N and Poisson A. 1996. Modelling the monthly sea surface fco 2 fields in the Indian Ocean. Mar Chem 55, 265-279. Miller AW, Reynolds AC, Sobrino C and Riedel GF. 2009. Shellfish face uncertain future in high CO 2 world: influence of acidification on oyster larvae calcification and growth in estuaries. PLos ONE 4, 35661. http://dx.doi.org/10.1371/ journal.pone.0005661. MLTM (Ministry of Land Transport and Maritime Affairs). 2010. Analytical standard methods for marine environmental parameters. Busan, Korea, 50-100. NFRDI (National Fisheries Research and Development Institute). 1998. Report on survey for causes of mass mortality in oyster farm. Busan, Korea, 200-216. NFRDI (National Fisheries Research and Development Institute). 2009. Report on survey for mass mortality of aquacultured species and development of red tide by cochlodinium. 155. Oh KH, Pang IC, Hofmann EE, Kim Y, Kim SY, Park YJ and Choi KS. 2002. Modeling oyster populations dynamics. I. Effect of available food on growth of the pacific oyster Crassostrea gigas in Goseong Bay, Korea. J Korean Fish Soc 35, 327-335. Park JS, Kim HC, Choi WJ, Lee WC, Kim DM, Koo JH and Park CK. 2002. Estimating the carrying capacity of a coastal bay for oyster culture. II. The carrying capacity of Geoje- Hansan Bay. J Korean Fish Soc 35, 408-416. Parker LM, Ross PM and O Connor WA. 2011. Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Mar Biol 158, 689-697. Parsons TR, Maita Y and Lalli CM. 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, England, 173. Salisbury J, Green M, Hunt C and Campbell J. 2008. Coastal acidification by rivers: A threat to shellfish? EOS 89, 513-528. Shim JH, Kang DJ, Han IS, Kwon JN and Lee YH. 2012. Real-
1036 심정희ㆍ예미주ㆍ임재현ㆍ권정노 time monitoring of environmental properties at seaweed farm and a simple model for CO 2 budget. J Korean Soc Oceanography 17, 243-251. Shim JH, Kang YC, Kim D and Choi SH. 2006. Distribution of net community production and surface pco 2 in the Scotia Sea, Antarctica, during austral spring 2001. Mar Chem 101, 68-84. Takahashi T, Olafsson J, Goddard JG, Chipman DW and Sutherland SC. 1993. Seasonal variations of CO 2 and nutrients in the high-latitude surface oceans: a comparative study. Global Biogeochemical Cycles 7, 843-878. Tang Q, Zhang J and Fang J. 2011. Shellfish and seaweed mariculture increase atmospheric CO 2 absorption by coastal ecosystems. Mar Ecol Prog Ser 424, 97-104. Wanninkhof R. 1992. Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97, 7373-7382. Weiss RF. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2, 203-215. Weiss RF, 1981. Determinations of carbon dioxide and methane by dual catalytist flame ionization chromatography and nitrous oxide by electron capture chromatography. J Chemical Sci 19, 610-616.