에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -
. - 2 -
. 1. - 3 -
[ 그림 1] 도시가스수요와실질 GDP 추이 - 4 -
- 5 -
- 6 -
< 표 1> 도시가스수요함수에관한선행연구요약 - 7 -
. 1. - 8 -
[ 그림 2] 용도별도시가스기온효과 log log log - 9 -
< 표 2> 기온변수와상대가격의선택에따른예측오차비교 - 10 -
- 11 -
< 표 3> 분석자료의기초통계량 [ 그림 3] 용도별유효일수및석유류대비상대가격추이 - 12 -
~ ~ - 13 -
log log log log log log log log Δ - 14 -
- 15 -
< 표 4> 단위근검정결과 < 표 5> 공적분검정결과 - 16 -
. ~ ~ ~ ~ ~ - 17 -
< 표 6> ARDL 모형추정결과 ~ ~ ~2016 년 - 18 -
~ - 19 -
< 표 7> ARDL 모형의표본외예측결과 - 20 -
- 21 -
< 표 8> 오차수정모형추정결과 ~ - 22 -
< 표 9> 오차수정모형의표본외예측결과 - 23 -
~ - 24 -
접수일 (2018 년 7 월 20 일 ), 수정일 (2018 년 8 월 27 일 ), 게재확정일 (2018 년 9 월 2 일 ) - 25 -
. 2017.. 2017-12,.. 1998.. 98-01: 1-73.. 2011.. 59(4): 199-228.. 2011.. 20(4): 318-329.. 2012.. 2012-12: 1-118.. 2015.., 1-62.. 2017. :. 32(3): 239-259. 2015.. 63(3): 71-119.. 2013.. 22(4): 370-375.. 2016.. 15(1): 33-67.. 2018... 2018.. - 26 -
Balestra, P. and Nerlove, M. 1996. Pooling Cross Section and Time Series Data in the Estimation of a Dynamic Model: the Demand for Natural Gas. Econometrica 34(3): pp585-612. Chang, Y., Kim, C. S., Miller, J. I., Park, J. Y. and Park, S. 2016. A New Approach to Modeling the Effects of Temperature Fluctuations on Monthly Electricity Demand. Energy Economics 60: pp206-216. Dahl, C. A. 1993. A Survey of Energy Demand Elasticities in Support of the Development of the NEMS. MPRA Paper No. 72229. Johansen, S. 1991. Estimation and Hypothesis Testing of Cointergration in Gaussian Vector Autoregressive Models. Econometrica 59(6): pp1551-1580. Lee, R S. and Singh, N. 1994. Patterns in Residential Gas and Electricity Consumption: an Econometric Analysis. Journal of Business & Economic Statistics 12(2): pp165-174. Newey, W. K. and West, K. D. 1994. Automatic Lag Selection in Covariance Matrix Estimation. Review of Economic Studies 61(4): pp631-653. Nilsen, O. B., Asche, F. and Tveteras, R. 2005. Natural Gas Demand In the European Household Sector. Bergen Open Research Archive Working Paper. Park, J. Y. and Hahn, S. B. 1999. Cointegrating Regressions With Time Varying Coefficients. Econometric Theory 15(5): pp664-703. Pesaran, M. H., Shin, Y. and Smith, R. J. 2001. Bound Testing Approaches to the Analysis of Level Relationship. Journal of Applied Econometrics 16(3): pp289-326. - 27 -
< 부표 > 도시가스공적분회귀모형추정결과 - 28 -
ABSTRACT Unlike in the past, demand for city gas has recently shown a phenomenon of decoupling with a income variable. In this study, we estimated the aggregate demand function and demand functions by use applying the ARDL, error correction, and cointegration model to quarterly time series data from 1995 to 2016. As a result, the price elasticity of city gas demand and the sensitivity to temperature changes in the recent period have been increasing mainly in industrial use, while income elasticity has been decreasing mainly in household and general(or commercial) use. Estimation results by use of the error correction model were similar to those of the ARDL model, but income elasticity of general use and industrial use was somewhat higher. The estimation results of the cointegration regression model are similar to those of the ARDL model, except that the price elasticity and income elasticity of industrial demand are somewhat large. The results of out-of-sample experiments using the ARDL model and the error correction model for the last three years (2015 to 2017) of data indicate that the prediction ability can be further improved by estimating and summing the demand function for each application, rather than directly estimating the aggregate demand function. Key Words : Demand Function, City Gas, Gas Price Elasticity, Gas Income Elasticity, Temperature Effects - 29 -