Clinical, Electrophysiological, and Genetic Analysis in a Family with Autosomal Dominant Nocturnal Frontal Lobe Epilepsy Sung Il Sohn, M.D., Yong Won

Similar documents
<30382DB1E8B5BFBFED28C8A5B5B7C0BB20BAB8C0CCB4C220B0A2BCBA292E687770>

012임수진

Lumbar spine

Dementia2

975_983 특집-한규철, 정원호

KISEP Case Report 대한간질학회지 2004;8(2):15 8(2): 손을이용한정신활동시유발되는반사성간질 1 예 오영미 서정화 천상명 김상호 Reflex Epilepsy Provoked by Mental Activities Mainly As

Can032.hwp

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

16_이주용_155~163.hwp

09-감마선(dh)


전립선암발생률추정과관련요인분석 : The Korean Cancer Prevention Study-II (KCPS-II)


강훈철 Oyungerel Dambajamts 김흥동 - - 결 Table 1. Patients data MaleFemale 과 108 Age mo meansd, Past historyno. of patients PrematurityLBW 1

KISEP Original Articles J Korean Epilep Soc 1 1 : , 1997 Schizencephaly Clinical, Neuroradiologic and Electroencephalographic Features 송홍기 1 고임석

A 617

139~144 ¿À°ø¾àħ


노인정신의학회보14-1호

歯제7권1호(최종편집).PDF

기관고유연구사업결과보고

ºÎÁ¤¸ÆV10N³»Áö

1..

hwp

03이경미(237~248)ok

Trd022.hwp

The Window of Multiple Sclerosis

1. 발작간간질형방전 (Interictal epileptiform discharges) 2. 주기성일측성간질형방전 (Periodic lateralized epileptiform discharges) Interictal epileptiform discharge IEDs


433대지05박창용

한진규 고성범 박민규 외 Fig. 1. MRI shows normal structure of basal ganglia (A, TR/TE 2500/80) and cerebellum (B, TR/TE 600/20). 강직간대성 발작이 발생되어 본원으로 내원했다. 과거력 특

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

노영남


(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

歯1.PDF


김범수

00약제부봄호c03逞풚

황지웅

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

<31B1E8C1A4B7E6B9DAC1F6BCF6B1E8B9CCBCF72E687770>

레이아웃 1

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A Research Trend


DBPIA-NURIMEDIA

Figure 1. Interrelationships between the basic and derived stimulus parameters Table 1. Stimulus-induced injury Mechanism Parameter Safety measure Cha

Jkcs022(89-113).hwp

388 The Korean Journal of Hepatology : Vol. 6. No COMMENT 1. (dysplastic nodule) (adenomatous hyperplasia, AH), (macroregenerative nodule, MR

Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI: 3 * Effects of 9th

충북의대학술지 Chungbuk Med. J. Vol. 27. No. 1. 1~ Charcot-Marie-Tooth Disease 환자의마취 : 증례보고 신일동 1, 이진희 1, 박상희 1,2 * 책임저자 : 박상희, 충북청주시서원구충대로 1 번지, 충북대학교

Microsoft Word doc

한국성인에서초기황반변성질환과 연관된위험요인연구

04±èºÎ¼º

(

<4D F736F F F696E74202D B0A3C1FABAB8BCF620B3FAC6C420C6C7B5B6C0C720BFF8C4A22E BC8A3C8AF20B8F0B5E55D>

서론 34 2

Abstract Background : Most hospitalized children will experience physical pain as well as psychological distress. Painful procedure can increase anxie

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Study on the Pe

12이문규

고태성 Table 1. Classification of malformations of cortical development I. Malformations due to abnormal neuronal and glial proflieration A. Generalized

04조남훈

ºÎÁ¤¸ÆV10N³»Áö

( )Jkstro011.hwp

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: * Review of Research

YI Ggodme : The Lives and Diseases of Females during the Latter Half of the Joseon Dynasty as Reconstructed with Cases in Yeoksi Manpil (Stray Notes w

자기공명영상장치(MRI) 자장세기에 따른 MRI 품질관리 영상검사의 개별항목점수 실태조사 A B Fig. 1. High-contrast spatial resolution in phantom test. A. Slice 1 with three sets of hole arr

440 /



원위부요척골관절질환에서의초음파 유도하스테로이드주사치료의효과 - 후향적 1 년경과관찰연구 - 연세대학교대학원 의학과 남상현

09구자용(489~500)

°Ç°�°úÁúº´6-2È£

특수교육논총 * ,,,,..,..,, 76.7%.,,,.,,.. * 1. **

<B3EDB9AEC1FD5F3235C1FD2E687770>

09È«¼®¿µ 5~152s

°ø±â¾Ð±â±â

44-4대지.07이영희532~

[ 영어영문학 ] 제 55 권 4 호 (2010) ( ) ( ) ( ) 1) Kyuchul Yoon, Ji-Yeon Oh & Sang-Cheol Ahn. Teaching English prosody through English poems with clon

7 1 ( 12 ) ( 1912 ) 4. 3) ( ) 1 3 1, ) ( ), ( ),. 5) ( ) ). ( ). 6). ( ). ( ).

PJTROHMPCJPS.hwp


untitled

서론 34 2

Àå¾Ö¿Í°í¿ë ³»Áö

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

INDUCTION MOTOR 표지.gul

Sheu HM, et al., British J Dermatol 1997; 136: Kao JS, et al., J Invest Dermatol 2003; 120:

°Ç°�°úÁúº´5-44È£ÃÖÁ¾

DBPIA-NURIMEDIA

공학박사학위 논문 운영 중 터널확대 굴착시 지반거동 특성분석 및 프로텍터 설계 Ground Behavior Analysis and Protector Design during the Enlargement of a Tunnel in Operation 2011년 2월 인하대

2 大 韓 政 治 學 會 報 ( 第 18 輯 1 號 ) 과의 소통부재 속에 여당과 국회도 무시한 일방적인 밀어붙이기식 국정운영을 보여주고 있다. 민주주의가 무엇인지 다양하게 논의될 수 있지만, 민주주의 운영에 필요한 최소한의 제도적 조건은 권력 행사에서 국가기관 사이의

( )Kju098.hwp


2학기신문.hwp

<5BBEF0BEEE33332D335D20312EB1E8B4EBC0CD2E687770>


Manufacturing6

<626BBBE7B7CAB0FCB8AEC1F6C4A7BCAD30332E687770>

Transcription:

Clinical, Electrophysiological, and Genetic Analysis in a Family with Autosomal Dominant Nocturnal Frontal Lobe Epilepsy Sung Il Sohn, M.D., Yong Won Cho, M.D.*, Sang Doe Yi, M.D.*, Dae Kwang Kim, M.D., Du Kyo Jung, M.D.*, Hyung Lee, M.D.*, Jung Gun Lim, M.D.*, Ju Hwa Lee, M.D.* Department of Neurology, Eulji University School of Medicine Department of Neurology* and Anatomy, Keimyung University School of Medicine Background : Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a distinct epilepsy syndrome and a genetically heterogeneous disorder linked to chromosomes 20q13.2, 15q24, and 1p21. Missense and insertion mutations in neuronal nicotine acetylcholine receptor 4 (CHRNA4) and 2 (CHRNB2) genes have been found in families with ADNFLE. Methods : Clinical, EEG-Video monitoring, and neuropsychologic study in a family with ADNFLE were tested. For detect of mutation gene, polymerase chain reaction for CHRNA4 gene and CHRNB2 gene, single strand conformational polymorphism (SSCP) analysis and DNA sequencing were done. R e s u l t s : Among 15 living family members in three generations, nine had seizures. EEG-Video monitoring showed ictal epileptiform discharges genetically or regionally in frontal, frontocentral, frontotemporal, or temporal areas and less frequently no epileptiform discharges or non-specific generalized slowing. Two affected individuals demonstrated interictal temporal spikes, whereas the others were normal. Neuropsychological study showed mental retardation and decreased frontal executive function in five affected individuals. A cytosine to thymine exchange (755C>T; S252L) in exon 5 of the CHRNA4 gene was found on all affected individuals except in an individual who wasn t tested, but this change was absent in those without epilepsy. Conclusions : This is the first study of genetically confirmed ADNFLE in a Korean family, who had mental retardation and various EEG abnormalities, ictally and interictally. J Korean Neurol Assoc 20(6):600~611, 2002 Key Words : Epilepsy, Frontal lobe, Autosomal dominant, ADNFLE, CHRNA4 gene, Mental retardation Sung Il Sohn, M.D. 600 Copyright 2002 by the Korean Neurological Association

µ J Korean Neurol Assoc / Volume 20 / November, 2002 601

µ µ µ Figure 1. Pedigree of a Korean family with autosonal dominant nocturnal frontal lobe epilepsy. The solid symbols represent affected status, and open symbols represent unaffected status. Arrow indicates a proband. Table 1. PCR primer pairs for amplification of CHRNB2 and CHRNA4 genes µ µ µ µ µ µ µ Exon Forward primer Reverse primer CHRNB2 1 GAGGCAGCGAGCTATGCCCG GCGGCGACTCTTGGGCCGT 2 GAGCTGGGTGGGCTCTCCT GCAGAGAGCCTGGGACCTCT 3 GGAGGTGTGAGAGGGACCCT CCAGGGGTGTGGGTGGAAG 4 CTCTAGTTCGTTTCCTTAAC CCTCCCTGAGCCCTCCAATG 5a AGGGCTGACTGTGCCCATC GTCCACGCTGGCCACCTCA 5b CACAGAGATCGACTTGGTGCT GAAGACAAGGATGGCTAGCG 5c CACCATCAACCTCATCATCC AGCAGCGCGGGCAGCTTC 5d CCTGCCCTCCGAGTGTGGC GGTCCCACCGTGCGGCACT 6 CGTTTGTCTCCCATCCTGC TGGCTGGGTGAAAGAGCATG CHRNA4 1 GGTGCGTGCGCCATGGAGC GCAGTCAGCAGCCTGCCTC 2 ACCTGAGCCACTGGCCTGCC CGACCTCAGTCACAGCGCAC 3 CCCGTCCACCATATCTTGC GGCAGTGCCCTCCCACTC 4 CATCCAGGAGTGGCACGACTA ACCAAGGCCCTGTAGAGGAC 5a ACCCTTCGCTCTCTTCCTGC CCACGATGACCCACTCGCC 5b CGGCTCCTGGACCTACGAC CAGGCAGGGGATGATGAGG 5c GGCGAGTGGGTCATCGTGG GATGACCAGTGAGGTGGACG 5d CCTGCCCTCCGAGTGTGGC GGGCATGGTGTGCGTGCGTG 5e ACGCACGCACACCATGCCC GCGGCAGGGTCCAGGCGAG 5f CCTTCCTGCAAGTCACCCTCC GTGCTTTGGTGCTGCGGGTC 5g AAGGAGCCCTCTTCGGTGTC CCCAAAGCGAAGCAGCCTGA 6 GGCCGTGCTGGAGTGACG GCCCCACAGAGTCCAGGG J Korean Neurol Assoc / Volume 20 / November, 2002 602

Table 2. Clinical and neuroimaging findings in the family members with autosomal dominant nocturnal frontal lobe epilepsy Patient II-1 II-6 III-2 III-3 III-8 III-9 III-10 III-11 Age/Sex 53/M 46/F 24/F 22/F 23/F 22/F 20/M 18/F History of febrile convulsion No No No No No No No No Age at onset (years) Childhood 6 8 14 17 13 12 13 Time of seizure Night Day & night Night Night Night Night Night Night Relation to sleep Falling Sleep Through Through Within Falling Falling Falling asleep aggravates all night all night 2hr asleep asleep or asleep or episodes after sleep waking up waking up Brain MRI ND Normal ND ND Normal Normal Arachnoid Normal cyst on left temporal pole Current medication None CBZ CBZ TPM Stop CBZ CBZ VBG VPA TBM LTG since VPA OCBZ CBZ VGB 19-year-old PRM VPA TPM OCBZ LTG ZNS Seizure frequency 1-4/year 3-4/day 3-4/month Seizure 3-4/month 2-5/month 1-4/year after medication free CBZ; carbamazepine, OCBZ; oxcarbazepine, VPA; sodium valproate, LTG; lamotrigine, VGB; vigabatrin, TPM; topiramate, ZNS; zonisamide, PRM; primidone, PHT; phenytoin, PB; phenobarbital, ND; not done. J Korean Neurol Assoc / Volume 20 / November, 2002 603

Figure 2. Interictal EEG recording in III-8 case with poorly controlled seizure. The EEG shows isolated repetitive spike-and-wave complexes with phase reversals on the right frontotemporal area. Figure 3. Ictal EEG recording of brief attack arising from stage 2 non-rapid eye movement sleep in a 46-year-old woman (II-6). Ictal EEG shows rhythmic epileptiform discharges over bilateral frontal, central, and temporal areas. 604 J Korean Neurol Assoc / Volume 20 / November, 2002

Table 3. Video-EEG monitoring findings in the family members with autosomal dominant nocturnal frontal lobe epilepsy Patient II-6 III-2 III-3 III-9 III-10 III-11 No of seizure 7 19 35 4 6 7 during a night Seizure 19-75 10-70 13-51 23-53 20-54 31-62 duration (sec) 36.1±26.6 43.3±17.9 29.2±12.2 32.3±14 38.3±12.0 52±11.2 (mean±sd) No of secondary 2 0 0 0 1 0 generalization Postictal confusion Yes No No No Yes Yes Seizure clusters Yes No No Yes Yes Yes Interictal EEG Normal Intermittent Intermittent Normal Intermittent Normal bifrontal bifrontal generalized theta waves theta waves theta waves Ictal semiology Shouting Ah, Moaning, Mumbling, Moaning, Moaning, lip Moaning, moaning, eye blinking, head neck smacking, head nodding, drooling, hand shaking, shaking or extension, both arm neck eye blinking, both arm nodding, both arm tonic flexion, extension both arm tonic flexion tonic flexion tonic flexion neck tonic tonic flexion, of right arm, extension neck tonic neck tonic extension extension Ictal onset areas Right Bilateral Bilateral Generalized, Generalized Bilateral temporal, frontal areas frontocentral central, or or bilateral frontocentral right areas bilateral frontal areas areas fontotemporal, frontal areas or bilateral frontal areas Ictal onset patterns Low voltage Rhythmic Rhythmic Rhythmic Semirhythmic Rhythmic rhythmic theta waves beta waves delta or spike/sharp alpha theta, superimposed alpha waves waves waves, nonspecific with beta nonspecific theta slowing waves theta slowing No; number, Rt; right. J Korean Neurol Assoc / Volume 20 / November, 2002 605

Table 4. Results of neuropsychological tests in the family members with autosomal dominant nocturnal frontal lobe epilepsy Patient II-6 III-2 III-3 III-9 III-10 III-11 K-WAIS Verbal IQ 72 54 65 60 71 46 Performance IQ 67 61 80 51 89 52 Full IQ 68* 54* 69* 53* 76 <45 K-MAS Short-term M (%ile) 112 (93) 69 (2) 58 (<1) 91 (28) 118 (89) 72 (3) Verbal M (%ile) 61 (<1) 58 (<1) 110 (75) 99 (47) 96 (40) 86 (18) Visual M (%ile) 53 (<1) 74 (4) 72 (4) 83 (13) 110 (75) 63 (1) Total M (%ile) 53 (<1) 62 (1) 89 (23) 84 (14) 104 (61) 72 (3) Rey-CFT Copy 15.5 30 33 33 34 NA Immediate recall 0 2 1.5 10 15 NA 20min delayed recall 0 2.5 2 10 14.5 NA Trailmaking test Part A (%ile) 115 (<10) 52 (<10) 55 (<10) 78 (<10) 80 (<10) 78 (<10) Part B (%ile) 43 (<10) Refuse 135 (<10) 126 (<10) 159 (<10) 195 (<10) Pegboard test Refuse Right 105 60 65.5 72.5 90 (Mean±SD) (66.5±7.0) (67.6±20.9) (60.4±6.4) (62.1±20.8) (60.4±6.4) Left 93 75.5 79 78.5 94 (Mean±SD) (71.1±8.5) (62.2±11.8) (64.1±9.2) (67.6±20.9) (64.1±9.2) WCST Refuse Refuse Total errors (%ile) 102 (<1) 101 (<1) 17 (68) 56 (5) % Errors (%ile) 80 (<1) 79 (<1) 14 (84) 44 (6) PR (%ile) 102 (<1) 14 (39) 8 (77) 24 (14) PE (%ile) 81 (<1) 14 (37) 8 (73) 24 (9) NCC (%ile) 0 (<1) 0 (<1) 6 (>16) 5 (>16) TCFC (%ile) 65 (2-5) 65 (2-5) 10 (>16) 12 (>16) FMS (%ile) 0 (>16) 0 (>16) 4 (6-10) 1 (>16) * mild mental retardation by American Association on Mental Deficiency, moderate mental reterdation by AAMD, age and sex matched normative data, K-WAIS; Korean-Wechsler Adult Intelligence Scale, K-MAS; Korean-Memory Assessment Scale, IQ; Intelligence Quotient, Rey-CFT; Rey-Osterrieth Complex Figure Test, %ile; percentile, WCST; Wisconsin Card Sorting Test, PR; perseverative responses, PE; perseverative errors, NCC; number of categories completed, TCFC; trials to complete first category, FMS; failure to maintain set. 606 J Korean Neurol Assoc / Volume 20 / November, 2002

Figure 4. Single-strand conformational polymorphism (SSCP) mutation analysis of exon 5 of CHRNA4 gene in a Korean family with autosomal dominant nocturnal frontal lobe epilepsy. The migration differences of the bands () in affected patients (lane 1-4 and 6-9) are clearly evident and indicate that shift bands contain a putatively mutated allele. Figure 5. Nuleotide sequence of the relevant region of exon 5 of CHRNA4 gene. Arrow indicates the position of the mutat- ed 755 nucleotide. A C to transition (: 755 C>T) resulting in a S252L missense mutation is found in exon 5. Nucleotied numbers are based on the nomenclature for the Torpedo a- subunit of an acetylcholine receptor. J Korean Neurol Assoc / Volume 20 / November, 2002 607

608 J Korean Neurol Assoc / Volume 20 / November, 2002

Marsden CD, Andermann E, et al. Autosomal dominant 01. Scheffer IE, Bhatia KP, Lopes-Cendes I, Fish DR, Marsden CD, Andermann F, et al. Autosomal dominant frontal epilepsy misdiagnosed as sleep disorder. L a n c e t 1994;343:515-517. 02. Scheffer IE, Bhatia KP, Lopes-Cendes I, Fish DR, nocturnal frontal lobe epilepsy. A distinctive clinical disorder. Brain 1995;118:61-73. 03. Oldani A, Zucconi M, Ferini-Strambi L, Bizzozero D, Smirne S. Autosomal dominant nocturnal frontal lobe epilepsy: electroclinical picture. Epilepsia 1996 ; 37 : 964-976. 04. Picard F, Bertrand S, Steinlein OK, Bertrand D. Mutated nicotinic receptors responsible for autosomal dominant nocturnal frontal lobe epilepsy are more sensitive to carbamazepine. Epilepsia 1999;40:1198-1209. 05. Oldani A, Zucconi M, Asselta R, Modugno M, Bonati MT, Dalpra L, et al. Autosomal dominant nocturnal frontal lobe epilepsy. A video-polysomnographic and genetic appraisal of 40 patients and delineation of the epileptic syndrome. Brain 1998;121:205-223. 06. Steinlein OK, Mulley JC, Propping P, Wallace RH, Phillips HA, Sutherland GR, et al. A missense mutation in J Korean Neurol Assoc / Volume 20 / November, 2002 609

the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 1995;11:201-203. 07. Steinlein OK, Magnusson A, Stoodt J, Bertrand S, Weiland S, Berkovic SF, et al. An insertion mutation of the CHRNA4 gene in a family with autosomal dominant nocturnal frontal lobe epilepsy. Hum Mol Genet 1 9 9 7 ; 6:943-947. 08. Hirose S, Iwata H, Akiyoshi H, Kobayashi K, Ito M, Wada K, et al. A novel mutation of CHRNA4 responsible for autosomal dominant nocturnal frontal lobe epilepsy. Neurology 1999;53:1749-1753. 09. De Fusco M, Becchetti A, Patrignani A, Annesi G, Gambardella A, Quattrone A, et al. The nicotinic receptor beta 2 subunit is mutant in nocturnal frontal lobe epilepsy. Nat Genet 2000;26:275-276. 10. Phillips HA, Favre I, Kirkpatrick M, Zuberi SM, Goudie D, Heron SE, et al. CHRNB2 is the second acetylcholine receptor subunit associated with autosomal dominant nocturnal frontal lobe epilepsy. Am J Hum Genet 2 0 0 1 ; 6 8 : 225-231. 11. Sutor B, Zolles G. Neuronal nicotinic acetylcholine receptors and autosomal dominant nocturnal frontal lobe epilepsy: a critical review. Pflugers Arch 2001;442:642-651. 12. Phillips HA, Scheffer IE, Crossland KM, Bhatia KP, Fish DR, Marsden CD, et al. Autosomal dominant nocturnal frontal-lobe epilepsy: genetic heterogeneity and evidence for a second locus at 15q24. Am J Hum Genet 1 9 9 8 ; 6 3 : 1108-1116. 13. Paterson D, Nordberg A. Neuronal nicotinic receptors in the human brain. Prog Neurobiol 2000;61:75-111. 14. Gil Z. Connors BW, Amitai Y. Differential regulation of neocortical synapses by neuromodulators and activity. Neuron 1997;19:679-686. 15. Alkondon M, Pereira EF, Eisenberg HM, Albuquerque EX. Nicotine receptor activation in human cerebral cortical interneurons: a mechanism for inhibition and disinhibition of neuronal networks J Neurosci 2000;20:66-75. 16. Porter JT, Cauli B, Tsuzuki K, Lambolez B, Rossier J, Audinat E. Selective excitation of subtypes of neocortical interneurons by nicotinic receptors. J Neurosci 1 9 9 9 ; 19:5228-5235. 17. Phillips HA, Scheffer IE, Berkovic SF, Hollway GE, Sutherland GR, Mulley JC. Localization of a gene for autosomal dominant nocturnal frontal lobe epilepsy to chromosome 20q 13.2. Nat Genet 1995;10:117-118. 18. Yeom TH, Park YS, Oh GJ, Kim JG, Lee YH. The Main Principle for Assessment of K-WAIS. 1st ed. Seoul: Korea Guidance, 1992;11-170. 19. Lee HS, Park BK, An CI, Kim MLH, Jung IG. The Main Principle for Assessment and Scoring of Korean Version of Memory Assessment Scales. 1st ed. Seoul: Korea Guidance, 2001;13-121. 20. Mitrushina MN, Boone KB, D Elia LF. Handbook of Normative DATA for Neuropsychological Assessment. 1st ed. New York: Oxford University Press, 1999;33-447. 21. Khatami R, Neumann M, Schulz H, Kolmel HW. A family with autosomal dominant nocturnal frontal lobe epilepsy and mental retardation. J Neurol 1998;245:809-810. 22. Saenz A, Galan J, Caloustian C, Lorenzo F, Marquez C, Rodriguez N, et al. Autosomal dominant nocturnal frontal lobe epilepsy in a Spanish family with a Ser252Phe mutation in the CHRNA4 gene. Arch Neurol 1999 ; 56 : 1004-1009. 23. Ito M, Kobayashi K, Fujii T, Okuno T, Hirose S, Iwata H, et al. Electroclinical picture of autosomal dominant nocturnal frontal lobe epilepsy in a Japanese family. Epilepsia 2000;41:52-58. 24. Hayman M, Scheffer IE, Chinvarun Y, Berlangieri SU, Berkovic SF. Autosomal dominant nocturnal frontal lobe epilepsy: demonstration of focal frontal onset and intrafamilial variation. Neurology 1997;49:969-975. 25. Scheffer IE, Phillips HA, O Brien CE, Saling MM, Wrennall JA, Wallace RH, et al. Familial partial epilepsy with variable foci: a new partial epilepsy syndrome with suggestion of linkage to chromosome 2. Ann Neurol 1998;44:890-899. 26. Xiong L, Labuda M, Li DS, Hudson TJ, Desbiens R, Patry G, et al. Mapping of a gene determining familial partial epilepsy with variable foci to chromosome 22q11-q12. Am J Hum Genet 1999;65:1698-1710. 27. Cendes F, Lopes-Cendes I, Andermann E, Andermann F. Familial temporal lobe epilepsy: a clinically heterogeneous syndrome. Neurology 1998;50:554-557. 28. Scheffer IE, Jones L, Pozzebon M, Howell RA, Saling MM, Berkovic SF. Autosomal dominant rolandic epilepsy and speech dyspraxia: a new syndrome with anticipation. Ann Neurol 1995;38:633-642. 29. Provini F, Plazzi G, Tinuper P, Vandi S, Lugaresi E, Montagna P. Nocturnal frontal lobe epilepsy. A clinical and polygraphic overview of 100 consecutive cases. Brain 1999;122:1017-1031. 30. Lugaresi E, Cirignotta F, Montagna P. Nocturnal paroxysmal dystonia. J Neurol Neurosurg Psychiatry 1986;49:375-380. 31. Oldani A, Zucconi M, Castronovo C, Ferini-Strambi L. Nocturnal frontal lobe epilepsy misdiagnosed as sleep apnea syndrome. Acta Neurol Scand 1998;98:67-71. 32. Provini F, Plazzi G, Lugaresi E. From nocturnal paroxysmal dystonia to nocturnal frontal lobe epilepsy. C l i n Neurophysiol 2000;111(Suppl 2):2-8. 33. Seo WK, Kim BJ, Park MK, Park KW, Kim L, Lee DH. A case of nocturnal paroxysmal dystonia. J Korean Neurol Assoc 2001;19:305-308. 34. Picard F, Baulac S, Kahane P, Hirsch E, Sebastianelli R, Thomas P, et al. Dominant partial epilepsies. A clinical, electrophysiological and genetic study of 19 European families. Brain 2000;123:1247-1262. 610 J Korean Neurol Assoc / Volume 20 / November, 2002

35. Phillips HA, Marini C, Scheffer IE, Sutherland GR, Mulley JC, Berkovic SF. A de novo mutation in sporadic nocturnal frontal lobe epilepsy. Ann Neurol 2000;48:264-267. 36. Nakken KO, Magnusson A, Steinlein OK. Autosomal dominant nocturnal frontal lobe epilepsy: an electroclinical study of a Norwegian family with ten affected members. Epilepsia 1999;40:88-92. 37. Steinlein OK, Stoodt J, Mulley J, Berkovic S, Scheffer IE, Brodtkorb E. Independent occurrence of the CHRNA4 Ser248Phe mutation in a Norwegian family with nocturnal frontal lobe epilepsy. Epilepsia 2000;41:529-535. 38. Sihver W, Gillberg PG, Nordberg A. Laminar distribution of nicotinic receptor subtypes in human cerebral cortex as determined by [3H](-)nicotine, [3H]cytisine and [3H]epibatidine in vitro autoradiography. N e u r o s c i e n c e 1 9 9 8 ; 8 5 : 1121-1133. 39. Alkondon M, Albuquerque EX. Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. I. Pharmacological and functional evidence for distinct structural subtypes. J Pharmacol Exp Ther 1 9 9 3 ; 2 6 5 : 1455-1473. 40. Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA. Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 1996;383:713-716. 41. Wonnacott S. Presynaptic nicotinic ACh receptors. Trends Neurosci 1997;20:92-98. 42. Alkondon M, Pereira EF, Albuquerque EX. alpha-bungarotoxin- and methyllycaconitine-sensitive nicotinic receptors mediate fast synaptic transmission in interneurons of rat hippocampal slices. Brain Res 1 9 9 8 ; 8 1 0 : 2 5 7-263. 43. Matsuyama S, Matsumoto A, Enomoto T, Nishizaki T. Activation of nicotinic acetylcholine receptors induces long-term potentiation in vivo in the intact mouse dentate gyrus. Eur J Neurosci 2000;12:3741-3747. 44. Hunter BE, de Fiebre CM, Papke RL, Kem WR, Meyer EM. A novel nicotinic agonist facilitates induction of long-term potentiation in the rat hippocampus. N e u r o s c i Lett 1994;168:130-134. 45. Guan ZZ, Zhang X, Ravid R, Nordberg A. Decreased protein levels of nicotinic receptor subunits in the hippocampus and temporal cortex of patients with Alzheimer s disease. J Neurochem 2000;74:237-243. 46. Marutle A, Warpman U, Bogdanovic N, Lannfelt L, Nordberg A. Neuronal nicotinic receptor deficits in Alzheimer patients with the Swedish amyloid precursor protein 670/671 mutation. J Neurochem 1 9 9 9 ; 7 2 : 1 1 6 1-1169. 47. Bertrand S, Weiland S, Berkovic SF, Steinlein OK, Bertrand D. Properties of neuronal nicotinic acetylcholine receptor mutants from humans suffering from autosomal dominant nocturnal frontal lobe epilepsy. Br J Pharmacol 1998;125:751-760. 48. Kuryatov A, Gerzanich V, Nelson M, Olale F, Lindstrom J. Mutation causing autosomal dominant nocturnal frontal lobe epilepsy alters Ca 2 + permeability, conductance, and gating of human alpha4beta2 nicotinic acetylcholine receptors. J Neurosci 1997;17:9035-9047. J Korean Neurol Assoc / Volume 20 / November, 2002 611