Korean Chem. Eng. Res., Vol. 43, No. 5, October, 2005, pp. 549-559 { 청정생산을위한생태산업단지구축과주요기술 ly Ç Çl qçm qç s *Ç kq**çl **Çn ***Ç o ***Çmm, 794-754 e q 31 * ˆ 136-709 ne kk 5 1 **(t) d l v 790-704 e 1 *** l l o l e 790-330 e q 32 (2005 10o 10p r, 2005 10o 21p }ˆ) Eco-Industrial Park (EIP) Development and Key Technologies for Clean Production ChangKyoo Yoo, Soon-Ki Heo, Dong Joon Yoo, SeungJun Lee, Ji Na Shin*, Yong Joon Park**, Hack Mo Yoon**, Hee Dong Chun***, Jeong Ki Moon*** and In-Beum Lee Department Chemical EngineeringGand School of Environmental Engineering, POSTECH, San 31, Hyoja-dong, Nam-gu, Pohang 790-784, Korea *Department of Environmental Ecological Engineering, Korea Univ., 1, 5-ka, Anam-dong, Sungbuk-gu, Seoul 136-709, Korea **Environment & Energy team, POSCO. Ltd, 1, Geodong-dong, Nam-gu, Pohang 790-704, Korea ***Environmental Research Lab., Research Institute of Industrial Science & Technology, San 32, Hyoja-dong, Nam-gu, Pohang 790-330, Korea (Received 10 October 2005; accepted 21 October 2005) k h l mm qo l p p p ˆr m p v l (sustainable industrial development)p p ep p. p o sl p l v rp e ˆ n l v l q k l v p l p v l v prp pn ˆ l v p r p r rp p lv p. ˆ l v(ecoindustrial park, EIP) l v p l p v, n l v, l v, v, n p prp qpn p f r,, r ppp l p. l n ˆ l vp l m ˆ l v p tn (l v, v qpn, n qpn, m )l l. Abstract Sustainable industrial development which can minimize an ecological effect by the mankind exertion is recently interested due to an environmental contamination and a resource exhaustion problem. An eco-industrial park (EIP) is a community of manufacturing and service businesses seeking enhanced environmental and economic performance through collaboration in managing environmental and resource issues, including energy, water, and materials. EIP developments which improve a production plant within an eco-friendly greenfield and design a new industrial ecosystem are accomplished recently, which can efficiently re-use the waste and resources from each company within EIP. In this review, the outside and domestic case studies of EIP and cornerstone technologies to develop the EIP, such as energy integration, waste reuse, mass flow analysis, water pinch, and life cycle assessment, are summarized. Key words: Eco-Industrial Park (EIP), Heat Pinch, Energy Integration, Life Cycle Assessment (LCA), Mass Flow Analysis (MFA), Mathematical Optimization, Network Design, Reuse Network, Waste Minimization, Water Pinch To whom correspondence should be addressed. E-mail: ckyoo@postech.ac.kr 549
550 o} Ë Ëo tëpdtëev Ë ntëo Ër Ë r Ëpp 1-1. i s om 1. ˆ l v(eco-industrial park, EIP) l ˆ (industrial ecology)p p p, ~r rp p l,, nm rs/ dlp v p. p nl }p n indigo development ˆ l v l v, n, v p qo r pl p r r/ rr rsl dl~ p ~ rp m [1-5]. l v p l p ˆ rp l l pl, v l vp n mm p o r. p l p rp p p m p rp lp pp, l ll vo p p. ˆ l vp l l p l m p rr vveˆ p. p sp, ~r, mm v, l v p, l p n n l p., ˆ l v po v p ppp o p f p rrp. Fig. 1 p sp l vm ˆ l vp m prp ˆ [3, 5]. sp l v o m r ot l l ˆ l v sp l vl v kp p p l o rp q prp. p rp ˆ l r k m p v rp t p. (1) ˆ l v(eip) l v l l v,, vp qop q np r p r s dl v p. (2) (BPX) l v, n, v p p v k o qop l p q np. l l p mmp eˆ np r n ppp l o, n qop v k. m l, t p ˆ qp p o rv q, k m rr, q p o. (3) ˆ l (EIN) vl p,, rr vv eˆ o l p l p. ˆ l p p o l l o p mll v q p. p o ˆ l v p, rp lp p. m l, p PRIME r l p l v l vlrp p p l, qo q ~ m o p m [1, 3]. 1-2. sp l vl l kp r}p rp rn l, le l e p p r. p ep r p krp p. ql mm } e p p p p k rp n, mmp p l } p p. } ep mml ~rp r m l n, rrp n prp., } e p l t e qo p r l. ˆ l v(eip) p krp m l rl s rp r ep lr, r r l p p v p [1]. lr EIP l l p v l vp p p Fig. 1. The basic concept of eco-industrial park[3]. o43 o5 2005 10k
p, q np, rl p } p r l np r p t., ˆ l v p ll } o,, ˆ, r edš p p d r. l np p l p rr pp eˆ p. ˆ l v le p p ˆp vll tn lr p p r. r EIP qlqo n p mm/ p e ˆ np p eˆ, ~r l erp r l p lt. mm v, l v p, n, qo q, np ~ m p ~r rp. EIP lq mq l p tp seˆ l ppp l vveˆ p v re t p. r l l p rr ˆ l v n r r p ˆ p l v ~ p v l p o, vlp } ll l mlp l rp np } p. EIP q p p mm ql p r [1, 3]. 2. i s i ˆ l v p l o, kek, k, r l p v pl l v p ep qk p. t Kalundborg, t p Guigang ˆ l e, P ~ qp dp r qpn l l m l. 2-1. Kalundborgm i (industrial symbiosis) ˆ l v tl q l m l v p p l p Kalundborg l vp. p k 2 p Kalundborg l r l p d p. l Kalundborg ˆ l v l v l vt l ~p. l ~ ˆ l v r s s rp r p n v, Kalundborgp n n rp. l vm l p vl p v l v p q p p. q p qp p o n l o, l v, n, l r p. p p t~ r, ro, l~, rk l~ Kalundborge p [1, 3]. p 1970 l p l oqqp p p lrp 1980 m 1990 ~ or. k 30 p l p p p l p 1972 Statoil ro l m butane gas Gyproc qp pn eq l. l rk q ql m v p p o p d v t p ql n eq, r l p ˆq Kalundborg l v n l p e ql eq. 1981-1982 Asnaes r rl v ro m rk q, el. p 10 kl s rp p p lvv kk ~r p o ˆ l v tn 551 Fig. 2. Industrial Symbiosis at Kalundborg city (www.symbiosis.dk)., 2-3 p rp k p lrp pl. p eq l p 10 k o n e q [1, 3, 5]. Fig. 2 Kalundborg l ~p v, n l v p ˆ. Kalundborg vl v lm r t n q 9, l v p 6, q p 7 r~rp ~ q np n p p l p [3]. Kalundborg l ~ e p v l p rr q v q qop k kr. p p llv rr ˆp 1997 tp p l 3 Šp ˆ n r, 60 Šp n r, 13 Šp p ˆ, 3700Šp d r p p. p p rr r l 6} l p 1} p m p eˆ p. nƒ, Kalundborgp rr, rp ˆp eˆ p p [2-4]. Kalundborg l vl r r3ql p rrp p p lvv k, l pl rrp p Ž s q q rp l vm v p p lr. Ž p o n o p p p, nl l p vr r., Kalundborg p tn lp k nl l p ˆ v [3]. Kalundborgp ˆ l v p p p rp p lv o s p p. ~w, l v p l k l r k, el q kk. l k p q l p p r p. w, l l p l p lrp p p p lrk. l Korean Chem. Eng. Res., Vol. 43, No. 5, October, 2005
552 o} Ë Ëo tëpdtëev Ë ntëo Ër Ë r Ëpp rr p p l l p q r l pv rlv p. w, r lk p q rplk. w, q wkk. w p pp kv n n r l, np r p p. v p v l mq p pp v EIP l srp ov lk [3-9]. 2-2. q m Guitang Group Guigang i t l p 539 p ˆ ql 1,500 Šp ˆp m v k t p ˆ lp e qr l e. r eql t ˆp p p p ˆ ll qr p pp. Guigang vlp t ˆ p 40Í p p p ˆ q p qp l ež. p rr l np mm vp p l ˆ lp p mm vp mm lp k r m [1, 3]. Guitang p p vll p 1954 t p o ˆ lp ˆ q o 14,700 hap vm, 3,800 p vop o p. Guitang p ˆ qp l p kp mm vp, Guitang Groupp Guigang vlp l lp l p p f mm v p tp ˆ l v m. l vl k m q, rv q, v q, ˆ d q, e q, r p l p s p qpnp l mm mm } np tp p. Fig. 3l Guigang ep ˆ l v p v p ˆ. pl ˆ qp p Guitang ep ˆ l vl l pn pp, ˆ qv l p p r m lp p l ˆ p o d l ~r p o n p [1, 3]. 2-3. z mm m l m n mmk } P ~ qp opp p r~ ~ r p tn p, ~ r pnl rp k s p n p pl p q np p p. r~ l ˆ, tvˆ, s o,,, v, k p pl d r~ p l v p d p p. s l l r~ m l pp p p Fig. 4l r l p [9]. l P ~ qp q o dp l v q nl m q. P ~ q p p ql r~ e p l v d. n, ˆp l d rl COG(coke oven gas), dm ~ p l qp l p rl BOG(blast furnace oven gas), p os p sr p r rl LDG(linze donawitz gas) kp ~ er rl COG(corex oven gas) p p. p d o dp l p p k l e k. p l p l j l p l l rq l n ql n p. p p l } l vv l tn l n p ( l ). d n qp r~ r rl lp plk o q pv, q p n p r~ p r v rp d v k ( r ) el p kp p k(q n ) p n. pp r~ qp r nn l l d q prp r r p. tlv p dp, dp l, r p l n o, r p r n r~ p r, dž n p p. r dp l p pn v l e l p p. Efflu = Gas( R, T) XPRT (,, ) Heat( R) (1) T R P P R Efflu dp l p ˆ. l Rp d, P r, T e p Heat(R) d Rp l p ˆ. Gas(R,T) n k dp kp, X(P,R,T) r l n d kp, P R p d Rp n r P ˆ. l r k dp r Fig. 3. Ecological cycle of Guitang Group[1]. o43 o5 2005 10k Fig. 4. Waste reuse networking of the steel company among industries[9].
, r p r dž p. r p pr p k e. qp p q p l el d eˆ n v p rp k. r m o r r~ p q tl d n qp o e l kp d n vl r kkk p ˆp qp p pp n p rp m l rp r l k dp kp l v k. p r slp r o r p pn k om p r r (MILP: mixed integer linear programming)p pn p. dp n q p kp 2t l r l dp p m r nn p t lrp 2t dp p dp r m r p nn p k re r p l p [11]. p p q o d e r m rl rp q n p r d l n l ož Ž r d rp d m r s, rkv rp l n p. v v ˆ l v nl l l ˆ l v p tp er s tp. m l p p m l ˆnn 6 v, p Ž l l l v n 11 vl p 3 vl, m p p n 8 v, o pp p m md kp dž k q v n 20l v p ˆ l vp k r m [3, 5-10]. 3. i s i k qk k Lowe[1] p l q s ˆ l vp p ˆp ˆ l v tn r p qlrp edšp, l v, v qpn, v m, vl p p r m. rl p ˆ l v p tn r p o tn n (l v, v qpn, n qpn, m )l l. 3-1. i s }l l i oorr r p p l v rp ƒ v p q l pl p l v l np v rm. l v np r v pm p l vp tp, Œp l v n o p l v l q n l v l (energy/heat exchange network, HEN)p l. v l v p p e k r lp e k r p l l l v p ož Ž np r p. p l v p p r rl s q e er rl pp l k 20-30Íp l v r p r m ~r p o ˆ l v tn 553 p l p l v l m. l v p l kl q t p p p (heat pinch) p. p Linhoff[12]l p }pp pp l p p rp l p l, p rp, r r ep l p l l p [12-20]. 3-1-1. l p l p o n r p r pn l edšp k. v o~ p lr p pl o o~ m p r m p plk p pn l edšl ~ lk l rl lk rp. l v p rp l q rp. Fig. 5 composite T-Q p p l l m p T-H (temperature-enthalpy) p ˆ, m m l p l p m l T-H s l e p [14, 16, 17]. p p l t~ l pp rp l p. l vp l p lp q n rp r(pinch point)l. Fig. 5 T min p p p r m T min p l v n p k l v np p, lr p p v Œq kv. p T min p rp l tep r p m ml(above the pinch zone, AP) r p m ml(below the pinch zone, BP)p lv. p mll p lˆ v n p. 3-1-2. pn s l p } p r s r l pv kk s p r p rn v tlv l eˆ p p k r l l np p. p o edšl ~ lk l r lk rp. p l Fig. 5. Composite curve which contains super hot stream and super cold stream[16]. Korean Chem. Eng. Res., Vol. 43, No. 5, October, 2005
554 o} Ë Ëo tëpdtëev Ë ntëo Ër Ë r Ëpp l rp v l v r p k l r l p p ll [16]. p ll r o l r p rp p p, r r p n p q pp rp k p. v sp l v r p np l v p l v rp (retrofit)l kv p r r l pv kp erp. l v p pn l v [16], l p ˆp qr [17], n l v p [18], s p r [16] p q pl l v q np [18-20] p l p [16-20]. p nr l l p vre ˆ l vp k l r l v, v l n p l ˆ l v p lp k p l v p tp p kp l v mml p lk p. 3-2. s m k }l l s (mass flow analysis) 3-2-1. MFAp : rp v v (system) l vm vp p p. ˆk rl m p v k p v n p l v op o l (open system) pp, v p l v n m r v p v k (closed system) p. p rl p v p v p s l pp qo Ž p e p rm l qop p p s rr r, p v p v l v rp v r p. MFA(material flow analysis) v vl lp r v np p p p [22]. 3-2-2. MFAp l r p Adriaanse [21]p l qo (Resource Flows) r rp q kp MFA l p ~rp pd eq [23]. p p l 1970 1990 v tn r (EU l p, ) p qo p l op, o qo p GDP TMR(total material requirement)[24] DMI(direct material input)p p p ltl. p q ˆ p qop rr p p p rp p r} p p v p. v p l l (industrial metabolism)p v o (output)l MFAp r v p [24], mmp e e p v tep mmr (detoxification and pollution reduction)l r l p v q s (dematerialization and ecorestructuring) r p l m. v, p v r p rp rp lk r p p. MFA rl tn v (indicator) p p pd r, MFA l l t n v p [25]. o43 o5 2005 10k Input indicators DMI(direct material inputs) o (domestic extraction) + p TMR(total material requirements) n o + p + n v kp o (unused extractions) Output indicators DPO(domestic processed output) l qp r l p TDO(total domestic output) DPO + n v kp o (unused domestic extractions) Consumption indicators DMC(domestic material consumption) DMI TMC(total material consumption) TMR ( + rrp ) NAS(net additions to stock) rp n rp q Fig. 6p EU p tn m n p MFAp ˆ p. Fig. 6p p qol TMR, GDP DMI, o NAS v p p p l v on r}p re p. v, GDPm TMR, DMI p p l l r qop p,, qp l l r}p k v rk pp p [22]. 3-2-3. MFAp sp op MFA l vl op MFA p v p. t 2001 11o m York v lp t p n pe vp kp p p m ˆ o r p f York vlp v r v r l m p l dš l (Stockholm environment institute at York)l p e l [26]. p l l York t p l n p p p kp p v l. - 48 p ep r - vlp ~ p - q nl p l v rk -, r rq r -, nv p l v p ov n o p kp Š (ton) o p l. rp York e p p o v o 1p l 19Šp o vp n p o p v vl r k 70Í p ˆ ml p plk p ˆ., v r p ov o Yorkel qop pr pn vl rr o p r r}p n p. 2010 p l o s p ˆp v e m re lp p. (1) l v e m - lighting efficiency scenario: CFLs(compact fluorescent lights) GLS(incandescent) 5 p pp v el l GLS CFLs ~. CFLp 50Í r p n n 2010
~r p o ˆ l v tn 555 Fig. 6. MFA indicators of the EU compared with selected member states and other countries[22]. v k 1,793 hap ˆml p. - space heating and water heating sufficiency scenario: 80Íp York rl pt} p q m 50Í p p rp 84Í p p p p 7,200 ha, v 30Í r p ˆml p. (2) j } e m j } e ml q np o j p s el seˆp f j l n ˆ mlp p. - curb-side collection recycling scenario: p q n e m p 2010 v 4,787 ˆ mlp v p pv, sp j } l ˆ ml v k 63,000 ha r p ˆ mlp v p. - o s p } e m: prp q n j kp 2010 v k 10Íp ˆ ml pp p. p p p Ontariol 1 l v v j p k 42Í eˆ rm. 3-2-4. MFA EIP ˆ l vp r p o v l v p r p rrp rp l n tn pp l sp erp MFA p Š p EIPl rn prp rp EIP np p [27]. ˆ l v l qp l v p e r~, k p lp prp v p l p., s MFA l n v le EIP l l l rn pp p., l o k v o MFAl l v pl EIPlp rnl p p p. Yorkep MFA l k p EIP l p v p l v vl p v l q l l rr l pl q n p v v rp r qo n k l e m q p r}rp n p. MFA l p vp l n e p n rp pv p kp v MFA l s j pp p. kn kp v EIP MFAp l p e m q l p r}rp v pl tp p ˆ p (eco-efficiency)l v p tn p p [26-30]. 3-3. k }l l water pinch l } l qpn sp l l r l n rk el rp rp ~ rp p l n p pn p s p f pnp p p p q n qpn p p ep p. o (water pinch technology)p r Korean Chem. Eng. Res., Vol. 43, No. 5, October, 2005
556 o} Ë Ëo tëpdtëev Ë ntëo Ër Ë r Ëpp Fig. 7. Source and sink composite curves of water pinch[31, 43]. p q p r l op ln tp el qpn p np r~ n n p tp p p tp r rp p rp rn qpn pp p p k r [31, 32]. 3-3-1. o p n qpnp o rp r p o }ov n qpn o pn p. p ppv, rp p o p o } q l el p }. k em qp n v rp } } e l n } qp ql n e dšp p o p. p rl n pn ep qpn(reuse), q qpn(regeneration), q qpn(regeneration recycle) p [31, 32, 43]. o p rp p sourcem sink pp tn p mm p r l r q p. Sourcem sink pp r~rp p pinch point }k l r s l p n p qpn rp rp }k p p. Fig. 7l n p source ~r p ˆ n mm l p mmp p l ˆ. rp n r n p rp v mm p p l p r p ~r rr p ˆ. p p r p l sourcem sinkp r p m m p p l p n p mm v p. p l rp mm rp r op r p q f n p [31, 34-36, 43, 44]. p r~ rp o l rn p l r pp n qpnp (process integration) p. r p r mm p s l p l e e p rp. r p r p mm s Žk l v composite curve mm p p k p. m m p p l Žk r l p mm l r p p. p r p o43 o5 2005 10k v, o p k mm vl p n q v p. p rp l p mm l p r n. p r~ r o l s lk [43]. kl o p rp l p p l v mm vp l. pl n qpn o,,, o r r r p rk l [45-49]. rp p q r, o r, mm vp p (nonlinear programming)l p p f qpn p p. rl rl r q lp q ˆ l sp llk.p o m r r p rp m qrp p. lv l nq op v p n p k r p. p p p rp v ƒ r r r eq l p l l o p n l e p. v v p r p m e o q r p r p mp [43, 46-49](o p n qpn o p q p p [49]p s). 3-3-2. o EIP o p ˆ v n qpn p ~ rp v p p p r, r m er rne m k p re pp p m p. l v n qpn p e sp p qp o p vr rn rrp ˆ p m p [49]. m l l v l n qpn p n r l p r } qp sq l r r l o q n r p e (uncertainty) v, ˆ l v l p p trade off r p r. p o o r k q / l n qpnp o ~ r o l l m p n [49]. 3-4. m k m i (life cycle assessment, LCA) 3-4-1. LCAp n LCA r p p p (life cycle)p o p } / / r p /o / n/ /q n l qo m pl m p r rp l p rl p p l r t ~ p p rp o p. n lp r ( d)p p p k r rp p f rp ˆ l p p v p p., q p r p l m l r r/r r r pp f p ˆl p [50-60]. ˆ l v, v, l v qpn e qpnl m r rp rk l kl r r p l v r p e p o
~r p o ˆ l v tn 557 Fig. 8. LCA frameworks[50]. ˆ l vp r l n p. LCA p p n p p o, 1980 l o l SETAC(society of environmental toxicology and chemistry)p rp l p p lr. o l do, dod,, p, d l l l, Leiden Universityl o SETACp p r [50, 51]. p p p 1993 l ISO/TC207( )l LCAp t ql p eq l, 1997 l ISO14040p rr l. n l LCA p q p pr r pv p v p k r p q, n l l nš r vr (ISO/TR14025, Type III) 2001 2o e p [51, 54]. 3-4-2. LCA r LCA r s o r(goal and scope definition), (inventory analysis), m (impact assessment), (interpretation) p tn, p l, Š, p n p (Fig. 8). v tn l r p [51, 52]. 3-4-2-1. r s o r LCAp rp l r, s o, o (functional unit) p ep r, n r p p p. p ep l p r pol r k, s o re p v l o tp n ~r p p p l, o v n n p l v l l e np pp rr rp p l s o sr p n. o p p edš(r, d, r )p p d o p rp v rp o(m, r r 1 MWh, qp r 1 ton ) r n [50, 51]. 3-4-2-2 p l LCAp r ( edš)p p ep l ~ rl Œp v l v, r,, v, Škp v l vl p v, (inventory data)l p q., r p rs, n, p (foreground data) p rp LCA q vr v v, o l v qop } n, r p (background data) s LCA p s l. l v p r s om k, p rl p r ( )p m n r~ p l l p k [51]. 3-4-2-3. m l p n l m p tn. p m t(impact category) m p p p p r, l (equivalency factor) l p m p p m t o l p. k m t t (weighting factor) l s rp m p p v p. r rp m t ms Ž, v m, p, ˆ,, d, qo,, mk p p [51-56]. 3-4-2-4. r LCAp r s ol m p p p l q/ kp re p. 3-4-3. EIPl m LCA nl rv l[52-54], v[55], oq redš[56], q n[58-60] p rn p. v vp LCA rn l l, r p p p l r p n k o p },, p } rl p k pl., r l v l vp p p p l d p l o p },, p } l tp pp p. (closed-loop system) p l q np r r e q n v l vp k v l vp v p lk q nl r r n [58]., p qo d l p n p q } q n p n rl p m m vp edšp vr l l v } n. l s p q p q n l n k } np q n vp kp r e p nl q } v p p q n/ p n r LCA l rp q n kp r lk [58-60]. 4. EIP } n ~ ˆ l v s l v k p l r ~ rp vl m s p v qo l vp. l 1 kp e ll pl 2005 11o rp 15 kp ˆ l v lp v p. ˆ l v l pn tn p kl np nl v l l v r o, m~, l p r rp l, v l mp p p l v lk [3]., EIP e sp r r p r m rp v l p t v p lp e s Korean Chem. Eng. Res., Vol. 43, No. 5, October, 2005
558 o} Ë Ëo tëpdtëev Ë ntëo Ër Ë r Ëpp t r (muticriteria objective function) r v r ~ e t r s(multicriteria decision making) ˆ. EIP l ˆ l p l l vp p n l p k[7], l p q n rl m [58, 61], p l k r ~ v l p l tp p ˆ p (ecoefficiency)l v ˆ l v r~p t r s r rp [61] p kp EIP p l tn l p p. 5. h rp mmp e p pe v p p o p l l ˆ ˆ l v p tn p s p. l ˆ l vp v n k el ˆ l v p tn (l v, v qpn, n qpn, m )l l m. p kl ˆ l v l 2005 11o ll l ˆ l v l rp kl on p kl EIP l l np. l q ~r vo p ~r pr l p water pinch p pn ~ l v n qpn r edš p r vop lp pl. y 1. Lowe, E. A., Eco-Industrial Park Handbook for Asian Developing Countries, Asian development bank report, USA(1997). 2. Allenby, B. R. Industrial Ecology: Policy Framework and Implementation, Prentice Hall, New jersey, USA(1999). 3. Lee, K. H., Master Plan Establishment of Eco-Industrial Parks for Infrastructure of Cleaner Production, Report, KNCPC(2004). 4. von Koppen, K. and Mol, A. P. J., Ecological Modernization of Industrial Ecosystems. IWA publishing(2002). 5. Kim, J. K., Kalundborg Eco-industrial Complex in Denmark and the Application Study in Korea, 2 nd International Conference of Eco-industrial Park, KNCPC, Seoul, Korea(2004). 6. Choi, J. S., A Study on the Improvement of Industrial-Environment Policies for the Development of EIPs in Korea, 2 nd International Conference of Eco-industrial Park, KNCPC, Seoul, Korea(2004). 7. Lee, T. Y. and Yoon, C. H., Energy and Environmental Contamination Cost Minimization by EIP Developments, NICE, 22(4), 420-425(2004). 8. Moon, S. Y., Case Study of Resource Recycle Typed Industrial Development, Environ. Resource. Econmics. Review, 12(2), 347-382 (2003). 9. Jang, Y. J., Industrial Symbiosis Study for EIP Development: Korea Electric Power and POSCO, Environ. Resource. Econmics. Review, 7(2), 735-755(1999). 10. Sterr, T. and Ott, T., The Industrial Region as a Promising Unit for Eco-Industrial Development Reflections, Practical Experience and Establishment of Innovative Instruments to Support Industrial Ecology, J. Cleaner Production, 12(8), 947-965(2004). 11. Lee, I. B., Utility Distribution Simulation Research under FINEX System, POSTECH, Report(2005). 12. Linnhoff, B., User Guide on Process Integration for the Efficient Use of Energy, Inst. Chem. Engrs.: Rugby(1982). 13. Linnhoff, B. and Hidermarsh, E., The Pinch Design Method of Heat Exchanger Networks, Chem. Eng. Sci., 38(2), 745-752(1983). 14. Linnhoff, B., Pinch Analysis-A State-of-the-Art Overview, Trans. IChemE., 71(A), 503-512(1993). 15. Lee, I. B., State-of-Art and Prospective of Process Synthesis Technology, Chem. Eng. and Technol., 8(2), 147-155(1990). 16. Lee, I. B., Toward the Synthesis of Global Optimum Heat Exchanger Networks under Multiple-Periods of Operation, Korean J. Chem. Eng., 8(2), 95-104(1991). 17. Lee, I. and Reklaitis, G. V., Toward the Synthesis of Global Optimum Heat Exchanger Networks: the Unpinched Case, Chem. Eng. Communication, 75(2), 57-88(1989). 18. Rodera, H. and Bagajewicz, M., Targetting Procedure for Energy Savings by Heat Integration Across plants, AIChE J., 45(8), 1721-1742(1999). 19. Bagajewicz, M. and Rodera, H., Multiple Plant Heat Integration in a Total Site, AIChE J., 48(10), 2255-2270(2002). 20. Bagajewicz, M. and Rodera, H., Energy Savings in the Total Site Heat Integration Across Many Plants, Comp. & Chem. Eng., 24(7), 1237-1242(2000). 21. Adriaanse, A., Bringezu, S., Hammond, A., Moriguchi, Y., Rodenburg, E., Rogich, D. and Schutz, H., Resource Flows: The Material Basis of Industrial Economies, A Joint Study of the World Resources Institute, Wuppertal Institute, the Netherlands Ministry of Housing, and the Japanese National Institute for Environmental Planning, World Resources Institute, Washington(1997). 22. EEA. Glossary on website, http://glossary.eea.eu.int/eeaglossary/ M/material_flow_analysis 23. Bringezu, S., Moll, S., Kowalski, M. F., Kleijn, R. and Palm, V., Regional and National Material Flow Accounting, From Paradigm to Practice of Sustainability, UK(1997). 24. Bringezu, S. Industrial Ecology and Material Flow Analysis: Basic Concepts, Policy Relevance and Some Case Studies, Perspectives on Industrial Ecology UK(2003). 25. Eurostat, Economy-wide Material Flow Accounts and Derived Indicators, A Methodological Guide Office for Official Publications of the European Union, Luxembourg(2001). 26. Barrett, J., A Material Flow Analysis and Ecological Footprint of York: Executive Summary, Stockholm Environment Institute(1997). 27. Brunner, P. H. and Ruchberger, H., Practical Handbook of Material Flow Analysis, CRC press, New York, USA(2004). 28. Bringezu, S., Material Flow Indicators, Sustainability Indicators, J. Wiley Ltd. London(1997). 29. Christensen, C. L, Skarup, S., Maag, J. and Jensen, S. H., Mass Flows Analysis of Mecury 2001, Technical report, Ministry of EPA, Denmark(2004). 30. Fourcade, T. Mass Flow Analysis of Packaging in the UK, o43 o5 2005 10k
~r p o ˆ l v tn 559 Development, University of Leeds, UK(2001). 31. Wang, Y. P. and Smith, R. Wastewater Minimization, Chemical Engineering Science, 49(7), 981-1006(1994). 32. Deul, A. S., Systematic Approach to Water Resource Management in Industry, IWA publishing(2002). 33. Dunn Mann, J. G. and Liu, Y. A., Industrial Water Reuse and Wastewater Minimization, McGraw-Hill(1999). 34. Dunn, R. F. and Wenzel, H., Process Integration Design Methods for Water Conservation and Wastewater Reduction in Industry Part I. Design for Single Contaminants, Clean Products and Processes, 121(3), 307-318(2001). 35. Dunn, R. F. Wenzel, H., Gottrup, L. and Kringelum, J., Process Integration Design Methods for Water Conservation and Wastewater Reduction in Industry Part III. Experience of Industrial Application, Clean Products and Processes, 121(3), 330-329(2001). 36. Dunn, R. F., Wenzel, H. and Overcash, M. R., Process Integration Design Methods for Water Conservation and Wastewater Reduction in Industry Part II. Design for Multiple Contaminants, Clean Products and Processes, 121(3), 319-329(2001). 37. El-Halwagi, M. M., Pollution Prevention through Process Integration, Academic press(1997). 38. El-Halwagi, M. M. and Manousiouthakis, V., Simultaneous Synthesis of Mass-exchange and Regeneration Networks, AIChE J., 36(8), 1209-1219(1990). 39. El-Halwagi, M. M. and Manousiouthakis, V., Synthesis of Mass Exchange Networks, AIChE J., 35(8), 1233-1244(1989). 40. Wang Y. P. and Smith R., Design of Distributed Effluent Treatment System, Chem. Eng. Sci., 49(18), 3127-3145(1994). 41. Wang, Y. P. and Smith, R., Wastewater Minimization with Flowrate Constraints, Trans IChemE, 73(A), 889-904(1995). 42. Kuo, W. J. and Smith, R., Effluent Treatment System Design, Chem. Eng. Sci., 52(23), 4273-4290(1997). 43. Yoo, C. K., Lee, C. K., Heo, S. K., Lee, I. B., Park, D. S., Kim, Y. W. and Song, B. K., Water Pinch Technology for Water and Wastewater Minimization in the Process Industry, NICE, 21(1), 65-73(2003). 44. Park, D. S., Kim, Y. W., Song, B. K., Lee, I. B. and Yoo, C. K., Optimization of Water Reuse Network Using Water Pinch Technology in Petrochemical Industries, J. of Korean Society of Environmental Engineers, 25(12), 1550-1556(2003). 45. Yang, Y. H., Lou, H. H. and Huang, Y. L., Synthesis of an Optimal Wastewater Reuse Network, Waste Management, 38(5), 311-319 (2000). 46. Lens, P., Wilderer, P. and Asano, T., Water Recycling and Resource Recovery in Industry, IWA publishing(2002). 47. Aspen water TM 10.2: Getting Started Guide, Manual of Aspen Water, Aspen Tech(2001). 48. Aspen water TM 10.2: Users Guide, Manual of Aspen Water, Aspen Tech(2001). 49. Yoo, C. K., Lee, T. Y., Moon, J. K., Chun, H. D. and Lee, I. B., Water Pinch Technology and Design of Water Reuse Network, Submitted to Korean Society of Environmental Engineers(2005). 50. International Standards Organization, Environmental Management Life Cycle Assessment Principles and Frameworks, ISO 14040(1997). 51. NamGun, E. and Hwang, Y. W., LCA Application to Water Treatment Area, Environment Media, 1(1), 92-97(2004). 52. Kim, J. G., Park, C. H., Chung, C. C., Hwang, Y. W., Application of LCA (Life Cycle Assessment) for Paper Industry, J. of Korean Society of Environmental Engineers, 23(5), 857-869(2001). 53. Kim, J. B., Hwang, Y. W., Park, K. H. and Seo, S. W., Environmental Efficiency Assessment of Corrugated Board for Packing using the Life Cycle Assessment Method, J. KSEE, 25(5), 588-594(2003). 54. Park, K. H., Hwang, Y. W., Cho, B. M. and Kim, H. J., Environmental Impact Evaluation for Paper & Pulp Package Products - Life Cycle Assessment Case Study, J. KSEE, 25(11), 1411-1419(2003). 55. Jo, H. J., Hwang, Y. W. and Park, K. H., Environmental Assessment and Development of Program for Flexible Packages of Synthetic Resins using LCA Methodology, J. KSEE, 25(10), 1289-1298(2003). 56. Ko, K. H., Hwang, Y. W., Park, K. H., Jo, H. J. and Jae, M. S., Environmental Impact Evaluation for the Power Generation System Using the LCA Methodology, J. KSEE, 27(7), 704-711(2005). 57. Lee, K. W., Hwang, T. Y., Kim, S. D. and Lee, K. M., An Allocation Method for LCA of the Cascade Recycling System in Consideration of the Quality Degradation of Material, J. KSEE, 19(4), 459-470(1997). 58. Schneider, F., Allocation and Recycling : Enlarging to Cascade System, European Workshop on Allocation in LCA, Leiden, 39-53(1994). 59. Rydberg, T., Cascade Accounting in Life Cycle Assessment Applied to Polymer Recycling, Polymer Recycling, 1(4), 233-241(1995). 60. Kang, H. K., Development of a New Eco-Design Tool, Environ. Eng. Res., 8(1), 1-7(2003). 61. Yoo, C. K., Heo, S. K., Yoo, D. J., Lee, S. J., Shin, J. N., Park, Y. J., Yoon, H. M., Chun, H. D. and Lee, I., Case Studies and Design Strategies of Eco-Industrial Park (EIP), Korean conference of Environ. Eng. Society(2005). Korean Chem. Eng. Res., Vol. 43, No. 5, October, 2005