Journal of the Korean Society of Safety, Vol. 31, No. 3, pp. 42-46, June 2016 Copyright@2016 by The Korean Society of Safety (pissn 1738-3803, eissn 2383-9953) All right reserved. http://dx.doi.org/10.14346/jkosos.2016.31.3.42 이동훈 정필훈 * 이수환 * 김상효 * 부경대학교안전공학과 * 선재하이테크기술연구소 (2016. 4. 6. 접수 / 2016. 6. 17. 수정 / 2016. 6. 20. 채택 ) Development of the Most Optimized Ionizer for Reduction in the Atmospheric Pressure and Inert Gas Area Dong Hoon Lee Phil Hoon Jeong * Su Hwan Lee * Sanghyo Kim * Department of Safety Engineering, Pukyong National University * Research Center of Sunje Hitek Co.,LTD (Received April 6, 2016 / Revised June 17, 2016 / Accepted June 20, 2016) Abstract : In LCD Display or semiconductor manufacturing processes, the anti-static technology of glass substrates and wafers becomes one of the most difficult issues which influence the yield of the semiconductor manufacturing. In order to overcome the problems of wafer surface contamination various issues such as ionization in decompressed vacuum and inactive gas(i.e. N 2 gas, Ar gas, etc.) environment should be considered. Soft X ray radiation is adequate in air and O 2 gas at atmospheric pressure while UV radiation is effective in N 2 gas Ar gas and at reduced pressure. At this point of view, the vacuum ultraviolet ray ionization is one of the most suitable methods for static elimination. The vacuum ultraviolet can be categorized according to a short wavelength whose value is from 100 nm to 200 nm. this is also called as an Extreme Ultraviolet. Most of these vacuum ultraviolet is absorbed in various substances including the air in the atmosphere. It is absorbed substances become to transit or expose the electrons, then the ionization is initially activated. In this study, static eliminator based on the vacuum ultraviolet ray under the above mentioned environment was tested and the results show how the ionization performance based on vacuum ultraviolet ray can be optimized. These vacuum ultraviolet ray performs better in extreme atmosphere than an ordinary atmospheric environment. Neutralization capability, therefore, shows its maximum value at 10-1 ~10-3 Torr pressure level, and than starts degrading as pressure is gradually reduced. Neutralization capability at this peak point is higher than that at reduced pressure about 10 4 times on the atmospheric pressure and by about 10 3 times on the inactive gas. The introductions of these technology make it possible to perfectly overcome problems caused by static electricity and to manufacture ULSI devices and LCD with high reliability. Key Words : vacuum ultraviolet ray, soft X ray, inert gas, photon, static elimination, atmospheric pressure, reduced pressure 1. 서론 디스플레이 (LCD) 및반도체제조공정에서유리기판및웨이퍼에대한대전방지기술은제조수율에영향을미치는핵심기술중하나이다 1). 반도체웨이퍼의경우노즐로부터분사된가스에의해웨이퍼와접촉할때수 kv 로대전된다. 이때정전기인력 (Electrostatic Attraction) 에의해주변의먼지가부착되는오염으로제조수율이저하되거나, 정전기방전 (Electrostatic Discharge) 으로인해패턴이파괴되는등이에대한대책이반드시필요하다 2-4). 이러한제조공정에서정전기를제거하는방식으로는코로나방전을이용하는방식과연 X 선 (Soft X-ray) 을이용하는방법이있다. 최근에는디스플레이및반도체제조공정중에는산화막증착, CVD(Chemical vapour deposition), sputter 등의진공증착설비내에는감압대기및불활성가스 (N 2, Ar 등 ) 를사용하고있다. 이러한환경에서도정전기를제거하여야하는문제점이대두되고있다. 코로나방전및연 X 선을이용한정전기제거장치는위에서언급한감압대기및불활성가스의환경에서는정전기를제거할수없는단점이있다 5-7). Corresponding Author : Dong Hoon Lee, Tel : +82-51-629-6466, E-mail : lhoon@pknu.ac.kr Department of Safety Engineering, Pukyong National University, 45, Yongso-ro, Nam-gu, Busan 48513, Korea 42
앞으로반도체의집적도증가및디스플레이고해상도를위해서감압상태에서산화막증착, 주변의먼지에의해웨이퍼및유리기판표면을오염시키는문제를해결하기위하여불활성가스로취환하는제조시스템을도입하는공정이제시되고있다. 이러한환경에서정전기로인한문제를방지하는기술은반드시선행되어야한다. 본연구에서는감압대기및불활성가스환경에서정전기제거를위하여진공자외선 (Vacuum Ultra Violet ray) 을이용한정전기제거장치를개발하였다. 개발된정전기제거장치를이용하여감압정도및불활성가스의종류에따른정전기제거성능변화를실험적으로연구하였다. Table 1. The specification of vacuum ultra violet ray lamp Source Vacuum ultraviolet ray lamp Wave lenth 100 nm 200 nm Material of lamp No Ozone quartz Material of window Complex quartz 2. 실험장치및방법 감압및불활성가스분위기에서정전기제거성능을실험하기위하여진공챔버및관련주변기구를설계하고제작하였다. 2.1. 중수소램프 (Deuterium Lamp) 진공자외선을발생하기위하여중수소램프를사용하였다. 중수소램프는석영관, 발광부, 리드선, 핀치부등으로구성되고, 아크방전 (Arc Discharge) 을이용한방전관으로석영유리관내에중수소가스 (Deuterium gas, D 2) 가봉입되어있고, 아크방전이발생할때양극부분에서 100 nm 200 nm의연속스펙트럼광 (Continuous Spectrum Light) 을얻을수있다. 중수소램프는가열된전자를방출시키는음극 (Filament, Cathode), 금속양극 (Target, Anode) 및양극과음극사이에위치한아크구멍 (Arc Aperture) 으로구성된다. 수백 ma 의방전전류는중수소가스를여기 (Excitation) 시켜방전은작은아크구멍을통해통과한다. 이때발생된광원은빛을방출하게된다. Fig. 1. VUV lamp housing. Fig. 2. Vacuum ultraviolet ray lamp. 한편중수소램프내부는 10-3 ~ 10-5 Torr 정도의진공상태가유지되어야하며, 온도변화의영향에민감하여, 과열로인하여중수소램프의안정한출력특성을얻기어렵다. 이로인하여정전기제거성능을얻을수없다. 따라서이러한환경으로부터영향을최소화하기위해방열을위한하우징을설계하였다. Fig. 1 은진공자외선램프의하우징을나타낸것이다. Table 1 은진공자외선램프의규격을나타낸것이고, Fig. 2 는진공자외선램프를나타낸것이다. 2.2. 감압대기및불활성가스환경조성실험장치진공챔버내부에는진공자외선을이용한정전기제거장치및제전성능을측정하기위한모의대전장치 (Charged Plate Monitor) 가설치되어있다. 10 3 10-4 Torr까지의감압환경을조성하기위하여진공펌프를이용하였고, 불활성가스 (N 2, Ar) 를주입하기위하여펌프를설치하였다. Fig. 3은감압및불활성가스환경조성을위한챔버및주변장치를나타낸사진이다. 디스플레이및반도체공정중에는진공자외선을대전물체에직접적으로조사하는경우도있고, 간접적으로조사하는경우도있기때문에이를위해서 Fig. 4와같이진공자외선을직접조사한방식과 Fig. 5와같이진공자외선을간접조사한방식으로구분하여실험하였다. 제전성능을측정하기위한이격거리는 300 mm로설정하였고, 실험의정확성을높이기위하여모든실험은 3회측정하여평균값을취하였다. 국내디스플레이제조업체에서는진공증착설비내 한국안전학회지, 제 31 권제 3 호, 2016 년 43
이동훈 정필훈 이수환 김상효 Table 2. Experimental conditions Status Irradiation method Condition Direct, indirect Reduced pressure 10 3 Torr ~ 10-4 Torr Environment Air, N 2, Ar gas Fig. 3. The experimental chamber and interface. Fig. 4. Direct vacuum ultra violet ray irradiation. Fig. 5. Indirect vacuum ultra violet ray irradiation. 에서제전완화시간은공정속도 (Tact time) 을고려하여 10-1 초이하의제전목표시간을설정하고있다. 3. 실험결과및고찰 Table 2 는진공자외선조사에의한정전기제거성능을측정하기위하여조건을나타낸것이다. 3.1. 직접조사방식에서대기, N 2 및 Ar 가스의감압변화에따른제전완화시간 Fig. 6 은설정이격거리를 300 mm 로한경우직접조사방식에서대기, N 2 및 Ar 가스의감압변화에따른제전완화시간을나타낸것이다. 대기상태의경우 10 Torr 이상에서는제전완화시간이수십초대로정전기제거능력이제전목표에미치지못함을알수있다. 반면 1 Torr 에서는제전완화시간이 0 초대로나타났다. 이는전자와분자의평균자유행정 (Mean free path) 이길어져서전송속도가빨라졌기때문이다. 전송속도가빨라짐에따라이온과전자의재결합 (Recombination) 과확산 (Deffusion) 이억제되었기때문이다. 10-1 Torr ~ 10-3 Torr 에서는제전완화시간이 10-1.5 ~ 10-2 초로제전목표시간보다우수한제전성능을나타냈다. 이는평균자유행정이더욱길어짐에따라여기분자의수명을연장하여 2 차광자흡수 (Second photon absorption) 확률 6) 을증가시켜제전능력을감압상태에서크게향상시켰기때문이라생각된다. N 2 및 Ar 가스의경우 10 2 Torr 이상에서는제전완화시간이수초대로나타났으며, 1 ~ 10 Torr 에서는제전완화시간이 0 초로나타났으며, 10-1 ~ 10-3 Torr 에서 (+) 및 (-) 측모두제전완화시간이거의 10-2 초정도로제전완화시간이빠름을알수있다. 10-1 ~ 10-3 Torr 의감압환경에서는대기상태보다 N 2, Ar 가스일때가정전기제거성능이약간우수하였으나, 미미한차이로큰의미는없다고생각한다. 대기, N 2, Ar 가스의감압환경중에서도 10-1 ~ 10-3 Torr 에서제전완화시간이가장빠르게나타났음을알수있다. 이는진공자외선은광자를흡수하여이온을생성하는것은연 X 선조사방식과같으나, 연 X 선은 1 개의광자 (photon) 를흡수하여가스분자를이온화하는반면, 진공자외선은 1 개이상의광자 (Multiphoton absorption) 를흡수하여야가스분자를이온화할수있는특이한프로세스를가지고있기때문이다. 즉, 광자의에너지가가스분자를이온화시키기에는에너지가낮기때문이다. 따라서 10-1 ~ 10-3 Torr 의대기감압, N 2 및 Ar 가스의환경에서정전기제거능력은대기압의환경에비해서 44 Journal of the KOSOS, Vol. 31, No. 3, 2016
Table 3. The comparison table of charge decay time in case of direct irradiation in decompressed Air, N 2 and Ar gas environment Gas 10 2 Torr 10 ~ 1 Torr 10-1 ~10-3 Torr 0 10-3 Torr Air 100 sec 0 ~ 10 sec 10-1.5 ~10-2 sec 10-1 sec N 2 5 ~ 10 sec 0 sec 10-2 sec 10-1 sec Ar 5 ~ 10 sec 0 sec 10-2 sec 10-1 sec Table 4. The comparison table of charge decay time in case of indirect irradiation in decompressed Air, N 2 and Ar gas environment Gas 10 2 Torr 10 ~ 1 Torr 10-1 ~10-3 Torr 0 10-3 Torr Air 100 sec 5 ~ 30 sec 10-1 ~10-3 Torr 10-1 sec N 2 10 ~ 20 sec 0 ~ 5 sec 10-2 sec 10-1 sec Ar 5 ~ 10 sec 0 sec 10-2 sec 10-1 sec Fig. 6. The Charge decay time in case of direct irradiation in decompressed Air, N 2 and Ar gas environment. Fig. 7. The charge decay time in case of indirect irradiation in decompressed Air, N 2 and Ar gas environment. 10 2 ~ 10 3 정도로성능이좋아짐을알수있다. 10-3 Torr 이하의감압상태에서는제전시간이 10-1 초이상으로상승함을알수있다. 이는가스분자가희박하여제전능력이불가능하게되기때문이다. Table 3 은직접조사방식에서대기, N 2 및 Ar 가스의감압상태에서가스상태별, 감압정도별의정전기제거성능을나타낸것이다. 실험결과에서알수있듯이 10-1 ~ 10-3 Torr 의구간에서최대의제전능력을보여주었다. 제전능력의최대점은감압대기의경우 10 4 배, N 2 및 Ar 가스의경우에는 10 3 배정도로나타났다. 3.2. 간접조사방식에서대기, N 2 및 Ar가스의감압변화에따른제전완화시간 Fig. 7은설정이격거리를 300 mm로한경우간접조사방식에서대기, N 2 및 Ar가스의감압변화에따른제전완화시간을나타낸것이다. 대기상태의경우 10 Torr 이상에서는제전완화시간이수십초대로직접조사방식의경우와같이정전기제거능력이제전목표에미치지못함을알수있다. 1 Torr에서제전완화시간은 5초대로나타났으나, 10-1 Torr ~ 10-3 Torr에서는제전완화시간이 10-2 초대로제전목표보다제전성능이빠르게나타났다. 이는직접조사방식의경우와같은이유로생각할수있다. N 2 및 Ar 가스의경우 10 Torr 이상에서는약간의 산포는있으나수 ~ 수십초대로정전기제거성능이저하하였다. 1 Torr에서는제전완화시간이 0초로나타났다. 10-1 Torr ~ 10-3 Torr에서는제전완화시간이 10-2 초대로제전목표보다빠른제전완화시간을나타냈다. 10-1 Torr ~ 10-3 Torr에서는대기, N 2 및 Ar 가스모두정전기제거성능이우수하였다. 10-3 Torr 이상에서 는제전완화시간이상승하였다. 직접조사이든간접조 사이든이온과전자는대전체주위에서생성되는데, 간접조사의경우 (+)/(-) 의제전완화시간의차이는전자 와 (+) 이온의이동도 (Mobility) 에기인한것으로생각된 다. 따라서직접조사와간접조사의경우제전능력은 거의유사하다고생각된다. Table 4는간접조사방식에서대기, N 2 및 Ar 가스의 감압상태에서가스상태별, 감압정도별의정전기제거 성능을나타낸것이다. 4. 결론및향후과제 본연구를통해서진공자외선을이용한정전기제거장치로감압대기및불활성가스 (N 2, Ar) 환경에서의정전기제전성능을실험한결과다음과같은결론을얻을수있었다. 1) 감압에서는연 X 선조사식정전기제거장치를사용할수없다. 이는감압의상태가되면광자를흡수하는 한국안전학회지, 제 31 권제 3 호, 2016 년 45
이동훈 정필훈 이수환 김상효 가스분자또는원자의양이극히적어이온생성이극히감소하여정전기제거능력이현저히저하한다. 2) 진공자외선을이용한정전기제거장치는 10-1 10-2 Torr 의감압대기, N 2 및 Ar 가스환경에서최대의정전기제거능력을보여주었다. 제거능력의최대점은대기압에비하여감압대기의경우는 10 4 배, N 2 및 Ar 가스의경우에는 10 3 배정도로나타났다. 따라서감압환경에서는진공자외선조사식정전기제거장치가가장적합함을알수있었다. 3) 진공자외선을대전물체에 10 1 Torr 이상에서는직접조사방식이간접조사방식에비해우수하나, 10 0 Torr 이하에서는유사한성능을나타냈다. 따라서본연구를통하여진공자외선을이용한정전기제거장치는 10-1 ~ 10-3 Torr 의감압대기, 감압질소및감압아르곤가스환경에서정전기제거능력인제전완화시간이 10-2 초로최대의능력을나타냈음을알수있었다. 감사의글 : 이논문은부경대학교의자율창의학술연구비 (2015 년 ) 에의하여연구되었음 This work was supported by a Research Grant of Pukyong National University(2015 year) References 1) D. H. Lee, D. S. Choi, Y. C. Jung and S. M. Kim, A Study on Improvement of the Performance of Pulsed AC Ion Bar(1), Journal of the Korean Society of Safety, Vol.29, No.3, pp. 34-38, 2014. 2) D. H. Lee, D. S. Choi, S. M. Kim and Y. C. Jung, A Study on Improvement of the Performance of Pulsed AC Ion Bar(2), Journal of the Korean Society of Safety, Vol.29, No.6, pp. 40-45, 2014. 3) Ministry of Commerce Industry and Energy, Korean Agency for Technology and Standards, The Standard Study for Ionizer Evaluation Method, pp.224-236, 2005. 4) T.Namura, H.Okada, Y.Naitoh, Y.Todokora and M.Inoue, Charged Build Up in Magnetized Process Plasma, Japan Journal Applied Physics, Vol. 30, pp.1576-1580, 1991. 5) T.Ohmi and T.Shibata, Closed Manufacturing System for Advanced Semiconductor Manufacturing, Automated Integrated Circuits Manufacturing, PV.91-5, pp.3-64, 1991. 6) H. Inaba, T. Ohmi, T. Yoshida and T. Okada, Neutralization of Static Electricity by Soft X-rays & Vacuum UV Radiation, Journal of Electrostatics, Vol.33, pp.15-42, 1994. 7) S. Sakata, H. Inaba, T. Yoshida and T. Okada, Contamination Free Ionizer for Static Control in Super Clean Room, Proc. 3rd Int. Aerosol Conference, pp.817-820, 1990. 46 Journal of the KOSOS, Vol. 31, No. 3, 2016