+,PSFBO4PD&OWJSPO&OH _ Original Paper IUUQTEPJPSH,4&& *44/F*44/ u ( m ) js å f CO 2 f w} Analysis of Energy Savings and CO 2 Emission Reductions via Application of Smart Grid System m j m Soo-Hwan Park Sang-Jun Han Jung-Ho Wee dj s vw}s} Department of Environmental Engineering, The Catholic University of Korea (Received January 25, 2017; Revised March 8, 2017; Accepted April 11, 2017) Abstract : The energy savings and CO 2 emission reductions obtainable from the situation that the Smart Grid system (SGs) is assumed to be applied in Korea up to 2030 is quantitatively analyzed with many reported data. For calculation, SGs is divided into five sectors such as Smart Transmission and Distribution (ST&D), Smart Consumer (SC), Smart Electricity Service (SES), Smart Renewable Energy (SRE) and Smart Transportation (ST). Total annual energy savings in 2030 is estimated to be approximately 103,121 GWh and this is 13.1% of total electricity consumption outlook. Based on this value, total amount of reducible CO 2 emissions is calculated to 55.38 million tco 2, which is 17.6% of total nation's GHG reduction target. Although the contribution of energy saving due to SGs to total electricity consumption increases as years go by, that of CO 2 emission reduction gradually decreases. This might be because that coal fired based power generation is planned to be sharply increased and the rate of CO 2 emission reduction scheduled by nation is very fast. The contributable portion of five each sector to total CO 2 emission reductions in 2030 is estimated to be 44.37% for SC, 29.16% for SRE, 20.12% for SES, 5.11% for ST&D, and 1.24% for ST. Key Words : Smart Grid, Carbon Dioxide Emission Reductions, Energy Savings, Greenhouse Gas Reduction Target, Power Generation. ² m Ùa j ³l ³l,,, Š î 5a Ù 2030 Ð Š q CO 2 q n ¼ Ð, j º. 2030 ³l ô Š q 103,121 GWh Ø ²¼k 13.1% 2025 n 10% Ùä Ø º. ¼ Ù2030 CO 2 q 5,538 tco 2 Ø ²¼k a q h 3 1,500 tco 2 17.6% k¼j²s º. jco 2 q Š q ²º íkañîù q ¼j q j² È ²kn a ¼ j² m a a h q Ða í Ø dºùº. 2030 5a b Š q CO 2 q ³l 44.37%, Š 29.16%, 20.12%, 5.11%, 1.24% Ø e ô ¼ Š q в ³l aa Š º. q в k j, Ò ¼ a q Ðaa ± ¼j¼ j jä dºùº.. ³l, m q, Š q, a q h, 1. m m (CO 2) î a q j ² в î j º. 1,2) ô 1992 n ml Ù n2015 d n ml ² a q jl } îº j º. 3~5) a q a Å1997 º d l ²¼ Þa a q h j kk j²j a º. 6) d p, 2016 9 ¼ a d n ml j d l ² a jò Ø a Ò k j² m Ø º. 7) Ð2016 11 4 l n m m l Ò Ø l a q Ò j í Ø º. ²d ¼ m Þ 2015 6 2030 (BAU; 8 5,060 tco 2) ¼ 37% 3 1,500 tco 2 q m j º. ² n î e j 2020 BAU ¼ 30% Å q h º vmù ä º. 8) z a q hº kº j í, kø ²È,,, a, Õ, Corresponding author E-mail: jhwee@catholic.ac.kr Tel: 02-2164-4866 Fax: 02-2164-4765
+,PSFBO4PD&OWJSPO&OH ³l d ì j Š q $0 q n 357 Š Ò Ø Š n k ô Š q Å a q n ¼j ² ³l ( d ì) m ma Ø º. (Electric Power Research Institute, EPRI) 2008 ô ³ l m k2030 ¼203,000 GWh Š a qø, a 2 1,100 tco 2 q a³j ä j º. 9) Ð 2010 f (Pacific Northwest National Laboratory) ² Å mù k 2030 1,322,000 GWh Š q 5 900 tco 2 q n a jä j º. 10) ³l m mî a º m ² aj jº. ² m 1 (2009 2 ) aº ³l hj º. 11) jg8 m¼ m a ³l Ð Ø (2009 7 ), ¼ Ð º (2009 12 ), 2013 5 Ø k153} á j 9 } È j²î ÑÞ º. 12,13) ² 2010 ³l a ì j 2030 3º Ù 5¼ k 27.5 j ³l ¼j m j º. ì ô ³l ô 2030 2 3 a q n a j ä Ø º. 14) ì ² ¼n k ô Å mj ¼n ² Ø º. j ³l, Š EPRI ¼ j ³l Š q a q n ¼j a j, 15) m Õ p Ø º dºùº. mù ³l, e k¼j²l m ³l j m Š n p j² ² Š q a q j ² j w²º. ô ² hù a j ³l 5a ô Š q CO 2 q n 2030 j, ¼ ³l a q Ð j º. j e Š j ô Ð CO 2 í j s CO 2 q n j²è j º. ô k ³l ¼j a n Š m a q j²è Ð Ø j º. 2. ³l } 2.1. ³l d ³l ¼j ² a º a ²È, ² a ì ô j a k e mj Š n mj² ¼ jº. 14) ³l ² º a d º., e k a³ j ¼j í a³jíjº. 15) j, ³l mù¼ Š î j aa³j ³mÙ j a (Self-healing) î k º h j m j Š n ¼ º. 16) ô j ³l,, Õ, a,, Š, Ò (Electric Vehicle, EV) (Electric Locomotive, EL) îº j Ø Ú n ¼mj º. ô ² ³l Ù j í ³l (Smart Transmission and Distribution, ST&D), ³l (Smart Consumer, SC), ³l (Smart Electricity Service, SES), ³l Š (Smart Renewable Energy, SRE) ³l (Smart Transportation, ST) î 5¼ mj b Ù í ³l º kj º. 14) ² 5¼ ³l d ¼h ² ³ l Fig. 1 h j º. Fig. 1. 6 yhp q Rxfƒ @ƒti fyi t qt p ph ƒ it tipi q ƒ hfwh wf t y ¼jm jm 39 6m 2017 6
358 +,PSFBO4PD&OWJSPO&OH m j m 2.2. ³l 5¼ 2.2.1. ³l ; ² j Ò î k } j Š n k Ùä ¼Ùº., ì² º Ø k aq Ù º. 14,15) ² ³l j j, q j ³l CO 2 q Š qn a jº. 2.2.2. ³l n ² a,, b a j² j j a ³jíj² k d ká i (Advanced Metering Infrastructure, AMI) Š (Energy Management System, EMS) k lùº. AMI² ³l l k, j² Š, j² º. 17), AMI² m j² d a j, e, º j a j² Š h (In- Home Display, IHD) Ø, 18,19) k Š º. 20) EMS²¼, bº j d, î, hí Š } Ò j j² j kjº. 21,22) j, IHD j í j²è jems²a Š (Home EMS, HEMS), ô Š (Building EMS, BEMS), Š (Factory EMS, FEMS) ka, ô, î Õ Š j Š q a³ jº. 17) 2.2.3. ³l ² (Demand Response, DR), e Ñ î gjj jº j h Ð k Š q a³jº. 14) DR e k a Š j² n Ðj º. k ¼ e Ø a aòjñ jj a º. 23) ² e k k Ù AMI j º. ô ³l a mj q j ² j j j a j º. ³l k ¼ q a jq ô Š qn Ð n gjj º. j ³l ² Õ ô Õ, Ø á j mj² ¹ n aj º. 15) j ² Õ ¹ k Õ Ø² Š mj Š n ä dºø j ³l k ¹ ¼j aj n a ¼Ù ä ¼Ø º. 2.2.4. ³l Š ² Š gjjh,, j î Š ³l j Ð l ² l j j el a º j º. k mù Õ 14,18) a Ð j ² Š i mn Ð ¼j º. 15,17) j Š z m¼ú ô Ð Ø j ² ì a³j º n a³j j m î k Š q a³jº. 24,25) 2.2.5. ³l ² k j ²j Ò (Plug-in Hybrid Electric Vehicle, PHEV) ²EV ³l j EV m¼ø ô q n a º. 15,17), z j EV j Ò j j Š j e¼ kj²d k n a jº. ² EVa k j a³j k a q Ø j² CO 2 mj º. 17,26) ³l ²EV ÐEL ³l j º. b Ð Ð Þgjj Ð j (j ) d 1% j Ð j ³l AMI, EMS, Š, EV î Ø } Ø ² m º. 27) EV z Ð Ð ³l k Š n k j º. j k, ESS k ke mø ¼ j² Ð Š q j º. 28) ô ² Ð ³ l j Š qn aj º. Journal of KSEE Vol.39, No.6 June, 2017
+,PSFBO4PD&OWJSPO&OH ³l d ì j Š q $0 q n 359 3. a ² ³l j Š q CO 2 q n j k j ³l 5¼ } kj º. b j j j EPRI ³l n ¼j j a j º. 9) ³l jco 2 q n ²b Ù e Š q º í j Ð CO 2 í j j º. 3.1. CO 2 ³l ô Ð Š q CO 2 q n j e Š j CO 2 Ð jä d ºØ Ð ô mj² CO 2 s } kj s j º. j Ñ ô 2010, 2011 f CO 2 ²bb0.461, 0.450 tco 2/MWh º. 29) ز a ¼ CO 2 ² q j a ²f ¼ Ù, ² (1) z b Š f e ¼ b Š Ù e (MWh) jn í j j º. 30) CEC ave = Σ{CEC i (AEG i / AEG tot)} (1) CEC(Carbon Emission Coefficient) i; Š f CO 2 (kgco 2/kWh) CEC(Carbon Emission Coefficient) ave; f CO 2 (tco 2/MWh) AEG(Annual Electricity Generation) tot: e (GWh) AEG(Annual Electricity Generation) i: Š e (GWh) i: Hydro, Coal, Petroleum, Natural Gas (NG), Nuclear, Alternative energy 2010 2015 Š e Š j, 31) 2016 n Š 10 e 2030 m j 2030 804,123 GWh ä Ø í Table 1 s j j º. Table 1.,PSFBrT BOOVBM FMFDUSJDJUZ HFOFSBUJPO BDDPSEJOH UP FOFSHZ TPVSDF BOE OBUJPOrT $0 FNJTTJPO DPFGGJDJFOU IJTUPSJDBM FTUJNBUFE WBMVFT :FBS &MFDUSJDJUZHFOFSBUJPO (8I )ZESP $PBM 1FUSPMFVN /( B /VDMFBS "MUFSOBUJWF FOFSHZ 5PUBM /BUJPOrT$0 FNJTTJPODPFGGJDJFOU U$0.8I B *ODMVEFTEJTUSJDUFOFSHZ ¼jm jm 39 6m 2017 6
360 +,PSFBO4PD&OWJSPO&OH m j m Table 2. *OEJWJEVBM $0 FNJTTJPO DPFGGJDJFOU BDDPSEJOH UP FOFSHZ TPVSDF $0 FNJTTJPODPFGGJDJFOU LH$0 L8I )ZESP $PBM 1FUSPMFVN /( /VDMFBS "MUFSOBUJWF FOFSHZ,&1$0 *"&" "WFSBHF j IAEA Š CO 2 Table 2 º. 30) j CO 2 ² j j Õ, f d Ø IAEA ² s Ùä, 32) ²Þ f s j º. j j Ø ¼ Š ¼j CO 2 ² 0 a j f s j º. z Ù Š CO 2 ² a j 2016 n CO 2 j j j º. 3.2. ³l ³l j Š qn ² n q ô jn j j º., n e º (2) (3) h j º. ANEG b = AEC / (1-TDLF b) (2) ANEG a = AEC / (1-TDLF a) (3) ANEG(Annual Net Electricity Generation)b, a; n e º (GWh) AEC(Annual Electricity Consumption); e (GWh) TDLF(Transmission & Distribution Loss Factor) b, a; n (%) Þ qa³j e º q (4) j ³l ô e º q (5) h j º. 15) ANEGS = ANEG b ANEG a (4) AGEGS = ANEGS / (1-AUF) (5) ANEGS(Annual Net Electricity Generation Savings); e º q (GWh) AGEGS(Annual gross Electricity Generation Savings); e º q (GWh) AUF(Auxiliary Use Factor); (%) 2010 2015, b Ù e, j j, 33) 2016 2029 7 m j º. 34) 2030 2010 2029 k j 787,700 GWh a j º. 10 e j j, k q j ³l j Ð2014 3.69%, 2015 3.6% l º. 33,35) ²2014, i,, bb5.0%, 7.4%, 6.6%, 8.5% ä j Ð º. 35) ô l s3.6% ³l s a j 2030 Ð Ò jí j º., ³ l n ³l ì Ù, 14) 2020 3.4%, 2030 3.0% hs j n2016 Ðs jæ j 2030 q j²ä a j º. 2010 2015 ² ³l j } a n a Åä a j º. Table 3. "TTVNFE EBUB VTFE UP DBMDVMBUF FOFSHZ TBWJOHT JO 4NBSU 5SBOTNJTTJPO BOE %JTUSJCVUJPO 45% :FBS &MFDUSJDJUZ DPOTVNQUJPO (8I 5SBEJ UJPOBM 5%MPTTGBDUPS 4NBSU HSJE %JGGFSFODF "VYJMJBSZVTF GBDUPSJOQPXFS QMBOU Journal of KSEE Vol.39, No.6 June, 2017
+,PSFBO4PD&OWJSPO&OH ³l d ì j Š q $0 q n 361 j Ù j 33) 2005 º ² Ù j s j2006 n, Ð jj j²ä a Ø º. º ² Š qn jíj j º. 2006 2015 s 33) j 2030 s, 2030 3.97% ä a j º. z ³l ô Š q CO2 q ka Ù Table 3 p h j º. 3.3. ³l ³l ²AMI, BEMS, FEMS k Š qn a º j º. HEMS gjj ²EMS k ¼l ô, í BEMS, FEMS l Ø, ¼ HEMS j º. 21) m ddz ºÑ l HEMS n AMI j Š qn HEMS n a ± Рغ dºk º. ³l j e Š qn ²a, e bami, BEMS FEMS j Š qa³ e b j ä (6) z Ùº. ô h j m 2194m( 69%) a j º. AMI( ² d )²2010 50 ma Ù n2012 79.5 m, 2013 200 ma Ù a k h кj kº. 37) ³l ¼j º ¼ÞØ 2022 AMI jº² a hø º. 38) ô ² d lm h j ÙAMI, j j º. BEMS FEMS 2011 a IT ESCO kems kk 21) 2012 s 0 a j 2013 j º. 2013 Ð p hj 39) j BEMS FEMS bb 2.97%, 1.93% j º. j 40) ô BEMS 2013 494 2017 2,184, 2020 3,790 Ø, FEMS 2013 2,096 2017 6,351, 2020 1 1,152 Ùº²ä Ñ 2014 n j aj²ä a j º. z j j Ð b Ð j Table 4 j º. Table 4. "TTVNFE EBUB VTFE UP DBMDVMBUF FOFSHZ TBWJOHT JO 4NBSU $POTVNFS 4$ :FBS &MFDUSJDJUZDPOTVNQUJPO (8I 1FOFUSBUJPOSBUF 3FTJ $PN *OEVTUSJBM 5PUBM ".* #&.4 '&.4 EFOUJBM NFSDJBM B AESSC = AECi PRt ESRt (6) AESSC(Annual Energy Savings); e Š q (GWh) PR(Penetration Rate)t; (%) ESR(Energy Saving Rate)t; Š qa³ (%) i; a + +,, t; AMI, BEMS, FEMS EPRIa ³l j Š q n j k j 9) j ä º. AMI Ù a,, Þjjä s j j 33) Ù jj º. jf, BEMS FEMS² bb j º. AMI jn k hù d ( d ) j º. ²j 2,194 m dd745 m, ô300 m 3,200 m Ø, j Ð 2010 d Ø º. 36) B &MFDUSJDJUZ DPOTVNQUJPO PG DPNNFSDJBM JODMVEFT UIBU PG QVCMJD TFSWJDFBOEFEVDBUJPOBMQBSUT ¼jm jm 39 6m 2017 6
362 +,PSFBO4PD&OWJSPO&OH m j m ³l AMI, BEMS, FEMS bb Š qa³ Ð m j²ä ä dºø Ò jä a j º., 36) j AMI k 3.7%, BEMS FEMS Š 21) j bb15.5%, 7.2% j º. 3.4. ³l ³l ² ³l j DR e jì k j, ² j ² mj n a j² ä j º., DR AMI Ø j j²è, d k Ù n d a IHD k d } ³l ²º e k Š qn a j²ä a j º. k ² ³l j a, e jì j Š qa³ e jì a³jík jä Š q (7) h j º. 9) AES DR = AEC i PR i ESR i (7) PR (Penetration Rate) i; Ð jì (%) ESR (Energy Saving Rate) i; Ð jì j Š a³ (%) i; a,, Ù jì a³jí k ² ²EPRI 9) j²2030 IT q j a j º., EPRI j ² ²Å º dºj 2022 AMI h 100% a jä ¼ 2022 a,, b Ð h bb50%, 75%, 75% lù ä j º. j2030 100% hs jn, 2022 Ð n ² AMI Ò j aj² ä a j º. ¼ q j² e Š qn ² e Ù 34) e ¼ q a³ ô Š j j, (8) º. 9) AES peak demand = PD PDRP PDESR 1000 (8) PD (Peak Demand); ¼ (MW) PDRR (Peak Demand Reduction Rate); ¼ q a³ (%) PDESR (Peak Demand Energy Saving Ratio); j q ¼j Š (kwh/kw) 2010 2015, ¼ ² j 33) j, 2016 2029 ¼ 7 m 34) j º. 2030 ¼ ² 2010 2029 k j 132,060 MW a j º. ¹ j e Š q n ² Õ ¼ j e eò ¹ ¹ j Š qa³ j (9) k Ùº. 9) AES c = AEC i PR c ESR c (9) PR (Penetration Rate) c; ¹ (%) ESR (Energy Saving Rate) c; ¹ j Š a³ (%) i; ¹ 2030 5%~20% Ø 9) Õ Õ ²Õ jñ ¼k ² l j² a, 15) º² a³ a s 5% 2030 j n, e 10% aj² ä a j º. ³l z a j Š q ز í Ð m ³l a mjí j²ä ä dºj º. ô EPRI 9) j Š qa³ jì j n a,, ¹ bb5.0%, 2.5%, 2.5%, 9%, j º. j ³l j j ² ¼ qa³ 5% a j, ¼ 1 kw a qù 65 kwh Š a زä a j º. z ³l ô Š q j k a Ù Table 5 h j º. Journal of KSEE Vol.39, No.6 June, 2017
+,PSFBO4PD&OWJSPO&OH ³l d ì j Š q $0 q n 363 Table 5. "TTVNFE EBUB VTFE UP DBMDVMBUF FOFSHZ TBWJOHT JO 4NBSU &MFDUSJDJUZ 4FSWJDF 4&4 :FBS 1FOFUSBUJPOSBUFPGEJTQMBZ EFWJDFT 3FTJ EFOUJBM $PN NFSDJBM *OEVTUSJBM.BSLFUQFOFUSBUJPO PGDPNNJTTJPOJOH GPSDPNNFSDJBM TFDUPS 1FBLQPXFS EFNBOE.8ZFBS 3.5. ³l Š ³l Š ¼, Ø ² h jj º. a³j ¼ jº a j, h n a Ù ¼k Š qn a j²ä j º., e j² h Š q n s (10) Ùº. 15) AES SRE = AEG p - (AEG ph + AEG w) (10) p, ph, w; Pumped-storage, Photovoltaic, Wind power 2015, h j Š 41) j 33) j, 2016 n ² 7 m 34) j k2030, m j º. º, m Ø 10 e 2030 aj²ä a j º. ³l Š ô Š q CO 2 q j k Ù Table 6 j º. Table 6. "TTVNFE EBUB VTFE UP DBMDVMBUF FOFSHZ TBWJOHT JO 4NBSU 3FOFXBCMF &OFSHZ 43& BNPVOU PG FMFDUSJDJUZ HFOFSBUFE CZ 1IPUPWPMUBJD 8JOE QPXFS BOE 1VNQFE TUPSBHF TZTUFN :FBS 1IPUPWPMUBJD &MFDUSJDJUZHFOFSBUJPO (8I 8JOE QPXFS 1IPUPWPMUBJD BOEXJOEQPXFS 1VNQFE TUPSBHF 3.6. ³l ³l j Š qn ² ³l kev m mø Ò í EV ¼ j زn d ºj º. ô ²EV Ò kñ (km) ¼ ( ) k k ز Š jn Ò f kñ EV ¼ î j Š q n j º. j ²EL ³l k Å m mùä dºj a ò EL ¼ ô Š qn Ð Ò Ò j j, (11), j º. AES ST = (ECPD ave, t ECPD ave, e) ADD t SO e (11) ECPD (Energy Consumption Per Distance) ave; kñ (km) ¼ f (kwh/km) ADD (Annual Driving Distance) ave, t; f kñ (km/car) SO (Supply Outlook) e; ¼ ¼ (car) ¼jm jm 39 6m 2017 6
364 +,PSFBO4PD&OWJSPO&OH m j m t; Ò, ò e; EV, EL, ¼ Ò ² a Ò, ¼ EV j j º. j Š q j²ä Ò n Š m (7,780 kcal/l, 2,300 kcal/kwh) 31) j kñ ¼ º. º, Ò ¼ o j Š m ²o j º. ¼ ² ò, ¼ EL a j º. ò EL ~ j²ò Ò Ò ² j j²ò j j 42) n ò Š m (9,010 kcal/l, 2,300 kcal/kwh) 31) j Ò Ò jí kñ ¼ º. Ò f kñ ¼ 2014 10 e s 43,44) j 2030 j, 2030 0.15 kwh/km ä a j º. jf, 2010 2011 EV f kñ ¼ ¼j a, ² ³ l jn ² ²ä a j º. 2012 2015, EV f kñ ¼ j Š º j º. 44) 2015 l EV f kñ ¼ 0.19 kwh/km (5.17 km/kwh) 44) l EV º knev f a º. 3 m Ò } m 45) ô EV a k ² í ¼ 2 k a³jº² Ñ 2020 EV hf kñ ¼ 2015 s 2 0.1 kwh/km (10.34 km/kwh) a j º. j h s 2015 Ð s jæ j 2030 aj² ä a j º. EL 2013 j Ð 46) j f 13.48 kwh/km (0.07 km/kwh) j º. Ð ò ² ò Ò º a Ò } Ð ºÅòä dºj ò Ò f a 2.83% 50% 1.42% } زä a j º. jf, EL ò ¼ j Š n 20~30% a ¼Ø²ä 47) ² EL Š n ò º 25% ä a j, 2013 EL kñ ¼f 10.11 kwh/km (0.01 km/kwh) j º. j, Ð EL f ²ò a EV f a 3.45% k ز ä a j º. jf, f kñ ²EV EL bb Ò Table 7. "TTVNFE EBUB VTFE UP DBMDVMBUF FOFSHZ TBWJOHT JO 4NBSU 5SBOTQPSUBUJPO 45 :FBS 1BTTFOHFS DBS &OFSHZDPOTVNQUJPOGPSVOJUWFIJDMFLJMPNFUFS L8ILN &MFDUSJD WFIJDMF %JGGFSFODF %JFTFM MPDPNPUJWF &MFDUSJD MPDPNPUJWF %JGGFSFODF "OOVBMESJWJOHEJTUBODF LNDBS LNMPDPNPUJWF 1BTTFOHFS DBS %JFTFM MPDPNPUJWF 0VUMPPLPGTVQQMZ DBS MPDPNPUJWF &MFDUSJD WFIJDMF &MFDUSJD MPDPNPUJWF Journal of KSEE Vol.39, No.6 June, 2017
+,PSFBO4PD&OWJSPO&OH ³l d ì j Š q $0 q n 365 ò ¼ j Ò ò f kñ zº a j º. b ² º 48) j Ð 49) j ²È2015 n f kñ ²2010 2014 k2030 j, 2030 Ò ò bb14,663 km, 147,890 km a j º. m ² 2020 EV ¼ 20 ¼ hj jä Ùº. 50,51) ô 2015 2020 aø ²a j hù2016~ 2020 j 2020 ÙEV ¼ 9 5 ¼ j º. j 2030 m j ¼ a 78 ¼ ä a j º. 2010 2014 EL lm Ð 49) j, 2015 n ¼ 10 e m, j 2030 323¼ a j º. z j j Ð f, f kñ ¼ Table 7 p h j º. 4. 4.1. ³l 5¼ j Š q CO 2 q 4.1.1. ³l ³l j Š q CO 2 q n Fig. 2 º. Š q Ð k n ² j ¼ q jº. 2016 n a 234 GWha qù ä Ø 2030 q ² z 2022 2,051 GWh, 2030 5,264 GWh q l aj²n ¼j º. Š q CO 2 q j 2016 12 tco 2 Ø, 2022 108 tco 2, 2030 ²283 tco 2 Ø º. ²2030 ³l kq a³jco 2 5,538 tco 2 5.11% k¼j² s j ², ² j¼ ³l j q g dºùº. 4.1.2. ³l ³l j ¼j ² Š q CO 2 q Fig. 3 º. 2015 ² AMI, BEMS FEMS Ñ 10% n a j 2015 a j Š q bb 1,748, 1,260, 762 GWh 3,770 GWh Ùº. 2016 n ²È, dp AMI í aj q a³j Š Ðad í a, 2022 a bb21,099, 5,873, 3,308 GWh 30,280 GWha qù ä Ùº. j 2022 AMI 100% n BEMS FEMS aj, Š q Ða q j 2030 a j Š q bb25,757, 12,848, 7,154 GWh 45,759 GWh Ø, a Ð bb56%, 28%, 16% AMI jn aa º. ²AMI Š qa³ BEMS k1/5, FEMS k 1/2 Þ k, a, ô î Ø a, k º. CO 2 q Š q z 2015 AMI, BEMS, FEMS bb88, 64, 39 tco 2 Ø 2015 e 191 tco 2 Ø º. 2022 a jco 2 q n ²bb 1,112, 310, 174 tco 2 1,596 tco 2 ä Ùº. j2030 ² 1,383, 690 Fig. 2. "NPVOU PG FOFSHZ TBWJOHT BOE SFEVDJCMF $0 FNJTTJPO VQ UP JO 4NBSU 5SBOTNJTTJPO BOE %JTUSJCVUJPO 45% Fig. 3. "NPVOU PG FOFSHZ TBWJOHT BOE SFEVDJCMF $0 FNJTTJPO VQ UP JO 4NBSU $POTVNFS 4$ ¼jm jm 39 6m 2017 6
366 +,PSFBO4PD&OWJSPO&OH m j m, 384 tco 2 Ø e 2,457 tco 2q ¼Ùº. 4.1.3. ³l Fig. 4 ²n º. 2022 Ð a,, e jì ( ² DR) k ² Š q bb1,900, 2,609, 6,658 GWh 11,167 GWh Ùº. j2030 ²bb4,345, 4,126, 11,105 GWh jì j Š qn ² 19,576 GWh Ùº. j ì j Š qa³ Ð j Þ q jjs º ² Þ º ¼ º., 2022 ¼ q ¹ ô bb353, 292 GWh, 2030 ²429, 743 GWh a qa³jè sí º. ² jì a³jík ía j ¼ ¹ í j, j ô ¼ a5% q Ùº²a (2030 ¼ q ; 6,603 MW) Ð j ô Š q º. ³l ²2022 11,812 GWh, 2030 20,748 GWh Š a qù ä Ùº. CO 2 q n ²2015 Ð jì, ¼ q ¹ ô bb47, 14, 6 tco 2 67 tco 2 Ùº. 2022 ²jì a ô jì jn a p a j j q 589 tco 2 ¼ q ¹ jn ²bb19, 15 tco 2 e ô jì j в ajº. 2030 ² e1,114 tco 2 q n a j ä Ø, jì, ¼ q ¹ в 94%, 2% 4% bb 1,051, 23, 40 tco 2 º. Fig. 5. "NPVOU PG FOFSHZ TBWJOHT BOE SFEVDJCMF $0 FNJTTJPO VQUPJO4NBSU3FOFXBCMF&OFSHZ 43& 4.1.4. ³l Š ³l j ¼j ² Š q CO 2 q j Fig. 5 º. h aj ô 2015 n j 525 GWha qùä Ùº. n k h jí aj Þa j Š q a, 2022 13,735 GWh, 2030 30,071 GWh Ùº. jf2022 2030 Þ a Š k ز 6,868 GWh 9,474 GWh Ø º. CO 2 q Š q z 2015 27 tco 2, 2022 724 tco 2, 2030 1,615 tco 2 ä Ø, h 10:8 Ð º º. j ³l Š CO 2 q 2030 CO 2 q 29.16% ³l º Ða º. 4.1.5. ³l ³l ² n Fig. 6 º. 2015 Ð EV ¼ ² 6,000¼ Fig. 4. "NPVOU PG FOFSHZ TBWJOHT BOE SFEVDJCMF $0 FNJTTJPO VQ UP JO 4NBSU &MFDUSJDJUZ 4FSWJDF 4&4 Fig. 6. "NPVOU PG FOFSHZ TBWJOHT BOE SFEVDJCMF $0 FNJTTJPO VQ UP JO 4NBSU 5SBOTQPSUBUJPO 45 Journal of KSEE Vol.39, No.6 June, 2017
+,PSFBO4PD&OWJSPO&OH ³l d ì j Š q $0 q n 367 n a j 2.28 GWha qùä Ùº. 2016 n EV í aj 2022 ² 241 GWh, 2030 1,040 GWha qùä غ k q º. ²EV ¼ a ä 2030 n a m ¼ EV ¼ a í ajº Ð Š a qùä Ùº. EL ¼ j Š qa³ 2015 106 GWh, 2022 167 GWh, 2030 239 GWh ¾s º aj Ò k jè ² EL a Ða ± º. ³l ²2015 108 GWh, 2022 408 GWh, 2030 1,279 GWh Š q n a j ä ¼Ùº. 2015 EV EL ¼ Ú ô ¼Ø² CO 2 q bb0.1 tco 2, 5 tco 2 Ø º. 2022 Þ jco 2 q bb13 tco 2, 9 tco 2 22 tco 2 ä Ùº. j2030 ²bb 56 tco 2, 13 tco 2 Ø 69 tco 2 q ¼Ø, EV EL вbb81%, 19% EV j n a º. 4.2. ³l j n ³l 5} Þ j ¼j ² Š q CO 2 q Fig. 7 º. ³l k ز Š q 2016 7,695 GWh 2022 58,286 GWh ad í ajä Ùº. ² kî Š q 50% j² ³l jº. ô 2022 AMI Ø Š q вº q j p l aj 2030 103,121 GWh ä Ùº. s b Ð 1.5%, 8.9%, Fig. 8. #"6 HSFFOIPVTF HBTFT SFEVDUJPO PCKFDUJWFT BOE DPO USJCVUJPO PG 4NBSU (SJE UP $0 FNJTTJPO SFEVDUJPOT VQ UP 13.1% k¼j²s ³l m¼ kùº 2025 e 10% qa³j n ² ajä ¼Ùº. jf 5a CO 2 q Š q z ajº. ís Fig. 8 e a a q h¼ ³l ô q Ð BAU s h j º. 52~54) Fig. 7 z ³l k ز CO 2 q 2016 398 tco 2, 2022 3,072 tco 2, 2030 5,538 tco 2 Ùº. jf2022, 2030 a q h bb 6,800 tco 2, 3 1,500 tco 2 j ²È, 8) Ù sí bb h 45.3%, 17.6% ¼ j ä ¼Ø Ð²k ºq jº. ² e ô CO 2 Ða ³l j CO 2 q Ð ºn º. ô a ¼ m Fig. 7. 5PUBM BNPVOU PG FOFSHZ TBWJOHT BOE SFEVDJCMF $0 FNJTTJPO CZ 4NBSU (SJE BOE DPOUSJCVUJPO PG JUT GJWF TFDUPST VQ UP Fig. 9. $POUSJCVUBCMF DPNQPTJUJPO PG GJWF 4NBSU (SJE TFDUPST JOUFSNTPG$0 FNJTTJPO SFEVDUJPOT JO ¼jm jm 39 6m 2017 6
368 +,PSFBO4PD&OWJSPO&OH m j m jä j q j ²j ³l jn ²j a ä º. j hù a h q Ða ef 3,114 tco 2 j jq ha a³j ¼j Рز m º. 2030 ³l 5a b CO 2 q Ð 100% b j Ð Fig. 9 h j º. AMI BEMS, FEMS j ³l Ða 44.37% n aa º. ²l º k AMI ¼ jº ² Ñ 2022 AMI 100% jº² h ¼ j AMI EMS a, jí Ù º a k º. ô m¼ AMI j Ð EMS kùº Š q a j ä Ùº. º Š 29.16% n ah ºº º. j Š в CO 2 q l a ¼j a ²í jº. ³l ² 20% Ð jì jn añ ¼ j º. ³l n ² 5.11% n aº È ² j¼ dºø º. ³l j в 1.24% a º. ²EV ز ¼ Ða ía º. Ð a ¼ k aa CO 2 q n Ð k ² j º. j plug-in EV j kî, } n º. 2030 ³l 5a ¼ Š q Ð ¼j Fig. 10 h j º. 2016 2022 ³l j в j a Ð aj n Ð º Ð jä ¼Ùº. 2030 Ù Š q в º º Åò ä Ø 2030 ¼p Ð ajº. n h a Å ì jess k Ùº q вŠÙä ¼Ùº. ³l в º² 2016 2022 m a jº. ² AMI DR k Ø º. ³ l n к a h p aj² q в º. j2030 n q j ä Ø Ø² m Ùº. ³l ¼j q в º. ô j j jä dºùº. 5. Š q a q jja ³l Ø º. ² ³ l jº j m Ùa j ³l 5a ³l,,, Š î Ù Ð Š q CO 2 q n ¼ Ð j º. j Ð CO 2 í j j º z º. Fig. 10. 8ypƒr f tyrƒf p qqt prxfƒ @ƒti ph ƒ 1) Š k º mj ô Ð CO 2 ² aj ä Ø º. ²CO 2 º j² m aa a º. 2) 5a ³l j Š q 2016 7,695 GWh, 2022 58,286 GWh, 2030 103,121 GWh Ø, ²b Ð Š 1.5%, 8.9%, 13.1% k¼j s 2025 n 10% Ù ä Ø º. 3) زCO 2 q 2016 398 tco 2, 2022 3,072 tco 2, 2030 5,538 tco 2 ² 2022, 2030 bq h 45.3%, 17.6% Š q ²º íkañîù Ðaq Journal of KSEE Vol.39, No.6 June, 2017
+,PSFBO4PD&OWJSPO&OH ³l d ì j Š q $0 q n 369 jº. ²CO 2 q ³l j a ¼ j² m a hù a h q Ða dºùº. 4) 2030 5a b CO 2 q в ³l 44.37%, Š 29.16%, 20.12%, 5.11%, 1.24% ³l n aa ²a, ز AMI jn í Ø º., ³l jn ² jä Ø ² Š j Ð º. 5) 2030 ³l 5a ¼ Š q Ð, 2016 2022 ³l j q Ðaa º 2016 2030 Š q Ða º. ²º Ð j ³l q в k j º. jev ز ¼ a Ða q Ða a ± a j ¼ j jº. mù ³l, e k¼j²l m z ³l í Ùº a n Š m q, a q j dºùº. Acknowledgement 2017 Ð j º kùä (2017R1D1A1B030-33107). References 1. Kim, S., Chun, J. and Chun, Y., Study on the Separation of CO 2 from Flue Gas Using Polysulfone Hollow Fiber Membrane, J. Korean Soc. Environ. Eng., 36(2), 147~152 (2014). 2. Dong, J. I., Waste Eco-Energy and GHGs Reduction Technologies in the Era of Climate Change, J. Korean Soc. Environ. Eng., 30(12), 1203~1206(2008). 3. Kim, H. S., Greenhouse Gas Mitigation Policies and National Emission Targets of Korea, J. Korean Soc. Environ. Eng., 32(9), 809~817(2010). 4. Kim, J. S., Lee, K. B., Lee, I. H. and Kim, S. D., Analysis of Energy Consumption Pattern and Greenhouse Gas Emission in the Academic Facility, J. Korean Soc. Environ. Eng., 34(9), 604~612(2012). 5. Jeong, Y. J., Li, K. C., Kim, T. O. and Hwang, I. J., Estimation of Greenhouse Gas Emissions (GHG) Inventory and Reduction Plans for Low Carbon Green Campus in Daegu University, J. Korean Soc. Environ. Eng., 36(7), 506~513 (2014). 6. Joongboo Ilbo, http://www.joongboo.com/?mod=news&act= articleview&idxno=1114325, October(2016). 7. Electronic Times Internet, http://www.etnews.com/201609030-00012, September(2016). 8. Ministry of Environment, https://www.me.go.kr/home/web/ board/read.do?boardmasterid=1&boardid=534080&menuid= 286, June(2015). 9. EPRI (Electronic Power Research Institute), The Green Grid: Energy Savings and Carbon Emissions Reductions Enabled by a Smart Grid, EPRI, USA, pp. 1~11(2008). 10. PNNL (Pacific Northwest National Laboratory), The Smart Grid: An Estimation of the Energy and CO 2 Benefits, PNNL, USA, pp. 3~27(2010). 11. Digital Daily, http://ddaily.co.kr/m/m_article.html?no=58844, January(2010). 12. Sung, J. Y., An Analysis of the Smart Grid Industry Effect on Local Employment, Master Thesis, Seoul National University, pp. 6~21(2013). 13. Ministry of Trade, Industry and Energy, http://www.motie. go.kr/motie/ne/presse/press2/bbs/bbsview.do?bbs_seq_n=782 22&bbs_cd_n=81, August(2013). 14. MKE (Ministry of Knowledge Economy), Smart Grid National Roadmap, MKE, Korea, pp. 1~69(2010). 15. KEEI (Korea Energy Economics Institute), Analysis of Smart Grid Effect on Energy Saving and Green House Gas Reductions, MKE, Korea, pp. 5~6(2010). 16. KEEI (Korea Energy Economics Institute), Government's Role for Promoting Competition and Mediating Interests among Smart Grid Market Participants, MKE, Korea, pp. 5~8(2011). 17. ERIK (Electrical Industry Research Institution of Korea), Status on the Smart Grid Industry, ERIK, Korea, pp. 4~9(2013). 18. Doh, Y. M., Kim, S. J., Hoe, T. W., Park, N. S., Kim, H. H., Hong, S. K., Seo J. H. and Jeon, J. A., A Trend Analysis of Smart Grid Technology: The Convergence of Electric Power Network and IT Technologies, ETTRENDS, 24(5), 74~86(2009). 19. KSGA (Korea Smart Grid Association), Report of AMI Technology Trend in Smart Grid, KSGA, Korea, pp. 9~ 69(2012). 20. Kim, Y. K., Rue, S. M. and Kim, N. K., Smart Grid Technology Trend and Business Analysis, KIITM, 12(1), 9~17 (2014). 21. KEEI (Korea Energy Economics Institute), Plan for EMS Industry Development, KEEI, Korea, pp. 5~90(2013). 22. Kim, H. Y., Jeong, J. S., Cha, W. S., Shin, G. S. and Kim, S. T., Technical Trends of AMI and HEMS for Smart Grid Implementation, ETTRENDS, 28(2), 11~19(2013). 23. Jeong, S. J., Lee, S. H. and Kim, S. H., Effect of Smart Grid on Earth Environment and National Power Industry, ¼jm jm 39 6m 2017 6
370 +,PSFBO4PD&OWJSPO&OH m j m in Proceedings of the KIIT Summer Conference, KIIT, pp. 545~549(2014). 24. Sung, D. K., Song, N. O., Ko, K. S., Cha, J. Y., Bae, K. Y. and Jang, H. S., Convergence of Power System Technology and Information Communication Technology in Smart Grid, Commun. KIISE, 31(3), 10~21(2013). 25. Cho, H. S., Energy Management System (EMS) based on Energy Storage System (ESS), in Proceedings of the KIEE Autumn Conference, KIEE, pp. 257~259(2014). 26. Park, C. K., Choi, D. Y. and Kim, H. J., Analysis of the Impact of Smart Grids on Managing EVs Electrical Loads, J. Digital Convergence, 11(11), 767~774(2013). 27. KRRI (Korea Railroad Research Institute), Korea Rail Technology: Entry of Railway Industry into Overseas and Smart Grid, KORAIL, Korea, pp. 80~85(2010). 28. KRRI (Korea Railroad Research Institute), Korea Rail Technology: Strategies for Optimum Utilization of Electric Railway Power Energy, KORAIL, Korea, pp. 30~39(2010). 29. Korea Power Exchange, https://www.kpx.or.kr/www/contents. do?key=222. 30. Wee, J. H. and Choi, K. S., CO 2 emission and avoidance in mobile applications, Renew. Sust. Energ. Rev., 14(2), 814~ 820(2010). 31. KEEI (Korea Energy Economics Institute), Yearbook of Energy Statistics, KEEI, Korea, pp. 126~177(2015). 32. Cho, B. O., Kim, S. J. and Kim, J. S., An Analysis on Korean Nuclear Power s Contribution to the GHG Emission Reduction and the Economic Effect, Korean Soc. Environ. Eng., 19(4), 203~214(2010). 33. KEPCO (Korea Electric Power Corporation), Statistics of Electric Power in Korea, KEPCO, Korea, pp. 16~171(2016). 34. MOTIE (Ministry of Trade, Industry and Energy), The 7th Basic Plan for Long-term Electricity Supply and Demand, MOTIE, Korea, pp. 1~97(2015). 35. Korea Electronic Power Corporation, https://home.kepco.co.kr/ kepco/ke/i/htmlview/keiahp00103.do?menucd=fn01020 103. 36. MOTIE (Ministry of Trade, Industry and Energy), Direction of Supply of Smart Meter and Energy Storage System, MOTIE, Korea, pp. 1~12(2013). 37. Electronic Times Internet, http://www.etnews.com/2014120-3000300, December (2014). 38. Ministry of Trade, Industry and Energy, http://www.motie.go.kr/ motie/ne/presse/press2/bbs/bbsview.do?bbs_seq_n=158371& bbs_cd_n=81, July (2016). 39. NIPA (National IT Industry Promotion Agency), Report on the Status of EMS Instruction in 2013, NIPA, Korea, pp. 1~5(2014). 40. DigitalTimes, http://www.dt.co.kr/contents.html?article_no= 2014011502019932614005, January(2014). 41. KEA (Korea Energy Agency), New & Renewable Energy Statistics 2014, KEA, Korea, pp. 22~23(2015). 42. KORAIL (Korea Railroad), Statistical Yearbook Railroad, KORAIL, Korea, pp. 1460~1463(2009). 43. KEMCO (Korea Energy Management Corporation), 2013 Vehicle Fuel Economy and CO 2 Emissions: Data and Analysis, KEMCO, Korea, pp. 22~257(2014). 44. KEMCO (Korea Energy Management Corporation), 2015 Vehicle Fuel Economy and CO 2 Emissions: Data and Analysis, KEMCO, Korea, pp. 22~232(2015). 45. MOTIE (Ministry of Trade, Industry and Energy), The 3rd Eco-friendly Vehicle Development and Supply Plan, Korea, pp. 6~15(2015). 46. KRRI (Korea Railroad Research Institute), Calculation of Standard Fuel Consumption via Analysis of Major Railway Parts, KORAIL, Korea, pp. 128~132(2013). 47. Newsprime, http://www.newsprime.co.kr/news/article.html? no=63852, September(2008). 48. Korea Transportation Safety Authority, http://www.ts2020.kr/ ind/prt/inqdetnannewsdata.do?bbscd=203&bbssn=8161, December(2015). 49. KORAIL (Korea Railroad), Statistical Yearbook of Railroad, KORAIL, Korea, pp. 10~1082(2015). 50. Ministry of Trade, Industry and Energy, http://www.me.go.kr/ home/web/board/read.do?boardmasterid=1&boardid=483180 &menuid=286, February(2015). 51. Ministry of Trade, Industry and Energy, http://www.me.go.kr/ home/web/board/read.do?boardmasterid=1&boardid=601900 &menuid=286, January(2016). 52. Greenhouse Gas Inventory and Research Center, https://www. gir.go.kr/home/board/read.do?pageroffset=0&maxpageitems =10&maxIndexPages=10&searchKey=&searchValue=&menu Id=36&boardId=33&boardMasterId=2&boardCategoryId=, December (2015). 53. Korea Government Interagency, GHG Emission Reduction Goals, Korea, pp. 25(2014). 54. NABO (National Assembly Budget Office), Nation's GHG Reduction Target Evaluation for Post-2020 and Analysis of Measures to Secure Overseas Emission Rights), NABO, Korea, p. 66(2016). Journal of KSEE Vol.39, No.6 June, 2017