53-62_성상민_저완_1차수정.indd

Similar documents
03-16-김용일.indd

74-정성혁2.indd

08원재호( )

Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 33, No. 4, , 서론. (Heo, 2013). (Park et al., 2

<30392DC0CCC0E7BFF82D52544B2D B9ABC0CEC7D7B0F8BBE7C1F8C3F8B7AE2E687770>

03-서연옥.hwp

09권오설_ok.hwp

<30345F D F FC0CCB5BFC8F15FB5B5B7CEC5CDB3CEC0C720B0BBB1B8BACE20B0E6B0FCBCB3B0E8B0A120C5CDB3CE20B3BBBACEC1B6B8ED2E687770>

Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography Vol. 33, No. 1, 23-30,

DBPIA-NURIMEDIA

Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 32, No. 1, 29-38, 2014., GPS/ IMU.. Rickard et al.(2008). Ya

09구자용(489~500)

< B9DAC1D8B1D420BEF6B4EBBFEB2D20B9ABC0CEC7D7B0F8B1E22E687770>

인문사회과학기술융합학회

<B8F1C2F72E687770>

2 : 3 (Myeongah Cho et al.: Three-Dimensional Rotation Angle Preprocessing and Weighted Blending for Fast Panoramic Image Method) (Special Paper) 23 2

21-32_김세열_저완_2차수정.indd

DBPIA-NURIMEDIA

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

<B0A3C1F6315FC6EDC1FDC0A7BFF8C8B82E687770>

untitled

,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: A Study on Organizi

09오충원(613~623)

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770>

À±½Â¿í Ãâ·Â

14.이동천교수님수정

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

DBPIA-NURIMEDIA

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

디지털포렌식학회 논문양식

DBPIA-NURIMEDIA

학습영역의 Taxonomy에 기초한 CD-ROM Title의 효과분석

DBPIA-NURIMEDIA

Æ÷Àå½Ã¼³94š

09È«¼®¿µ 5~152s

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A528B1E8C1BEB9E8292E687770>

12È«±â¼±¿Ü339~370

04김호걸(39~50)ok

Æ÷Àå82š

10(3)-10.fm

14.531~539(08-037).fm

Æ÷Àå82š

+À¯½Å.PDF

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

°í¼®ÁÖ Ãâ·Â

63-69±è´ë¿µ

Output file

(JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN

19_9_767.hwp

레이아웃 1

3. 클라우드 컴퓨팅 상호 운용성 기반의 서비스 평가 방법론 개발.hwp

정보기술응용학회 발표

<31325FB1E8B0E6BCBA2E687770>

<30382E20B1C7BCF8C0E720C6EDC1FD5FC3D6C1BEBABB2E687770>

20(53?)_???_O2O(Online to Offline)??? ???? ??.hwp

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: A Study on the Opti

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, (JBE Vol. 22, No. 2, March 2017) ISSN

untitled

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

DBPIA-NURIMEDIA

½Éº´È¿ Ãâ·Â

Journal of Educational Innovation Research 2016, Vol. 26, No. 3, pp.1-16 DOI: * A Study on Good School

02양은용

???? 1

08김현휘_ok.hwp

44-4대지.07이영희532~

45-51 ¹Ú¼ø¸¸

DBPIA-NURIMEDIA

p 19; pp 32 37; 2013 p ㆍ 新 興 寺 大 光 殿 大 光 殿 壁 畵 考 察 ; : 2006

06_ÀÌÀçÈÆ¿Ü0926

ecorp-프로젝트제안서작성실무(양식3)

38이성식,안상락.hwp

DBPIA-NURIMEDIA

04-다시_고속철도61~80p

원고스타일 정의

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: * A Study on Teache

???? 1

05( ) CPLV12-04.hwp

<31362DB1E8C7FDBFF82DC0FABFB9BBEA20B5B6B8B3BFB5C8ADC0C720B1B8C0FC20B8B6C4C9C6C32E687770>

<333820B1E8C8AFBFEB2D5A B8A620C0CCBFEBC7D120BDC7BFDC20C0A7C4A1C3DFC1A42E687770>

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

<30312DC1A4BAB8C5EBBDC5C7E0C1A420B9D720C1A4C3A52DBDC5C1F82E687770>

012임수진

Voice Portal using Oracle 9i AS Wireless

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: NCS : * A Study on

기획 특집 Ⅱ. 어린이 교통사고 현황 먼저 어린이 교통사고 현황을 살펴보면, 표1은 2008년에서 2012년까지 최근 5년간 전국 어린이 교 통사고 발생현황을 나타내고 있다. 1) 표1 13세미만 전국 어린이 교통사고 발생현황 발생년도 발생건수 사망자 부상자 2008

04서종철fig.6(121~131)ok

(JBE Vol. 23, No. 1, January 2018) (Special Paper) 23 1, (JBE Vol. 23, No. 1, January 2018) ISSN 2287-

±è¼ºÃ¶ Ãâ·Â-1

10(3)-09.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

Transcription:

Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography Vol. 34, No. 1, 53-62, 2016 http://dx.doi.org/10.7848/ksgpc.2016.34.1.53 ISSN 1598-4850(Print) ISSN 2288-260X(Online) Original article 무인항공사진측량에의한농경지필지경계설정정확도 Accuracy of Parcel Boundary Demarcation in Agricultural Area Using UAV-Photogrammetry 성상민 1) 이재원 2) Sung, Sang Min Lee, Jae One Abstract In recent years, UAV Photogrammetry based on an ultra-light UAS(Unmanned Aerial System) installed with a low-cost compact navigation device and a camera has attracted great attention through fast and accurate acquirement of geo-spatial data. In particular, UAV Photogrammetry do gradually replace the traditional aerial photogrammetry because it is able to produce DEMs(Digital Elevation Models) and Orthophotos rapidly owing to large amounts of high resolution image collection by a low-cost camera and image processing software combined with computer vision technique. With these advantages, UAV-Photogrammetry has therefore been applying to a large scale mapping and cadastral surveying that require accurate position information. This paper presents experimental results of an accuracy performance test with images of 4cm GSD from a fixed wing UAS to demarcate parcel boundaries in agricultural area. Consequently, the accuracy of boundary point extracted from UAS orthoimage has shown less than 8cm compared with that of terrestrial cadastral surveying. This means that UAV images satisfy the tolerance limit of distance error in cadastral surveying for the scale of 1: 500. And also, the area deviation is negligible small, about 0.2%(3.3m 2 ), against true area of 1,969m 2 by cadastral surveying. UAV-Photogrammetry is therefore as a promising technology to demarcate parcel boundaries. Keywords: Unmanned Aerial System, UAV-Photogrammetry, Computer Vision, Orthoimage, Parcel Boundary Demarcation 초록 (UAS: Unmanned Aerial System) (UAV Photogrammetry)., DEM.. (GSD: Ground Sample Distance) 4cm., 8cm 1:500. 1,969 0.2%(3.3 ).. :,,,, Received 2015. 12. 31, Revised 2016. 02. 18, Accepted 2016. 02. 29 1) Member, Dept. of Civil Engineering, Dong-A University (E-mail: cantona777@ naver.com) 2) Corresponding Author, Member, Dept. of Civil Engineering, Dong-A University (E-mail: leejo@dau.ac.kr) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http:// creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 53

Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 34, No. 1, 53-62, 2016 1. 서론, (aerial photogrammetry).,., (UAV photogrammetry). UAV,,, (Eisenbeiss, 2007; Lim et al., 2015)., Framework. (Lee and Sung, 2015). Manyoky et al.(2011) 8 Falcon TS/GNSS UAV. UAV 3. Cunningham et al.(2011) Gatewing X-100. 2013 Rijsdijk et al.(2013) UAS. 20 UAV 3cm.. 2014 Volkmann and Barnes(2014) 2013 0.23km 2 GPS 6cm. KCSC (2014a) UAV. Gatewing RMSE(Root Mean Square Error) 8cm. KCSC(2014b) UAV. UAV,,. Kim(2014) (3.2km 1.5km,,, ) UAV 5cm, 8cm. Lee et al.(2015) UAV RMSE. UAV,. UAV. 1, 2,, UAV. 3 UAV. 2. 실험자료취득및처리 2.1 연구방법 UAV. UAV VRS-RTK. 2. UAV 54

Accuracy of Parcel Boundary Demarcation in Agricultural Area Using UAV-Photogrammetry 130m GSD 4cm.. Fig. 1. 2.3 지상기준점측량 8 Fig. 3( ) VRS-GPS. Fig. 3( ) 6. (Sung, 2015). Fig. 1. Study flow chart Fig. 3. GCP surveying and air target 2.2 연구대상지역 800m x 800m,. Fig. 2 2.,. (AT: Aerial Triangulation) Fig. 3( ) 30cm 30cm. Fig. 4. Fig. 2. Study area Fig. 4. Distribution of GCPs 55

Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 34, No. 1, 53-62, 2016 2.4 지적현황측량 UAV Fig. 5 60 72 GPS-VRS. 2011 (MLTM, 2011) TS(Total Station). Fig. 6. Aerial target(left) placed at road slope(middle) and footpath of rice field(right) 2.5 영상취득및처리 UAV 2015 2 5 11:00 12:30. UAV SenseFly ebee Canon IXUS 127. Fig. 7 UAV. 4.3mm, 16MP(4,608 x 3,456 pixel), 1.3. Fig. 5. Location of parcel boundary surveying 60 22, 72 17 Fig. 6. (GSD: Ground Sample Distance),.. 5mm ( PVC). Fig. 6 20cm 20cm (Base Plate) 10cm 10cm (Sung, 2015). Fig. 7. UAV payload and camera for imaging 130m Fig. 8 12 175. GSD 4cm, 75%, 65%. Fig. 8. Image footprint and overlap Agisoft Photoscan AT dense image Fig. 9 158pts./m 2, 8cm (DEM) 4cm (Agisoft, 2014). 56

Accuracy of Parcel Boundary Demarcation in Agricultural Area Using UAV-Photogrammetry 10 (red color) (blue color) UAV. Fig. 9. DEM and ortho-mosaic image 3. 결과분석 3.1 분석방법 Fig. 5 2 (60, 72 ) UAV.. 3.2 필지경계점정확도 3.2.1 필지 60( 답 ) 의경우 60 22, Fig. 10 AutoCad. Fig. Fig. 10. Detection and extraction of boundary points (parcel 60) from UAV image 60 22 Table 1. UAV (RMSE) DX=0.035m, DY=0.067m. RMSE 0.076m. 2 DX 0.159m. 22 Fig. 11. 0.159m 2 UAV RMSE 0.076m 0.068m. Table 1. Comparison of boundary points coordinates (parcel 60) (unit : m) Point no. Terrestrial Surveying (A) Extracted from UAV Image (B) (A)-(B) Distance error X Y X Y DX DY 1 300469.681 169141.145 300469.648 169141.120 0.033 0.025 0.041 2 300460.745 169139.612 300460.743 169139.771 0.002-0.159 0.159 3 300449.616 169141.669 300449.648 169141.800-0.032-0.131 0.135 4 300434.649 169140.584 300434.676 169140.669-0.027-0.085 0.089 5 300427.663 169141.106 300427.652 169141.185 0.011-0.079 0.080 6 300423.405 169143.327 300423.348 169143.369 0.057-0.042 0.071 7 300417.519 169149.651 300417.594 169149.695-0.075-0.044 0.087 57

Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 34, No. 1, 53-62, 2016 Point no. Terrestrial Surveying (A) Extracted from UAV Image (B) (A)-(B) X Y X Y DX DY Distance error 8 300412.466 169158.069 300412.454 169158.179 0.012-0.110 0.111 9 300408.238 169167.673 300408.246 169167.744-0.008-0.071 0.071 10 300405.350 169172.695 300405.336 169172.729 0.014-0.034 0.037 11 300402.218 169185.254 300402.232 169185.205-0.014 0.049 0.051 12 300370.647 169178.934 300370.632 169178.930 0.015 0.004 0.016 13 300369.503 169177.276 300369.520 169177.340-0.017-0.064 0.066 14 300369.006 169174.429 300369.019 169174.478-0.013-0.049 0.051 15 300369.442 169172.374 300369.488 169172.441-0.046-0.067 0.081 16 300379.111 169158.614 300379.133 169158.673-0.022-0.059 0.063 17 300385.864 169151.849 300385.896 169151.799-0.032 0.050 0.059 18 300415.503 169131.503 300415.547 169131.488-0.044 0.015 0.046 19 300437.364 169125.156 300437.415 169125.154-0.051 0.002 0.051 20 300448.027 169128.310 300448.076 169128.324-0.049-0.014 0.051 21 300459.436 169133.506 300459.415 169133.536 0.021-0.030 0.037 22 300463.508 169135.073 300463.555 169135.083-0.047-0.010 0.048 RMSE 0.035 0.067 0.076 Fig. 11. Distance error of extracted boundary points(parcel 60) from UAV image 58

Accuracy of Parcel Boundary Demarcation in Agricultural Area Using UAV-Photogrammetry Fig. 12. Detection and extraction of boundary points(parcel 72) from UAV image 3.2.2 필지 72( 답 ) 의경우 72 17. 60. Fig. 12 (red color) (blue color) UAV. 17 Table 2. UAV RMSE Table 2. Comparison of boundary points coordinates (parcel 72) (unit : m) Point no. Terrestrial Surveying (A) Extracted from UAV Image (B) (A)-(B) Distance error X Y X Y DX DY 1 300379.256 169151.281 300379.260 169151.282 0.004 0.001 0.004 2 300365.890 169169.934 300365.907 169169.921 0.017-0.013 0.021 3 300362.292 169176.347 300362.373 169176.324 0.081-0.023 0.084 4 300357.847 169175.635 300357.927 169175.664 0.080 0.029 0.085 5 300349.222 169171.879 300349.286 169171.887 0.064 0.008 0.064 6 300340.222 169171.553 300340.325 169171.543 0.103-0.010 0.103 7 300319.547 169180.546 300319.618 169180.533 0.071-0.013 0.072 8 300315.771 169179.664 300315.916 169179.680 0.145 0.016 0.146 9 300312.278 169179.183 300312.368 169179.233 0.090 0.050 0.103 10 300313.902 169175.408 300313.993 169175.384 0.091-0.024 0.094 11 300315.899 169165.830 300315.971 169165.846 0.072 0.016 0.074 12 300323.902 169164.434 300323.986 169164.421 0.084-0.013 0.085 13 300338.367 169160.212 300338.431 169160.203 0.064-0.009 0.065 14 300347.735 169159.492 300347.820 169159.465 0.085-0.027 0.089 15 300358.749 169156.347 300358.768 169156.363 0.019 0.016 0.025 16 300372.683 169148.060 300372.716 169148.009 0.033-0.051 0.061 17 300378.866 169146.652 300378.882 169146.634 0.016-0.018 0.024 RMSE 0.075 0.024 0.079 59

Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 34, No. 1, 53-62, 2016 Fig. 13. Distance error of extracted boundary points(parcel 72) from UAV image DX=0.075m, DY=0.024m. RMSE 0.079m. 8 DX 0.145m. 17 Fig. 13. 0.146m 8 UAV RMSE 0.079m 0.070m. UAV 8cm 27 10 3M (M : ) 1/500 15cm. 7cm UAV. 3.3 필지면적의정확도. UAV. Table 3.. 60 1969 3.6%(71 ), 72 917 24%(224 ). UAV 60 1969 0.2%(3.3 ), 72 917 0.4. Table 3. Comparison of parcel area (unit : m2 ) Parcel no. 60 Paddy 72 Paddy Registered Area (A) Terrestrial Surveying (B) Extracted from UAV Image (C) B-A Area Differences 2040.00 1968.91 1972.15-71.09-3.25 1140.00 917.60 917.21-222.4 0.39 B-C 60

Accuracy of Parcel Boundary Demarcation in Agricultural Area Using UAV-Photogrammetry 4. 결론 References., 130m GSD 4cm UAV 10cm. GSD., UAV RMSE 8cm 27 1/500 15cm. 7cm., UAV, 1969 917 0.2%(3.3 ) 0.04%(0.4 )... UAV, GSD GSD. 감사의글 / ( 2014-0328). Agisoft, (2014), Photoscan User Manual: Professional Edition, Ver 1.1. Cunningham, K., Walker, G., Strahlke, E., and Wilson, R. (2011), Cadastral audit and assessments using unmanned aerial vehicle, IAPRS, Vol. XXXVIII-1/C22, pp. 213-216. Eisenbeiss, H. (2007), UAV- Photogrammetry, Ph.D. dissertation, ETH Zurich, Switzerland, 203p. KCSC(2014a), A Study on the Improvement Plan for Business Process of Cadastral Surveying, No. 2013-21, Korea Cadastral Survey Corporation, Seoul, pp. 70-80. (in Korean with English abstract) KCSC(2014b), The Study for Realistic Cadastral Contents Development and Cadastral Resurvey Application of High Quality Image-based Content, No. 2013-27, Korea Cadastral Survey Corporation, Seoul, pp. 27-73. (in Korean) Kim, S. (2014), A Study on Construction and Application of Spatial Information Utilizing Unmanned Aerial Vehicle System, Ph.D. dissertation, Mokpo National University, Mokpo, Korea, 161p. (in Korean with English abstract) Lee, J. and Sung, S. (2015), Acquisition and application of high resolution geoinformation using ultra-light UAVphotogrammetry, Proceedings of 2015 Korean Society of Civil Engineers Busan Ulsan Gyeongnam Branch, pp. 71-72. (in Korean with English abstract) Lee, J., Sung, S., Lee, D., and Heo, J. (2015), Accuracy of parcel boundary demarcation with UAV image, Proceedings of 2015 KSGPC Annual Conference, pp. 187-189. (in Korean with English abstract) Lee, Y. (2015), Assessing the positioning accuracy of high density point clouds produced from rotary wing quadrocopter unmanned aerial system based imagery, Journal of the Korean Society for Geospatial Information System, Vol. 23, No. 2, pp. 39-48. (in Korean with English abstract) Lim, S., Seo, C., and Yun, H. (2015), Digital map updates with UAV photogrammetric methods, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 33, No. 5, pp. 397-405. (in Korean with English abstract) 61

Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 34, No. 1, 53-62, 2016 Manyoky, M., Theiler, P., Steudler, D., and Eisenbeiss, H. (2011), Unmanned aerial vehicle in cadastral application, IAPRS, Vol. XXXVIII-1/C22, pp. 57-62. MLTM(2011), Application of Cadastral Surveying Using Aerial Photos: In Foundation Construction Study for Cadastre Renovation Project, No. 11-1611000-001525-01, Ministry of Land, Transport and Marine Affairs, Gwacheon, pp. 93-94. (in Korean) Rijsdijk, M., van Hinsbergh, W.H.M., Witteween, W., ten Burren, G.H.M., Schakelaar, G.A., Poppinga, G., van Persie, M., and Radiges, R. (2013), UASs in the process of juridical verification of cadastral border, IAPRS, Vol. XL-1/W2, pp. 325-331. Sung, S. (2015), Quality Verification and Utilization of Ultra- Light UAV Imagery in Parcel Boundary Delineation, Master s thesis, Dong-A University, Busan, Korea, 66p. (in Korean with English abstract) Volkmann, W. and Barnes G. (2014), Virtual surveying: mapping and modeling cadastral boundaries using Unmanned Aerial Systems (UAS), Proceedings of FIG Congress 2014, FIG, 16-21 June, Kuala Lumpur, Malaysia, TS09A 7300, pp. 1-13. 62