hwp

Similar documents
<C1A4C3A5BAB8B0EDBCAD D325F32B1B32E687770>

<C1A4C3A5BAB8B0EDBCAD2D D30355F33B1B32E687770>

Microsoft Word - KSR2012A038.doc

인문사회과학기술융합학회

03-서연옥.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

264 축되어 있으나, 과거의 경우 결측치가 있거나 폐기물 발생 량 집계방법이 용적기준에서 중량기준으로 변경되어 자료 를 활용하는데 제한이 있었다. 또한 1995년부터 쓰레기 종 량제가 도입되어 생활폐기물 발생량이 이를 기점으로 크 게 줄어들었다. 그러므로 1996년부

DBPIA-NURIMEDIA

< E20BDC5C0E7BBFDC0FCBFF8BCB3BAF1C0C720BDC3B0A3B4EBBAB020C6AFBCBA20B9D720B9DFC0FCBCB3BAF1B1B8BCBABFA120B9CCC4A1B4C220BFB5C7E220BFACB1B828B1E8BCF6B4F620B1B3BCF6B4D4292E687770>

hwp

2013 Energy Info. Korea

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

V28.

10(3)-09.fm

< DC1A4C3A5B5BFC7E22E666D>

10 이지훈KICS hwp

µðÇÃÇ¥Áö±¤°í´Ü¸é

<BCBCC1BEB4EB BFE4B6F72E706466>

에너지경제연구 Korean Energy Economic Review Volume 14, Number 2, September 2015 : pp. 99~126 산유국의재생에너지정책결정요인분석 1) 99

Microsoft Word - KSR2012A103.doc

DBPIA-NURIMEDIA

Microsoft Word - KSR2012A172.doc

433대지05박창용

µðÇÃÇ¥Áö±¤°í´Ü¸é

DBPIA-NURIMEDIA

14.531~539(08-037).fm

KEMRI_전력경제_REVIEW_제16호( ).hwp

03이경미(237~248)ok

hwp

에너지최종-수정(색변화)

2013<C724><B9AC><ACBD><C601><C2E4><CC9C><C0AC><B840><C9D1>(<C6F9><C6A9>).pdf

에너지통계연보(2003)

DBPIA-NURIMEDIA

EU탄소배출거래제보고_ hwp

04_이근원_21~27.hwp

10(3)-12.fm

2015 Energy Info Korea

ISSUE PAPER(Vol.2, No.3)

Microsoft Word - KSR2012A021.doc

Microsoft Word - KSR2012A132.doc

?

Microsoft Word - KSR2013A320

<30312DC6AFC1FDB1E2BBE D E666D>

<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770>

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

12.077~081(A12_이종국).fm

08년요람001~016

Microsoft Word - 크릴전쟁_당신이 모르는 남극 바닷속 쟁탈전_FINAL.docx

Data Industry White Paper

<BED6C7C3BCD2BDBA5F4B5350BBFDBBEABCBA31C0E5312D32302E70312E504446>

전기정보 11월(내지).qxp

2


DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

???? 1

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

DBPIA-NURIMEDIA

09오충원(613~623)

지속가능경영보고서도큐_전체

2019_2nd_guide_kr_0619.indd

02_연구보고서_보행자 안전확보를 위한 기술개발 기획연구( )최종.hwp

2013년 중소기업 플러스 제5호_최종본.hwp

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

목 차 회사현황 1. 회사개요 2. 회사연혁 3. 회사업무영역/업무현황 4. 등록면허보유현황 5. 상훈현황 6. 기술자보유현황 7. 시스템보유현황 주요기술자별 약력 1. 대표이사 2. 임원짂 조직 및 용도별 수행실적 1. 조직 2. 용도별 수행실적

<313120B9DABFB5B1B82E687770>

04김호걸(39~50)ok

KEEI ISSUE PAPER(Vol.1, No.6)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

00내지1번2번

hapter_ i i 8 // // 8 8 J i 9K i? 9 i > A i A i 8 8 KW i i i W hapter_ a x y x y x y a /()/()=[W] b a b // // // x x L A r L A A L L A G // // // // /

16(1)-3(국문)(p.40-45).fm

03-ÀÌÁ¦Çö

hwp

+À¯½Å.PDF

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

Æ÷Àå½Ã¼³94š

#유한표지F

공휴일 전력 수요에 관한 산업별 분석

12È«±â¼±¿Ü339~370

139~144 ¿À°ø¾àħ

<B8F1C2F72E687770>

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

DBPIA-NURIMEDIA

Ⅰ. 서론 전기자동차는 석유 연료와 엔진을 사용하지 않고, 전기 배터리와 전기모터를 사용해 구동하는 자동차이 다. 전기자동차는 크게 배터리로만 가는 순수 전기자 동차(EV), 동력원으로 전지에 저장한 전기만을 사용 하고 필요에 따라 충전을 시켜줄 수 있는 플러그인 하이

歯49손욱.PDF

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

?

09권오설_ok.hwp

???춍??숏

10(3)-02.fm

정보기술응용학회 발표

05_±è½Ã¿Ł¿Ü_1130


THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

Lumbar spine

<315FC7A5C1F628BED5B8E9292E687770>

82-01.fm

레이아웃 1

Transcription:

+,PSFBO4PD&OWJSPO&OH _ Original Paper IUUQTEPJPSH,4&& *44/F*44/ u ( m ) js å f CO 2 f w} Analysis of Energy Savings and CO 2 Emission Reductions via Application of Smart Grid System m j m Soo-Hwan Park Sang-Jun Han Jung-Ho Wee dj s vw}s} Department of Environmental Engineering, The Catholic University of Korea (Received January 25, 2017; Revised March 8, 2017; Accepted April 11, 2017) Abstract : The energy savings and CO 2 emission reductions obtainable from the situation that the Smart Grid system (SGs) is assumed to be applied in Korea up to 2030 is quantitatively analyzed with many reported data. For calculation, SGs is divided into five sectors such as Smart Transmission and Distribution (ST&D), Smart Consumer (SC), Smart Electricity Service (SES), Smart Renewable Energy (SRE) and Smart Transportation (ST). Total annual energy savings in 2030 is estimated to be approximately 103,121 GWh and this is 13.1% of total electricity consumption outlook. Based on this value, total amount of reducible CO 2 emissions is calculated to 55.38 million tco 2, which is 17.6% of total nation's GHG reduction target. Although the contribution of energy saving due to SGs to total electricity consumption increases as years go by, that of CO 2 emission reduction gradually decreases. This might be because that coal fired based power generation is planned to be sharply increased and the rate of CO 2 emission reduction scheduled by nation is very fast. The contributable portion of five each sector to total CO 2 emission reductions in 2030 is estimated to be 44.37% for SC, 29.16% for SRE, 20.12% for SES, 5.11% for ST&D, and 1.24% for ST. Key Words : Smart Grid, Carbon Dioxide Emission Reductions, Energy Savings, Greenhouse Gas Reduction Target, Power Generation. ² m Ùa j ³l ³l,,, Š î 5a Ù 2030 Ð Š q CO 2 q n ¼ Ð, j º. 2030 ³l ô Š q 103,121 GWh Ø ²¼k 13.1% 2025 n 10% Ùä Ø º. ¼ Ù2030 CO 2 q 5,538 tco 2 Ø ²¼k a q h 3 1,500 tco 2 17.6% k¼j²s º. jco 2 q Š q ²º íkañîù q ¼j q j² È ²kn a ¼ j² m a a h q Ða í Ø dºùº. 2030 5a b Š q CO 2 q ³l 44.37%, Š 29.16%, 20.12%, 5.11%, 1.24% Ø e ô ¼ Š q в ³l aa Š º. q в k j, Ò ¼ a q Ðaa ± ¼j¼ j jä dºùº.. ³l, m q, Š q, a q h, 1. m m (CO 2) î a q j ² в î j º. 1,2) ô 1992 n ml Ù n2015 d n ml ² a q jl } îº j º. 3~5) a q a Å1997 º d l ²¼ Þa a q h j kk j²j a º. 6) d p, 2016 9 ¼ a d n ml j d l ² a jò Ø a Ò k j² m Ø º. 7) Ð2016 11 4 l n m m l Ò Ø l a q Ò j í Ø º. ²d ¼ m Þ 2015 6 2030 (BAU; 8 5,060 tco 2) ¼ 37% 3 1,500 tco 2 q m j º. ² n î e j 2020 BAU ¼ 30% Å q h º vmù ä º. 8) z a q hº kº j í, kø ²È,,, a, Õ, Corresponding author E-mail: jhwee@catholic.ac.kr Tel: 02-2164-4866 Fax: 02-2164-4765

+,PSFBO4PD&OWJSPO&OH ³l d ì j Š q $0 q n 357 Š Ò Ø Š n k ô Š q Å a q n ¼j ² ³l ( d ì) m ma Ø º. (Electric Power Research Institute, EPRI) 2008 ô ³ l m k2030 ¼203,000 GWh Š a qø, a 2 1,100 tco 2 q a³j ä j º. 9) Ð 2010 f (Pacific Northwest National Laboratory) ² Å mù k 2030 1,322,000 GWh Š q 5 900 tco 2 q n a jä j º. 10) ³l m mî a º m ² aj jº. ² m 1 (2009 2 ) aº ³l hj º. 11) jg8 m¼ m a ³l Ð Ø (2009 7 ), ¼ Ð º (2009 12 ), 2013 5 Ø k153} á j 9 } È j²î ÑÞ º. 12,13) ² 2010 ³l a ì j 2030 3º Ù 5¼ k 27.5 j ³l ¼j m j º. ì ô ³l ô 2030 2 3 a q n a j ä Ø º. 14) ì ² ¼n k ô Å mj ¼n ² Ø º. j ³l, Š EPRI ¼ j ³l Š q a q n ¼j a j, 15) m Õ p Ø º dºùº. mù ³l, e k¼j²l m ³l j m Š n p j² ² Š q a q j ² j w²º. ô ² hù a j ³l 5a ô Š q CO 2 q n 2030 j, ¼ ³l a q Ð j º. j e Š j ô Ð CO 2 í j s CO 2 q n j²è j º. ô k ³l ¼j a n Š m a q j²è Ð Ø j º. 2. ³l } 2.1. ³l d ³l ¼j ² a º a ²È, ² a ì ô j a k e mj Š n mj² ¼ jº. 14) ³l ² º a d º., e k a³ j ¼j í a³jíjº. 15) j, ³l mù¼ Š î j aa³j ³mÙ j a (Self-healing) î k º h j m j Š n ¼ º. 16) ô j ³l,, Õ, a,, Š, Ò (Electric Vehicle, EV) (Electric Locomotive, EL) îº j Ø Ú n ¼mj º. ô ² ³l Ù j í ³l (Smart Transmission and Distribution, ST&D), ³l (Smart Consumer, SC), ³l (Smart Electricity Service, SES), ³l Š (Smart Renewable Energy, SRE) ³l (Smart Transportation, ST) î 5¼ mj b Ù í ³l º kj º. 14) ² 5¼ ³l d ¼h ² ³ l Fig. 1 h j º. Fig. 1. 6 yhp q Rxfƒ @ƒti fyi t qt p ph ƒ it tipi q ƒ hfwh wf t y ¼jm jm 39 6m 2017 6

358 +,PSFBO4PD&OWJSPO&OH m j m 2.2. ³l 5¼ 2.2.1. ³l ; ² j Ò î k } j Š n k Ùä ¼Ùº., ì² º Ø k aq Ù º. 14,15) ² ³l j j, q j ³l CO 2 q Š qn a jº. 2.2.2. ³l n ² a,, b a j² j j a ³jíj² k d ká i (Advanced Metering Infrastructure, AMI) Š (Energy Management System, EMS) k lùº. AMI² ³l l k, j² Š, j² º. 17), AMI² m j² d a j, e, º j a j² Š h (In- Home Display, IHD) Ø, 18,19) k Š º. 20) EMS²¼, bº j d, î, hí Š } Ò j j² j kjº. 21,22) j, IHD j í j²è jems²a Š (Home EMS, HEMS), ô Š (Building EMS, BEMS), Š (Factory EMS, FEMS) ka, ô, î Õ Š j Š q a³ jº. 17) 2.2.3. ³l ² (Demand Response, DR), e Ñ î gjj jº j h Ð k Š q a³jº. 14) DR e k a Š j² n Ðj º. k ¼ e Ø a aòjñ jj a º. 23) ² e k k Ù AMI j º. ô ³l a mj q j ² j j j a j º. ³l k ¼ q a jq ô Š qn Ð n gjj º. j ³l ² Õ ô Õ, Ø á j mj² ¹ n aj º. 15) j ² Õ ¹ k Õ Ø² Š mj Š n ä dºø j ³l k ¹ ¼j aj n a ¼Ù ä ¼Ø º. 2.2.4. ³l Š ² Š gjjh,, j î Š ³l j Ð l ² l j j el a º j º. k mù Õ 14,18) a Ð j ² Š i mn Ð ¼j º. 15,17) j Š z m¼ú ô Ð Ø j ² ì a³j º n a³j j m î k Š q a³jº. 24,25) 2.2.5. ³l ² k j ²j Ò (Plug-in Hybrid Electric Vehicle, PHEV) ²EV ³l j EV m¼ø ô q n a º. 15,17), z j EV j Ò j j Š j e¼ kj²d k n a jº. ² EVa k j a³j k a q Ø j² CO 2 mj º. 17,26) ³l ²EV ÐEL ³l j º. b Ð Ð Þgjj Ð j (j ) d 1% j Ð j ³l AMI, EMS, Š, EV î Ø } Ø ² m º. 27) EV z Ð Ð ³l k Š n k j º. j k, ESS k ke mø ¼ j² Ð Š q j º. 28) ô ² Ð ³ l j Š qn aj º. Journal of KSEE Vol.39, No.6 June, 2017

+,PSFBO4PD&OWJSPO&OH ³l d ì j Š q $0 q n 359 3. a ² ³l j Š q CO 2 q n j k j ³l 5¼ } kj º. b j j j EPRI ³l n ¼j j a j º. 9) ³l jco 2 q n ²b Ù e Š q º í j Ð CO 2 í j j º. 3.1. CO 2 ³l ô Ð Š q CO 2 q n j e Š j CO 2 Ð jä d ºØ Ð ô mj² CO 2 s } kj s j º. j Ñ ô 2010, 2011 f CO 2 ²bb0.461, 0.450 tco 2/MWh º. 29) ز a ¼ CO 2 ² q j a ²f ¼ Ù, ² (1) z b Š f e ¼ b Š Ù e (MWh) jn í j j º. 30) CEC ave = Σ{CEC i (AEG i / AEG tot)} (1) CEC(Carbon Emission Coefficient) i; Š f CO 2 (kgco 2/kWh) CEC(Carbon Emission Coefficient) ave; f CO 2 (tco 2/MWh) AEG(Annual Electricity Generation) tot: e (GWh) AEG(Annual Electricity Generation) i: Š e (GWh) i: Hydro, Coal, Petroleum, Natural Gas (NG), Nuclear, Alternative energy 2010 2015 Š e Š j, 31) 2016 n Š 10 e 2030 m j 2030 804,123 GWh ä Ø í Table 1 s j j º. Table 1.,PSFBrT BOOVBM FMFDUSJDJUZ HFOFSBUJPO BDDPSEJOH UP FOFSHZ TPVSDF BOE OBUJPOrT $0 FNJTTJPO DPFGGJDJFOU IJTUPSJDBM FTUJNBUFE WBMVFT :FBS &MFDUSJDJUZHFOFSBUJPO (8I )ZESP $PBM 1FUSPMFVN /( B /VDMFBS "MUFSOBUJWF FOFSHZ 5PUBM /BUJPOrT$0 FNJTTJPODPFGGJDJFOU U$0.8I B *ODMVEFTEJTUSJDUFOFSHZ ¼jm jm 39 6m 2017 6

360 +,PSFBO4PD&OWJSPO&OH m j m Table 2. *OEJWJEVBM $0 FNJTTJPO DPFGGJDJFOU BDDPSEJOH UP FOFSHZ TPVSDF $0 FNJTTJPODPFGGJDJFOU LH$0 L8I )ZESP $PBM 1FUSPMFVN /( /VDMFBS "MUFSOBUJWF FOFSHZ,&1$0 *"&" "WFSBHF j IAEA Š CO 2 Table 2 º. 30) j CO 2 ² j j Õ, f d Ø IAEA ² s Ùä, 32) ²Þ f s j º. j j Ø ¼ Š ¼j CO 2 ² 0 a j f s j º. z Ù Š CO 2 ² a j 2016 n CO 2 j j j º. 3.2. ³l ³l j Š qn ² n q ô jn j j º., n e º (2) (3) h j º. ANEG b = AEC / (1-TDLF b) (2) ANEG a = AEC / (1-TDLF a) (3) ANEG(Annual Net Electricity Generation)b, a; n e º (GWh) AEC(Annual Electricity Consumption); e (GWh) TDLF(Transmission & Distribution Loss Factor) b, a; n (%) Þ qa³j e º q (4) j ³l ô e º q (5) h j º. 15) ANEGS = ANEG b ANEG a (4) AGEGS = ANEGS / (1-AUF) (5) ANEGS(Annual Net Electricity Generation Savings); e º q (GWh) AGEGS(Annual gross Electricity Generation Savings); e º q (GWh) AUF(Auxiliary Use Factor); (%) 2010 2015, b Ù e, j j, 33) 2016 2029 7 m j º. 34) 2030 2010 2029 k j 787,700 GWh a j º. 10 e j j, k q j ³l j Ð2014 3.69%, 2015 3.6% l º. 33,35) ²2014, i,, bb5.0%, 7.4%, 6.6%, 8.5% ä j Ð º. 35) ô l s3.6% ³l s a j 2030 Ð Ò jí j º., ³ l n ³l ì Ù, 14) 2020 3.4%, 2030 3.0% hs j n2016 Ðs jæ j 2030 q j²ä a j º. 2010 2015 ² ³l j } a n a Åä a j º. Table 3. "TTVNFE EBUB VTFE UP DBMDVMBUF FOFSHZ TBWJOHT JO 4NBSU 5SBOTNJTTJPO BOE %JTUSJCVUJPO 45% :FBS &MFDUSJDJUZ DPOTVNQUJPO (8I 5SBEJ UJPOBM 5%MPTTGBDUPS 4NBSU HSJE %JGGFSFODF "VYJMJBSZVTF GBDUPSJOQPXFS QMBOU Journal of KSEE Vol.39, No.6 June, 2017

+,PSFBO4PD&OWJSPO&OH ³l d ì j Š q $0 q n 361 j Ù j 33) 2005 º ² Ù j s j2006 n, Ð jj j²ä a Ø º. º ² Š qn jíj j º. 2006 2015 s 33) j 2030 s, 2030 3.97% ä a j º. z ³l ô Š q CO2 q ka Ù Table 3 p h j º. 3.3. ³l ³l ²AMI, BEMS, FEMS k Š qn a º j º. HEMS gjj ²EMS k ¼l ô, í BEMS, FEMS l Ø, ¼ HEMS j º. 21) m ddz ºÑ l HEMS n AMI j Š qn HEMS n a ± Рغ dºk º. ³l j e Š qn ²a, e bami, BEMS FEMS j Š qa³ e b j ä (6) z Ùº. ô h j m 2194m( 69%) a j º. AMI( ² d )²2010 50 ma Ù n2012 79.5 m, 2013 200 ma Ù a k h кj kº. 37) ³l ¼j º ¼ÞØ 2022 AMI jº² a hø º. 38) ô ² d lm h j ÙAMI, j j º. BEMS FEMS 2011 a IT ESCO kems kk 21) 2012 s 0 a j 2013 j º. 2013 Ð p hj 39) j BEMS FEMS bb 2.97%, 1.93% j º. j 40) ô BEMS 2013 494 2017 2,184, 2020 3,790 Ø, FEMS 2013 2,096 2017 6,351, 2020 1 1,152 Ùº²ä Ñ 2014 n j aj²ä a j º. z j j Ð b Ð j Table 4 j º. Table 4. "TTVNFE EBUB VTFE UP DBMDVMBUF FOFSHZ TBWJOHT JO 4NBSU $POTVNFS 4$ :FBS &MFDUSJDJUZDPOTVNQUJPO (8I 1FOFUSBUJPOSBUF 3FTJ $PN *OEVTUSJBM 5PUBM ".* #&.4 '&.4 EFOUJBM NFSDJBM B AESSC = AECi PRt ESRt (6) AESSC(Annual Energy Savings); e Š q (GWh) PR(Penetration Rate)t; (%) ESR(Energy Saving Rate)t; Š qa³ (%) i; a + +,, t; AMI, BEMS, FEMS EPRIa ³l j Š q n j k j 9) j ä º. AMI Ù a,, Þjjä s j j 33) Ù jj º. jf, BEMS FEMS² bb j º. AMI jn k hù d ( d ) j º. ²j 2,194 m dd745 m, ô300 m 3,200 m Ø, j Ð 2010 d Ø º. 36) B &MFDUSJDJUZ DPOTVNQUJPO PG DPNNFSDJBM JODMVEFT UIBU PG QVCMJD TFSWJDFBOEFEVDBUJPOBMQBSUT ¼jm jm 39 6m 2017 6

362 +,PSFBO4PD&OWJSPO&OH m j m ³l AMI, BEMS, FEMS bb Š qa³ Ð m j²ä ä dºø Ò jä a j º., 36) j AMI k 3.7%, BEMS FEMS Š 21) j bb15.5%, 7.2% j º. 3.4. ³l ³l ² ³l j DR e jì k j, ² j ² mj n a j² ä j º., DR AMI Ø j j²è, d k Ù n d a IHD k d } ³l ²º e k Š qn a j²ä a j º. k ² ³l j a, e jì j Š qa³ e jì a³jík jä Š q (7) h j º. 9) AES DR = AEC i PR i ESR i (7) PR (Penetration Rate) i; Ð jì (%) ESR (Energy Saving Rate) i; Ð jì j Š a³ (%) i; a,, Ù jì a³jí k ² ²EPRI 9) j²2030 IT q j a j º., EPRI j ² ²Å º dºj 2022 AMI h 100% a jä ¼ 2022 a,, b Ð h bb50%, 75%, 75% lù ä j º. j2030 100% hs jn, 2022 Ð n ² AMI Ò j aj² ä a j º. ¼ q j² e Š qn ² e Ù 34) e ¼ q a³ ô Š j j, (8) º. 9) AES peak demand = PD PDRP PDESR 1000 (8) PD (Peak Demand); ¼ (MW) PDRR (Peak Demand Reduction Rate); ¼ q a³ (%) PDESR (Peak Demand Energy Saving Ratio); j q ¼j Š (kwh/kw) 2010 2015, ¼ ² j 33) j, 2016 2029 ¼ 7 m 34) j º. 2030 ¼ ² 2010 2029 k j 132,060 MW a j º. ¹ j e Š q n ² Õ ¼ j e eò ¹ ¹ j Š qa³ j (9) k Ùº. 9) AES c = AEC i PR c ESR c (9) PR (Penetration Rate) c; ¹ (%) ESR (Energy Saving Rate) c; ¹ j Š a³ (%) i; ¹ 2030 5%~20% Ø 9) Õ Õ ²Õ jñ ¼k ² l j² a, 15) º² a³ a s 5% 2030 j n, e 10% aj² ä a j º. ³l z a j Š q ز í Ð m ³l a mjí j²ä ä dºj º. ô EPRI 9) j Š qa³ jì j n a,, ¹ bb5.0%, 2.5%, 2.5%, 9%, j º. j ³l j j ² ¼ qa³ 5% a j, ¼ 1 kw a qù 65 kwh Š a زä a j º. z ³l ô Š q j k a Ù Table 5 h j º. Journal of KSEE Vol.39, No.6 June, 2017

+,PSFBO4PD&OWJSPO&OH ³l d ì j Š q $0 q n 363 Table 5. "TTVNFE EBUB VTFE UP DBMDVMBUF FOFSHZ TBWJOHT JO 4NBSU &MFDUSJDJUZ 4FSWJDF 4&4 :FBS 1FOFUSBUJPOSBUFPGEJTQMBZ EFWJDFT 3FTJ EFOUJBM $PN NFSDJBM *OEVTUSJBM.BSLFUQFOFUSBUJPO PGDPNNJTTJPOJOH GPSDPNNFSDJBM TFDUPS 1FBLQPXFS EFNBOE.8ZFBS 3.5. ³l Š ³l Š ¼, Ø ² h jj º. a³j ¼ jº a j, h n a Ù ¼k Š qn a j²ä j º., e j² h Š q n s (10) Ùº. 15) AES SRE = AEG p - (AEG ph + AEG w) (10) p, ph, w; Pumped-storage, Photovoltaic, Wind power 2015, h j Š 41) j 33) j, 2016 n ² 7 m 34) j k2030, m j º. º, m Ø 10 e 2030 aj²ä a j º. ³l Š ô Š q CO 2 q j k Ù Table 6 j º. Table 6. "TTVNFE EBUB VTFE UP DBMDVMBUF FOFSHZ TBWJOHT JO 4NBSU 3FOFXBCMF &OFSHZ 43& BNPVOU PG FMFDUSJDJUZ HFOFSBUFE CZ 1IPUPWPMUBJD 8JOE QPXFS BOE 1VNQFE TUPSBHF TZTUFN :FBS 1IPUPWPMUBJD &MFDUSJDJUZHFOFSBUJPO (8I 8JOE QPXFS 1IPUPWPMUBJD BOEXJOEQPXFS 1VNQFE TUPSBHF 3.6. ³l ³l j Š qn ² ³l kev m mø Ò í EV ¼ j زn d ºj º. ô ²EV Ò kñ (km) ¼ ( ) k k ز Š jn Ò f kñ EV ¼ î j Š q n j º. j ²EL ³l k Å m mùä dºj a ò EL ¼ ô Š qn Ð Ò Ò j j, (11), j º. AES ST = (ECPD ave, t ECPD ave, e) ADD t SO e (11) ECPD (Energy Consumption Per Distance) ave; kñ (km) ¼ f (kwh/km) ADD (Annual Driving Distance) ave, t; f kñ (km/car) SO (Supply Outlook) e; ¼ ¼ (car) ¼jm jm 39 6m 2017 6

364 +,PSFBO4PD&OWJSPO&OH m j m t; Ò, ò e; EV, EL, ¼ Ò ² a Ò, ¼ EV j j º. j Š q j²ä Ò n Š m (7,780 kcal/l, 2,300 kcal/kwh) 31) j kñ ¼ º. º, Ò ¼ o j Š m ²o j º. ¼ ² ò, ¼ EL a j º. ò EL ~ j²ò Ò Ò ² j j²ò j j 42) n ò Š m (9,010 kcal/l, 2,300 kcal/kwh) 31) j Ò Ò jí kñ ¼ º. Ò f kñ ¼ 2014 10 e s 43,44) j 2030 j, 2030 0.15 kwh/km ä a j º. jf, 2010 2011 EV f kñ ¼ ¼j a, ² ³ l jn ² ²ä a j º. 2012 2015, EV f kñ ¼ j Š º j º. 44) 2015 l EV f kñ ¼ 0.19 kwh/km (5.17 km/kwh) 44) l EV º knev f a º. 3 m Ò } m 45) ô EV a k ² í ¼ 2 k a³jº² Ñ 2020 EV hf kñ ¼ 2015 s 2 0.1 kwh/km (10.34 km/kwh) a j º. j h s 2015 Ð s jæ j 2030 aj² ä a j º. EL 2013 j Ð 46) j f 13.48 kwh/km (0.07 km/kwh) j º. Ð ò ² ò Ò º a Ò } Ð ºÅòä dºj ò Ò f a 2.83% 50% 1.42% } زä a j º. jf, EL ò ¼ j Š n 20~30% a ¼Ø²ä 47) ² EL Š n ò º 25% ä a j, 2013 EL kñ ¼f 10.11 kwh/km (0.01 km/kwh) j º. j, Ð EL f ²ò a EV f a 3.45% k ز ä a j º. jf, f kñ ²EV EL bb Ò Table 7. "TTVNFE EBUB VTFE UP DBMDVMBUF FOFSHZ TBWJOHT JO 4NBSU 5SBOTQPSUBUJPO 45 :FBS 1BTTFOHFS DBS &OFSHZDPOTVNQUJPOGPSVOJUWFIJDMFLJMPNFUFS L8ILN &MFDUSJD WFIJDMF %JGGFSFODF %JFTFM MPDPNPUJWF &MFDUSJD MPDPNPUJWF %JGGFSFODF "OOVBMESJWJOHEJTUBODF LNDBS LNMPDPNPUJWF 1BTTFOHFS DBS %JFTFM MPDPNPUJWF 0VUMPPLPGTVQQMZ DBS MPDPNPUJWF &MFDUSJD WFIJDMF &MFDUSJD MPDPNPUJWF Journal of KSEE Vol.39, No.6 June, 2017

+,PSFBO4PD&OWJSPO&OH ³l d ì j Š q $0 q n 365 ò ¼ j Ò ò f kñ zº a j º. b ² º 48) j Ð 49) j ²È2015 n f kñ ²2010 2014 k2030 j, 2030 Ò ò bb14,663 km, 147,890 km a j º. m ² 2020 EV ¼ 20 ¼ hj jä Ùº. 50,51) ô 2015 2020 aø ²a j hù2016~ 2020 j 2020 ÙEV ¼ 9 5 ¼ j º. j 2030 m j ¼ a 78 ¼ ä a j º. 2010 2014 EL lm Ð 49) j, 2015 n ¼ 10 e m, j 2030 323¼ a j º. z j j Ð f, f kñ ¼ Table 7 p h j º. 4. 4.1. ³l 5¼ j Š q CO 2 q 4.1.1. ³l ³l j Š q CO 2 q n Fig. 2 º. Š q Ð k n ² j ¼ q jº. 2016 n a 234 GWha qù ä Ø 2030 q ² z 2022 2,051 GWh, 2030 5,264 GWh q l aj²n ¼j º. Š q CO 2 q j 2016 12 tco 2 Ø, 2022 108 tco 2, 2030 ²283 tco 2 Ø º. ²2030 ³l kq a³jco 2 5,538 tco 2 5.11% k¼j² s j ², ² j¼ ³l j q g dºùº. 4.1.2. ³l ³l j ¼j ² Š q CO 2 q Fig. 3 º. 2015 ² AMI, BEMS FEMS Ñ 10% n a j 2015 a j Š q bb 1,748, 1,260, 762 GWh 3,770 GWh Ùº. 2016 n ²È, dp AMI í aj q a³j Š Ðad í a, 2022 a bb21,099, 5,873, 3,308 GWh 30,280 GWha qù ä Ùº. j 2022 AMI 100% n BEMS FEMS aj, Š q Ða q j 2030 a j Š q bb25,757, 12,848, 7,154 GWh 45,759 GWh Ø, a Ð bb56%, 28%, 16% AMI jn aa º. ²AMI Š qa³ BEMS k1/5, FEMS k 1/2 Þ k, a, ô î Ø a, k º. CO 2 q Š q z 2015 AMI, BEMS, FEMS bb88, 64, 39 tco 2 Ø 2015 e 191 tco 2 Ø º. 2022 a jco 2 q n ²bb 1,112, 310, 174 tco 2 1,596 tco 2 ä Ùº. j2030 ² 1,383, 690 Fig. 2. "NPVOU PG FOFSHZ TBWJOHT BOE SFEVDJCMF $0 FNJTTJPO VQ UP JO 4NBSU 5SBOTNJTTJPO BOE %JTUSJCVUJPO 45% Fig. 3. "NPVOU PG FOFSHZ TBWJOHT BOE SFEVDJCMF $0 FNJTTJPO VQ UP JO 4NBSU $POTVNFS 4$ ¼jm jm 39 6m 2017 6

366 +,PSFBO4PD&OWJSPO&OH m j m, 384 tco 2 Ø e 2,457 tco 2q ¼Ùº. 4.1.3. ³l Fig. 4 ²n º. 2022 Ð a,, e jì ( ² DR) k ² Š q bb1,900, 2,609, 6,658 GWh 11,167 GWh Ùº. j2030 ²bb4,345, 4,126, 11,105 GWh jì j Š qn ² 19,576 GWh Ùº. j ì j Š qa³ Ð j Þ q jjs º ² Þ º ¼ º., 2022 ¼ q ¹ ô bb353, 292 GWh, 2030 ²429, 743 GWh a qa³jè sí º. ² jì a³jík ía j ¼ ¹ í j, j ô ¼ a5% q Ùº²a (2030 ¼ q ; 6,603 MW) Ð j ô Š q º. ³l ²2022 11,812 GWh, 2030 20,748 GWh Š a qù ä Ùº. CO 2 q n ²2015 Ð jì, ¼ q ¹ ô bb47, 14, 6 tco 2 67 tco 2 Ùº. 2022 ²jì a ô jì jn a p a j j q 589 tco 2 ¼ q ¹ jn ²bb19, 15 tco 2 e ô jì j в ajº. 2030 ² e1,114 tco 2 q n a j ä Ø, jì, ¼ q ¹ в 94%, 2% 4% bb 1,051, 23, 40 tco 2 º. Fig. 5. "NPVOU PG FOFSHZ TBWJOHT BOE SFEVDJCMF $0 FNJTTJPO VQUPJO4NBSU3FOFXBCMF&OFSHZ 43& 4.1.4. ³l Š ³l j ¼j ² Š q CO 2 q j Fig. 5 º. h aj ô 2015 n j 525 GWha qùä Ùº. n k h jí aj Þa j Š q a, 2022 13,735 GWh, 2030 30,071 GWh Ùº. jf2022 2030 Þ a Š k ز 6,868 GWh 9,474 GWh Ø º. CO 2 q Š q z 2015 27 tco 2, 2022 724 tco 2, 2030 1,615 tco 2 ä Ø, h 10:8 Ð º º. j ³l Š CO 2 q 2030 CO 2 q 29.16% ³l º Ða º. 4.1.5. ³l ³l ² n Fig. 6 º. 2015 Ð EV ¼ ² 6,000¼ Fig. 4. "NPVOU PG FOFSHZ TBWJOHT BOE SFEVDJCMF $0 FNJTTJPO VQ UP JO 4NBSU &MFDUSJDJUZ 4FSWJDF 4&4 Fig. 6. "NPVOU PG FOFSHZ TBWJOHT BOE SFEVDJCMF $0 FNJTTJPO VQ UP JO 4NBSU 5SBOTQPSUBUJPO 45 Journal of KSEE Vol.39, No.6 June, 2017

+,PSFBO4PD&OWJSPO&OH ³l d ì j Š q $0 q n 367 n a j 2.28 GWha qùä Ùº. 2016 n EV í aj 2022 ² 241 GWh, 2030 1,040 GWha qùä غ k q º. ²EV ¼ a ä 2030 n a m ¼ EV ¼ a í ajº Ð Š a qùä Ùº. EL ¼ j Š qa³ 2015 106 GWh, 2022 167 GWh, 2030 239 GWh ¾s º aj Ò k jè ² EL a Ða ± º. ³l ²2015 108 GWh, 2022 408 GWh, 2030 1,279 GWh Š q n a j ä ¼Ùº. 2015 EV EL ¼ Ú ô ¼Ø² CO 2 q bb0.1 tco 2, 5 tco 2 Ø º. 2022 Þ jco 2 q bb13 tco 2, 9 tco 2 22 tco 2 ä Ùº. j2030 ²bb 56 tco 2, 13 tco 2 Ø 69 tco 2 q ¼Ø, EV EL вbb81%, 19% EV j n a º. 4.2. ³l j n ³l 5} Þ j ¼j ² Š q CO 2 q Fig. 7 º. ³l k ز Š q 2016 7,695 GWh 2022 58,286 GWh ad í ajä Ùº. ² kî Š q 50% j² ³l jº. ô 2022 AMI Ø Š q вº q j p l aj 2030 103,121 GWh ä Ùº. s b Ð 1.5%, 8.9%, Fig. 8. #"6 HSFFOIPVTF HBTFT SFEVDUJPO PCKFDUJWFT BOE DPO USJCVUJPO PG 4NBSU (SJE UP $0 FNJTTJPO SFEVDUJPOT VQ UP 13.1% k¼j²s ³l m¼ kùº 2025 e 10% qa³j n ² ajä ¼Ùº. jf 5a CO 2 q Š q z ajº. ís Fig. 8 e a a q h¼ ³l ô q Ð BAU s h j º. 52~54) Fig. 7 z ³l k ز CO 2 q 2016 398 tco 2, 2022 3,072 tco 2, 2030 5,538 tco 2 Ùº. jf2022, 2030 a q h bb 6,800 tco 2, 3 1,500 tco 2 j ²È, 8) Ù sí bb h 45.3%, 17.6% ¼ j ä ¼Ø Ð²k ºq jº. ² e ô CO 2 Ða ³l j CO 2 q Ð ºn º. ô a ¼ m Fig. 7. 5PUBM BNPVOU PG FOFSHZ TBWJOHT BOE SFEVDJCMF $0 FNJTTJPO CZ 4NBSU (SJE BOE DPOUSJCVUJPO PG JUT GJWF TFDUPST VQ UP Fig. 9. $POUSJCVUBCMF DPNQPTJUJPO PG GJWF 4NBSU (SJE TFDUPST JOUFSNTPG$0 FNJTTJPO SFEVDUJPOT JO ¼jm jm 39 6m 2017 6

368 +,PSFBO4PD&OWJSPO&OH m j m jä j q j ²j ³l jn ²j a ä º. j hù a h q Ða ef 3,114 tco 2 j jq ha a³j ¼j Рز m º. 2030 ³l 5a b CO 2 q Ð 100% b j Ð Fig. 9 h j º. AMI BEMS, FEMS j ³l Ða 44.37% n aa º. ²l º k AMI ¼ jº ² Ñ 2022 AMI 100% jº² h ¼ j AMI EMS a, jí Ù º a k º. ô m¼ AMI j Ð EMS kùº Š q a j ä Ùº. º Š 29.16% n ah ºº º. j Š в CO 2 q l a ¼j a ²í jº. ³l ² 20% Ð jì jn añ ¼ j º. ³l n ² 5.11% n aº È ² j¼ dºø º. ³l j в 1.24% a º. ²EV ز ¼ Ða ía º. Ð a ¼ k aa CO 2 q n Ð k ² j º. j plug-in EV j kî, } n º. 2030 ³l 5a ¼ Š q Ð ¼j Fig. 10 h j º. 2016 2022 ³l j в j a Ð aj n Ð º Ð jä ¼Ùº. 2030 Ù Š q в º º Åò ä Ø 2030 ¼p Ð ajº. n h a Å ì jess k Ùº q вŠÙä ¼Ùº. ³l в º² 2016 2022 m a jº. ² AMI DR k Ø º. ³ l n к a h p aj² q в º. j2030 n q j ä Ø Ø² m Ùº. ³l ¼j q в º. ô j j jä dºùº. 5. Š q a q jja ³l Ø º. ² ³ l jº j m Ùa j ³l 5a ³l,,, Š î Ù Ð Š q CO 2 q n ¼ Ð j º. j Ð CO 2 í j j º z º. Fig. 10. 8ypƒr f tyrƒf p qqt prxfƒ @ƒti ph ƒ 1) Š k º mj ô Ð CO 2 ² aj ä Ø º. ²CO 2 º j² m aa a º. 2) 5a ³l j Š q 2016 7,695 GWh, 2022 58,286 GWh, 2030 103,121 GWh Ø, ²b Ð Š 1.5%, 8.9%, 13.1% k¼j s 2025 n 10% Ù ä Ø º. 3) زCO 2 q 2016 398 tco 2, 2022 3,072 tco 2, 2030 5,538 tco 2 ² 2022, 2030 bq h 45.3%, 17.6% Š q ²º íkañîù Ðaq Journal of KSEE Vol.39, No.6 June, 2017

+,PSFBO4PD&OWJSPO&OH ³l d ì j Š q $0 q n 369 jº. ²CO 2 q ³l j a ¼ j² m a hù a h q Ða dºùº. 4) 2030 5a b CO 2 q в ³l 44.37%, Š 29.16%, 20.12%, 5.11%, 1.24% ³l n aa ²a, ز AMI jn í Ø º., ³l jn ² jä Ø ² Š j Ð º. 5) 2030 ³l 5a ¼ Š q Ð, 2016 2022 ³l j q Ðaa º 2016 2030 Š q Ða º. ²º Ð j ³l q в k j º. jev ز ¼ a Ða q Ða a ± a j ¼ j jº. mù ³l, e k¼j²l m z ³l í Ùº a n Š m q, a q j dºùº. Acknowledgement 2017 Ð j º kùä (2017R1D1A1B030-33107). References 1. Kim, S., Chun, J. and Chun, Y., Study on the Separation of CO 2 from Flue Gas Using Polysulfone Hollow Fiber Membrane, J. Korean Soc. Environ. Eng., 36(2), 147~152 (2014). 2. Dong, J. I., Waste Eco-Energy and GHGs Reduction Technologies in the Era of Climate Change, J. Korean Soc. Environ. Eng., 30(12), 1203~1206(2008). 3. Kim, H. S., Greenhouse Gas Mitigation Policies and National Emission Targets of Korea, J. Korean Soc. Environ. Eng., 32(9), 809~817(2010). 4. Kim, J. S., Lee, K. B., Lee, I. H. and Kim, S. D., Analysis of Energy Consumption Pattern and Greenhouse Gas Emission in the Academic Facility, J. Korean Soc. Environ. Eng., 34(9), 604~612(2012). 5. Jeong, Y. J., Li, K. C., Kim, T. O. and Hwang, I. J., Estimation of Greenhouse Gas Emissions (GHG) Inventory and Reduction Plans for Low Carbon Green Campus in Daegu University, J. Korean Soc. Environ. Eng., 36(7), 506~513 (2014). 6. Joongboo Ilbo, http://www.joongboo.com/?mod=news&act= articleview&idxno=1114325, October(2016). 7. Electronic Times Internet, http://www.etnews.com/201609030-00012, September(2016). 8. Ministry of Environment, https://www.me.go.kr/home/web/ board/read.do?boardmasterid=1&boardid=534080&menuid= 286, June(2015). 9. EPRI (Electronic Power Research Institute), The Green Grid: Energy Savings and Carbon Emissions Reductions Enabled by a Smart Grid, EPRI, USA, pp. 1~11(2008). 10. PNNL (Pacific Northwest National Laboratory), The Smart Grid: An Estimation of the Energy and CO 2 Benefits, PNNL, USA, pp. 3~27(2010). 11. Digital Daily, http://ddaily.co.kr/m/m_article.html?no=58844, January(2010). 12. Sung, J. Y., An Analysis of the Smart Grid Industry Effect on Local Employment, Master Thesis, Seoul National University, pp. 6~21(2013). 13. Ministry of Trade, Industry and Energy, http://www.motie. go.kr/motie/ne/presse/press2/bbs/bbsview.do?bbs_seq_n=782 22&bbs_cd_n=81, August(2013). 14. MKE (Ministry of Knowledge Economy), Smart Grid National Roadmap, MKE, Korea, pp. 1~69(2010). 15. KEEI (Korea Energy Economics Institute), Analysis of Smart Grid Effect on Energy Saving and Green House Gas Reductions, MKE, Korea, pp. 5~6(2010). 16. KEEI (Korea Energy Economics Institute), Government's Role for Promoting Competition and Mediating Interests among Smart Grid Market Participants, MKE, Korea, pp. 5~8(2011). 17. ERIK (Electrical Industry Research Institution of Korea), Status on the Smart Grid Industry, ERIK, Korea, pp. 4~9(2013). 18. Doh, Y. M., Kim, S. J., Hoe, T. W., Park, N. S., Kim, H. H., Hong, S. K., Seo J. H. and Jeon, J. A., A Trend Analysis of Smart Grid Technology: The Convergence of Electric Power Network and IT Technologies, ETTRENDS, 24(5), 74~86(2009). 19. KSGA (Korea Smart Grid Association), Report of AMI Technology Trend in Smart Grid, KSGA, Korea, pp. 9~ 69(2012). 20. Kim, Y. K., Rue, S. M. and Kim, N. K., Smart Grid Technology Trend and Business Analysis, KIITM, 12(1), 9~17 (2014). 21. KEEI (Korea Energy Economics Institute), Plan for EMS Industry Development, KEEI, Korea, pp. 5~90(2013). 22. Kim, H. Y., Jeong, J. S., Cha, W. S., Shin, G. S. and Kim, S. T., Technical Trends of AMI and HEMS for Smart Grid Implementation, ETTRENDS, 28(2), 11~19(2013). 23. Jeong, S. J., Lee, S. H. and Kim, S. H., Effect of Smart Grid on Earth Environment and National Power Industry, ¼jm jm 39 6m 2017 6

370 +,PSFBO4PD&OWJSPO&OH m j m in Proceedings of the KIIT Summer Conference, KIIT, pp. 545~549(2014). 24. Sung, D. K., Song, N. O., Ko, K. S., Cha, J. Y., Bae, K. Y. and Jang, H. S., Convergence of Power System Technology and Information Communication Technology in Smart Grid, Commun. KIISE, 31(3), 10~21(2013). 25. Cho, H. S., Energy Management System (EMS) based on Energy Storage System (ESS), in Proceedings of the KIEE Autumn Conference, KIEE, pp. 257~259(2014). 26. Park, C. K., Choi, D. Y. and Kim, H. J., Analysis of the Impact of Smart Grids on Managing EVs Electrical Loads, J. Digital Convergence, 11(11), 767~774(2013). 27. KRRI (Korea Railroad Research Institute), Korea Rail Technology: Entry of Railway Industry into Overseas and Smart Grid, KORAIL, Korea, pp. 80~85(2010). 28. KRRI (Korea Railroad Research Institute), Korea Rail Technology: Strategies for Optimum Utilization of Electric Railway Power Energy, KORAIL, Korea, pp. 30~39(2010). 29. Korea Power Exchange, https://www.kpx.or.kr/www/contents. do?key=222. 30. Wee, J. H. and Choi, K. S., CO 2 emission and avoidance in mobile applications, Renew. Sust. Energ. Rev., 14(2), 814~ 820(2010). 31. KEEI (Korea Energy Economics Institute), Yearbook of Energy Statistics, KEEI, Korea, pp. 126~177(2015). 32. Cho, B. O., Kim, S. J. and Kim, J. S., An Analysis on Korean Nuclear Power s Contribution to the GHG Emission Reduction and the Economic Effect, Korean Soc. Environ. Eng., 19(4), 203~214(2010). 33. KEPCO (Korea Electric Power Corporation), Statistics of Electric Power in Korea, KEPCO, Korea, pp. 16~171(2016). 34. MOTIE (Ministry of Trade, Industry and Energy), The 7th Basic Plan for Long-term Electricity Supply and Demand, MOTIE, Korea, pp. 1~97(2015). 35. Korea Electronic Power Corporation, https://home.kepco.co.kr/ kepco/ke/i/htmlview/keiahp00103.do?menucd=fn01020 103. 36. MOTIE (Ministry of Trade, Industry and Energy), Direction of Supply of Smart Meter and Energy Storage System, MOTIE, Korea, pp. 1~12(2013). 37. Electronic Times Internet, http://www.etnews.com/2014120-3000300, December (2014). 38. Ministry of Trade, Industry and Energy, http://www.motie.go.kr/ motie/ne/presse/press2/bbs/bbsview.do?bbs_seq_n=158371& bbs_cd_n=81, July (2016). 39. NIPA (National IT Industry Promotion Agency), Report on the Status of EMS Instruction in 2013, NIPA, Korea, pp. 1~5(2014). 40. DigitalTimes, http://www.dt.co.kr/contents.html?article_no= 2014011502019932614005, January(2014). 41. KEA (Korea Energy Agency), New & Renewable Energy Statistics 2014, KEA, Korea, pp. 22~23(2015). 42. KORAIL (Korea Railroad), Statistical Yearbook Railroad, KORAIL, Korea, pp. 1460~1463(2009). 43. KEMCO (Korea Energy Management Corporation), 2013 Vehicle Fuel Economy and CO 2 Emissions: Data and Analysis, KEMCO, Korea, pp. 22~257(2014). 44. KEMCO (Korea Energy Management Corporation), 2015 Vehicle Fuel Economy and CO 2 Emissions: Data and Analysis, KEMCO, Korea, pp. 22~232(2015). 45. MOTIE (Ministry of Trade, Industry and Energy), The 3rd Eco-friendly Vehicle Development and Supply Plan, Korea, pp. 6~15(2015). 46. KRRI (Korea Railroad Research Institute), Calculation of Standard Fuel Consumption via Analysis of Major Railway Parts, KORAIL, Korea, pp. 128~132(2013). 47. Newsprime, http://www.newsprime.co.kr/news/article.html? no=63852, September(2008). 48. Korea Transportation Safety Authority, http://www.ts2020.kr/ ind/prt/inqdetnannewsdata.do?bbscd=203&bbssn=8161, December(2015). 49. KORAIL (Korea Railroad), Statistical Yearbook of Railroad, KORAIL, Korea, pp. 10~1082(2015). 50. Ministry of Trade, Industry and Energy, http://www.me.go.kr/ home/web/board/read.do?boardmasterid=1&boardid=483180 &menuid=286, February(2015). 51. Ministry of Trade, Industry and Energy, http://www.me.go.kr/ home/web/board/read.do?boardmasterid=1&boardid=601900 &menuid=286, January(2016). 52. Greenhouse Gas Inventory and Research Center, https://www. gir.go.kr/home/board/read.do?pageroffset=0&maxpageitems =10&maxIndexPages=10&searchKey=&searchValue=&menu Id=36&boardId=33&boardMasterId=2&boardCategoryId=, December (2015). 53. Korea Government Interagency, GHG Emission Reduction Goals, Korea, pp. 25(2014). 54. NABO (National Assembly Budget Office), Nation's GHG Reduction Target Evaluation for Post-2020 and Analysis of Measures to Secure Overseas Emission Rights), NABO, Korea, p. 66(2016). Journal of KSEE Vol.39, No.6 June, 2017