Dual- Gate FET T he Analysis and Applications of Nonlinear Characteris tics of Dual- Gate FET 1999 12



Similar documents
. 서론,, [1]., PLL.,., SiGe, CMOS SiGe CMOS [2],[3].,,. CMOS,.. 동적주파수분할기동작조건분석 3, Miller injection-locked, static. injection-locked static [4]., 1/n 그림

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

<313920C0CCB1E2BFF82E687770>

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

RRH Class-J 5G [2].,. LTE 3G [3]. RRH, W-CDMA(Wideband Code Division Multiple Access), 3G, LTE. RRH RF, RF. 1 RRH, CPRI(Common Public Radio Interface)

07 최운성.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 9, Sep GHz 10 W Doherty. [4]. Doherty. Doherty, C

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 3, Mar (NFC: non-foster Circuit).,. (non-foster match

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1),

¼º¿øÁø Ãâ·Â-1

DIB-100_K(90x120)

전자실습교육 프로그램

Slide 1

<4D F736F F F696E74202D F FB5BFBACEC7CFC0CCC5D820B1E8BFA9C8B22E BC8A3C8AF20B8F0B5E55D>

Small-Cell 2.6 GHz Doherty 표 1. Silicon LDMOS FET Table 1. Comparison of silicon LDMOS FET and GaN- HEMT. Silicon LDMOS FET Bandgap 1.1 ev 3.4 ev 75 V

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun , [6]. E- [9],[10]. E- 3D EM(electromagnetic),,

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

10신동석.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

고주파의 이해

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

<3130BAB9BDC428BCF6C1A4292E687770>

박선영무선충전-내지

11 함범철.hwp

< B5BFBEC6BDC3BEC6BBE E687770>

04 김영규.hwp

2

Microsoft PowerPoint - analogic_kimys_ch10.ppt

DBPIA-NURIMEDIA

No Title

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1

Microsoft Word - SRA-Series Manual.doc

24 GHz 1Tx 2Rx FMCW ADAS(Advanced Driver Assistance System).,,,. 24 GHz,, [1] [4]. 65-nm CMOS FMCW 24 GHz FMCW.. 송수신기설계 1 1Tx 2Rx FMCW (Local Oscillat

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

Microsoft PowerPoint - ch25ysk.pptx

09권오설_ok.hwp

±è¼ºÃ¶ Ãâ·Â-1

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Aug.; 27(8),

韓國電磁波學會論文誌第 21 卷第 11 號 2010 年 11 月 (a) (a) Frequency response (b) (b) Corresponding pole-zero diagram 그림 1. Fig. 1. Characteristic of multi-band filte

Microsoft PowerPoint - AC3.pptx

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

3 : ATSC 3.0 (Jeongchang Kim et al.: Study on Synchronization Using Bootstrap Signals for ATSC 3.0 Systems) (Special Paper) 21 6, (JBE Vol. 21

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Oct.; 27(10),

- 2 -

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

Microsoft Word - 青野論文_李_.doc

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Apr.; 28(4),

1 Nov-03 CST MICROWAVE STUDIO Microstrip Parameter sweeping Tutorial Computer Simulation Technology

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

6 10 GHz InGaAs 0.15 μm 27 dbm GHz,, DAADetection And Avoid,. UWB. UWB 41.3 dbm/ MHz.,,, PRFPulse Repetition Frequency., UWB IC. UWB PA [1]

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 27(1), ISSN

(095-99)미디어포럼4(법을 알고).indd

며 오스본을 중심으로 한 작은 정부, 시장 개혁정책을 밀고 나갔다. 이에 대응 하여 노동당은 보수당과 극명히 반대되는 정강 정책을 내세웠다. 영국의 정치 상황은 새누리당과 더불어 민주당, 국민의당이 서로 경제 민주화 와 무차별적 복지공약을 앞세우며 표를 구걸하기 위한

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 25(12),

입장

<B5B6BCADC7C1B7CEB1D7B7A52DC0DBBEF7C1DF E687770>

<4D F736F F F696E74202D20BEC6B3AFB7CEB1D7B9D7C6C4BFF64943BFF6C5A9BCA55F FBEC8B1E6C3CA2E707074>

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

°í¼®ÁÖ Ãâ·Â

0429bodo.hwp

伐)이라고 하였는데, 라자(羅字)는 나자(那字)로 쓰기도 하고 야자(耶字)로 쓰기도 한다. 또 서벌(徐伐)이라고도 한다. 세속에서 경자(京字)를 새겨 서벌(徐伐)이라고 한다. 이 때문에 또 사라(斯羅)라고 하기도 하고, 또 사로(斯盧)라고 하기도 한다. 재위 기간은 6

時 習 說 ) 5), 원호설( 元 昊 說 ) 6) 등이 있다. 7) 이 가운데 임제설에 동의하는바, 상세한 논의는 황패강의 논의로 미루나 그의 논의에 논거로서 빠져 있는 부분을 보강하여 임제설에 대한 변증( 辨 證 )을 덧붙이고자 한다. 우선, 다음의 인용문을 보도록

cls46-06(심우영).hwp

최우석.hwp

교사용지도서_쓰기.hwp

E1-정답및풀이(1~24)ok

< BDC3BAB8C1A4B1D4C6C75BC8A3BFDC D2E687770>

<C1B6BCB1B4EBBCBCBDC3B1E2342DC3D6C1BE2E687770>


<C0CEBCE2BABB2D33C2F7BCF6C1A420B1B9BFAAC3D1BCAD203130B1C72E687770>

untitled

민주장정-노동운동(분권).indd

과 위 가 오는 경우에는 앞말 받침을 대표음으로 바꾼 [다가페]와 [흐귀 에]가 올바른 발음이 [안자서], [할튼], [업쓰므로], [절믐] 풀이 자음으로 끝나는 말인 앉- 과 핥-, 없-, 젊- 에 각각 모음으로 시작하는 형식형태소인 -아서, -은, -으므로, -음

6±Ç¸ñÂ÷

<C3D6C1BE5FBBF5B1B9BEEEBBFDC8B0B0DCBFEFC8A C3D6C1BEBABB292E687770>

초등국어에서 관용표현 지도 방안 연구

177

제주어 교육자료(중등)-작업.hwp

¸é¸ñ¼Ò½ÄÁö 63È£_³»Áö ÃÖÁ¾

01Report_210-4.hwp

<C3D1BCB15FC0CCC8C45FBFECB8AE5FB1B3C0B0C0C75FB9E6C7E D352D32315FC5E4292E687770>



교육 과 학기 술부 고 시 제 호 초 중등교육법 제23조 제2항에 의거하여 초 중등학교 교육과정을 다음과 같이 고시합니다. 2011년 8월 9일 교육과학기술부장관 1. 초 중등학교 교육과정 총론은 별책 1 과 같습니다. 2. 초등학교 교육과정은 별책

시험지 출제 양식

우리나라의 전통문화에는 무엇이 있는지 알아봅시다. 우리나라의 전통문화를 체험합시다. 우리나라의 전통문화를 소중히 여기는 마음을 가집시다. 5. 우리 옷 한복의 특징 자료 3 참고 남자와 여자가 입는 한복의 종류 가 달랐다는 것을 알려 준다. 85쪽 문제 8, 9 자료

상품 전단지

::: 해당사항이 없을 경우 무 표시하시기 바랍니다. 검토항목 검 토 여 부 ( 표시) 시 민 : 유 ( ) 무 시 민 참 여 고 려 사 항 이 해 당 사 자 : 유 ( ) 무 전 문 가 : 유 ( ) 무 옴 브 즈 만 : 유 ( ) 무 법 령 규 정 : 교통 환경 재

2

DBPIA-NURIMEDIA

화이련(華以戀) hwp

ÆòÈ�´©¸® 94È£ ³»Áö_ÃÖÁ¾

歯1##01.PDF

<5BC1F8C7E0C1DF2D31B1C75D2DBCF6C1A4BABB2E687770>

120229(00)(1~3).indd

DBPIA-NURIMEDIA

Transcription:

Dual- Gate FET T he A naly s is and A pplication of Nonlinear Characteris tics of Dual- Gate FET 199 9

Dual- Gate FET T he Analysis and Applications of Nonlinear Characteris tics of Dual- Gate FET 1999 12

1999 12

Abstract. 1. Dual- Gate FET DC RF 2 2.1. Dual- Gate FET 2 2.1.1. Dual- Gate FET mode 2 2.1.2. Dual- Gate FET 9 2.1.3. Gate 2 11 2.2. Harmonic Balance Method 14 2.2.1. Harmonic Balance Analysis 14 2.2.2. Generalized Harmonic Balance Analysis 24. 26. 29 4.1. FET 30 4.1.1. mode 30 4.1.2. 31 4.2. Variable Gain Amplifier 33 4.2.1. 33 4.2.2. 33 4.3. 36. 38 39

< > 1. Dual- Gate FET 2 2. VDS1 3 3. Dual- Gate FET bi- dimensional DC 4 4. Dual- Gate FET 4 mode 5 5. VG2 mode 7 6. VGS1 mode 8 7. VGS1/VG2 VDS mode 8 8. Dual- Gate MOSFET 9 9. Dual- Gate FET 10 10. 2 11 11. 3 12 12. 13 13. 14 14. 18 15. Harmonic Balance Method Algorithm 22 16. Predistortion 27 17. 28 18. BF904 Dual- Gate MOSFET Model 29 19. VDS=6V BF904 mode 30 20. Gate 2 S11 S22 31 21. Gate 2 S21 32 22. Gate 2 S12 32

23. 7.5dB 33 24. - 2.5dB 34 25. VG2 34 26. P1dB simulation 35 27. IP3 simulation 35 28. IP3 36 29. 37 30. 37 31. 37

ABST RACT In this thesis, a simple method of identifying operating modes in Dual- Gate FET and reducing the variations of S- parameters due to termination conditions of Gate 2 is suggested. Based on the proposed method, the variable gain amplifier, w hose input as w ell as output return losses are below - 20dB w ithin the 10dB gain variation, is designed and fabricated. In order to investigate the nonlinear characteristic of the fabricated amplifier, nonlinear circuit analysis is performed using the w ell- know n harmonic balance analysis method. Based on the predicted nonlinear characteristics, the IP3 as w ell as P1dB of the designed variable gain amplifier is analyzed. T he experimental results of the nonlinear characteristics of the variable gain amplifier agree w ith the theoretical results. An IM generator, applicable to the predistortion linearizer, w hich is made of tw o hybrids and tw o variable gain amplifiers show s that at least 20dB of the main signals are rejected below the third order IM signals w ith the 15dB of dynamic range up to 12dBm/tone.

Dual- Gate FET, Gate 2 S- parameter. 10dB - 20dB (Variable Gain Amplifier),. Harmonic Balance, HPA(High Pow er Amplifier) Predistotor, 3 20dB Dynamic range 12dBm/tone 15dB.

. Dual- Gate FET Gate 4, 70., (VGA)[1][2], [3][4], phase shifter[5].,,., Gate 2, Drain, P1dB,, S- parameter,., Harmonic.,, Dual- Gate FET Single Gate FET.,. Dual- Gate FET DC, mode, Gate 2 RF, =0,, Gate 2 bias S- parameter,. Harmonic Balance Gate 2 P1d,, HPA(High Pow er Amplifier) Predistortion (IM Generator). - 1 -

. Dual- Gate FET DC RF 2.1. Dual- Gate FET 2.1.1. Dual- Gate FET mode[6][7] Dual- Gate FET 1 (b) FET cascode. Dual- Gate FET FET, VGS1, VG2, VDS, ID, D1 VDS1. VDS1 FET, Dual- Gate FET. VDS1 2. 1. Dual- Gate FET - 2 -

2. VDS1 2 RC, (2.1.1). R c l 2 l 1 + l 2 * V DS I D V GS 1 = V GS2 0. 8V at V DS 0 (2.1.1) l 1, l 2 FET channel length. D V D - I D R C, V DS1 = V D - 2 I D R C. OP amp inverting input i 1 = I D R C R, i 2 = V O - ( V D - I D R c ) R (2.1.2) R ( i 1 + i 2 ) = V D - I D R C (2.1.3) (2.1.2) (2.1.3) V O - ( V D - I D R c ) = V D - 2 I D R C (2.1.4) OP Amp D VDS1. VDS1 3 bi- dimensional DC. - 3 -

3. Dual- Gate FET bi- dimensional DC channel length, VDS1. FET mode. FET cascode 4 4 mode. FET, I D1 = I D2 = I D (2.1.5) V DS = V DS 1 + V DS2 (2.1.6) V GS2 = V G2 - V DS1 (2.1.7) FET. I D = 0 V GS - V T < 0 = ( V GS - V T ) 2 0 < V GS - V T < V DSsat = [ 2 ( V GS - V T )V DS - V 2 DS ] 0 < V DS sat < V GS - V T (2.1.8) - 4 -

4. Dual- Gate FET 4 mode mode, mode A : FET, common Source common Gate cascode. V DS1 > V DS1sat, V DS2 > V DS2sat (2.1.9) ( V GS1 - V T ) 2 = ( V GS2 - V T ) 2 (2.1.10) V GS1 = V GS 2, (2.1.8) V DS1 = V G2 - V GS1 (2.1.11) I D = ( V GS1 - V T ) 2 (2.1.12). VDS1 ID, - 5 -

VGS1 VG2. Drain current ID VGS1 VDS1 T 2 VGS2. mode B : T 1, T 2 T 1 T 2 Source. 0 < V DS1 < V DS1sat, V DS2 > V DS2sat I D1 = I D2 = I D I D = [ 2 ( V GS1 - V T )V DS1 - V 2 DS1 ] = ( V GS 2 - V T ) 2 = ( V G2 - V DS1 - V T ) 2 VDS1 2 V DS1 = 0. 5[ ( V GS1 - V T ) + V G2 - V T - ( ( V GS 1 - V T ) + V G2 - V T ) 2-2( V G2 - V T ) 2 ] I D = ( V G2 - V T - V DS 1 ) 2 VDS1 VGS1 VG2. Drain current ID VDS, T 1 (RDS1) VGS1, Drain current ID VG2. mode C : T 2, T 1. V DS1 > V DS 1sat, V DS2 < V DS 2sat V DS1 = V G2 - V T - ( V DS + V T - V G2 ] 2 + ( V GS 1 - V T ) 2 I D = ( V GS1 - V T ) 2-6 -

mode Drain current ID VDS VG2, VGS1. mode D : T 1 T 2. 0 < V DS1 < V DS1sat, 0 < V DS 2 < V DS2sat V DS1 = 0. 5( V GS1 + V G2 ) - V T - [ V DS + V T - 0. 5( V GS1 + V G2 )] 2 - V DS ( V T - V GS1 + 0. 5V DS ) I D = [ 2 ( V GS 1 - V T ) V DS1 - V 2 DS 1] Drain current ID VDS, VG2, VGS1. DC mode 5 6, VGS1 VG2 7. 5. VG2 mode - 7 -

6. VGS1 mode 7. VGS1/VG2 VDS mode - 8 -

2.1.2. Dual- Gate FET [2][8] 8. Dual- Gate MOSFET 8 Dual- Gate MOSFET. Dual- Gate FET Single- Gate Gate Gate Drain. 9. Gate 2 RF, FET, cascode Amplifier. cascode Amplifier Single- Gate FET feedback,. S12 S22. FET vds RDS2 feedback, common Gate Amplifier 1 g m 2, - 9 -

1 1 / / R g DS1 m 2 g m 2, common Source Amplifier, 1. T 1 Gate vgs1 Drain vds1. Gate 2, CGS2 vds1, gm2 gm1. CDS v ds - v ds1 * R DS2 1 g m 2 = v ds1 = v ds v ds1 = 1 + g m * R DS vds1 vds Cgd1 feedback., Cgd2 Gate 2 RF feedback. vds vds1 T 1 RDS1. 9. Dual- Gate FET - 10 -

2.1.3. Gate 2 [2] Dual- Gate FET 4, Source 3. Variable Gain Amplifier Dual- Gate FET Gate 1 RF, Gate 2 gm1., Gate 2. 10 2 L b 2 = a ' = - 1 L a 2 = S 21 a 1 + S 22 a 2 (2.1.13) a 2 = ( - 1 L - S 22 ) - 1 S 21 a 1 (2.1.14) b 1 = S 11 a 1 + S 12 a 2 = ( S 11 + S 12 ( - 1 L - S 22 ) - 1 S 21 )a 1 (2.1.15) 2, 1 S- parameter 3 2 S- parameter. 10. 2-11 -

11. 3 3 S- parameter 3*3, 2*2 S 11 S 12 S 13 S 21 S 22 S 23 - - + - = [ [ S 11 ] [ S 12 ] ] [ S 21 ] [ S 22 ] S 31 S 32 S 33 (2.1.16) (2.1.15) b [ 1 = ( [ S b 2 ] 11 ] + [ S 12 ]( = [ [ S 11 S 12 ] + [ S 13 ] S 21 S 22 S 23 ( [ - 1 3 - [ S ]) - 1 [ S ]) [ a 1 ] 22 21 a 2-1 3 ] - [ S ]) - 1 [ S S ]] [ a 1 ] 33 31 32 a 2 = S 11 + S 21 + S 13 S 31 3 1- S 33 3 S 12 + S 23 S 31 3 1- S 33 3 S 22 + S 13 S 32 3 1- S 33 3 S 23 S 32 3 1- S 33 3 [ ] a 1 a 2 (2.1.17) 3 S- parameter,,, 3. Variable Gain Amplifier port 3 parameter 3=0, (2.1.17) - 12 -

(2.1.18) port 3 b [ 1 = b 2 ] [ S 11 S 12 ] a S 21 S 22 [ 1 ] a 2 (2.1.18) 12 Gate 2 =0 50. DC, RF =0 50 DC Block C. 12. Gate 2 50-13 -

2.2. Harmonic Balance Method[9][10][11] Harmonic Balance Volterra- Series. Harmonic Balance. P1dB Harmonic, Mixer (LO) (RF), Harmonic Balance, Large- Signal- Small- Signal. Harmonic Harmonic Balance. Volterra- Series,. Generalized Harmonic Balance.,.. Dual- Gate FET Gate 2 bias P1dB, Harmonic Balance Generalized Harmonic Balance. 2.2.1. Harmonic Balance Analysis Harmonic Balance Analysis, FET Harmonic, P1dB,. - 14 -

,., FFT. 13. 13. port, port. Z S ( ) Z L ( ),. I/V,. - 15 -

Harmonic Balance Method 13 Kirchhoff' s Current Law port Harmonic. N, K Harmonic, I 1, 0 I 1, 1 : I 1, K I 2, 0 I 2, 1 : I 2, K : I N, K + I 1, 0 I 1, 1 : I 1, K I 2, 0 I 2, 1 : I 2, K : I N, K = 0 (2.2.1) I n, k port n k harmonic, Y- matrix port. I n, k port. I 1 Y 1, 1 Y 1, 2... Y 1, N Y 1, N + 1 Y 1, N + 2 V 1 I 2 Y 2, 1 Y 2, 2............ V 2 : = : : : : : : : (2.2.2) I N + 1 Y N + 1, 1 Y N + 1, 2... Y N + 1, N Y N + 1, N + 1 Y N + 1, N + 2 V N + 1 I N + 2 Y N + 2, 1 Y N + 2, 2... Y N + 2, N Y N + 2, N + 1 Y N + 2, N + 2 V N + 2-16 -

(2.2.2) vector I (2.2.3) subvector. I n, 0 I n, 1 I n = I n, 2 : (2.2.3) I n, K I n n port harmonic vector. vector V subvector. V n, 0 V n, 1 V n = V n, 2 : (2.2.4) V n, K (2.2.2) Y- matrix (2.2.3) (2.2.4) (N+2)*(N+2) K*K submatrix. submatrix p p., diagonal matrix. p, Y- matrix - 17 -

Y m, n = diag [ Y m, n ( k w p ) ], k = 0, 1, 2..., K (2.2.5) Y m, n ( 0) 0 0... 0 0 Y m, n ( w p ) 0... 0 Y m, n = 0 0 Y m, n ( 2w p )... 0 : : :... : 0 0 0... Y m, m ( K w p ) (2.2.6) subvector V N + 1 V N + 2 = V b 1 V S 0 : 0 V b 2 0 0 : 0 (2.2.7) V b 1, V b 2 bias bias, Vs. N+2, N,, N port - 18 -

I 1 Y 1, N + 1 Y 1, N + 2 Y 1, 1 Y 1, 2... Y 1, N V 1 I 2 : = Y 2, N + 1 Y 2, N + 2 : V N + 1 V N + 2 + Y 2, 1 Y 2, 2... Y 2, N : :... : V 2 : (2.2.8) I N Y N, N + 1 Y N, N + 2 Y N, 1 Y N, 2... Y N, N V N I = I S + Y N N V (2.2.9) (2.2.8) 14. 14. - 19 -

capacitance conductance. capacitance, capacitance charge (2.2.10) port q n ( t) = f qn ( v 1 ( t), v 2 ( t),..., v N ( t) ) (2.2.10) (2.2.10) fourier- transform port capacitance charge vectors. ( q n ( t ) ) - - - - - - - - - Q n Q = Q 1 Q 2 Q 3 : Q N = Q 1, 0 Q 1, 1 : Q 1, K Q 2, 0 : Q 2, K : Q N, K (2.2.11) capcitance charge w aveform, j. i c, n ( t) = d q n ( t) dt - j k w p Q n, k (2.2.12) I c = j Q (2.2.13) - 20 -

capacitance (2.2.13). main diagonal (0, 1, 2,... K) p N diagonal matrix. = 0 0 0...... 0 0 0 0 0 w p 0...... 0 0 0 0 0 0 2w p 0... 0 0 0 0 : : : :... 0 0 0 0 0... 0 K w p 0... 0 0 0 : : : 0 0 0... 0 0 : : :... 0 w p 0... 0 0 0 0... : : : : 0 0 0 0... : : : : 0 0 0 0.......... 0 K w p (2.2.14) conductance i g, n ( t) = f n ( v 1 ( t), v 2 ( t), v 3 ( t),... v n ( t) ) (2.2.15) ( i g, n ( t ) ) - - - - - - - I G, N (2.2.16) I G, 1 I G = I G, 2 : (2.2.17) I G, N (2.2.9), (2.2.13), (2.2.17) (2.2.1) - 21 -

F ( V ) = I S + Y N N V + j Q + I G = 0 (2.2.18) (2.2.18) Harmonic Balance Equation, (2.2.18) vector V. F(V) current- error vector, Optimization, Splitting Methods, New ton' s Method, Reflection Algorithm. Fast Fourier T ransform(fft ) algorithm,. 15 HP- eesof Libra Harmonic Balance Method. - 22 -

15. Harmonic Balance Method Algorithm - 23 -

2.2.2. Generalized Harmonic Balance Analysis harmonic, harmonic. Generalized Harmonic Balance Analysis, Harmonic Balance Analysis. harmonic p1, p2, K k = 0, 1, 2,... K - 1 (2.2.19) 0=0, harmonic,. k = m p1 + n p2; m, n =..., - 2, - 1, 0, 1, 2,... (2.2.20) Harmonic Balance k p harmonic. (2.2.18) (2.2.6) (2.2.14) k p (2.2.19) (2.2.20) k. (2.2.7). - 24 -

V N + 1 V N + 2 = V b 1 V S. 1 V S. 2 0 : 0 V b 2 0 0 0 : 0 (2.2.21) F(V)=0 V FFT, brute force almost- periodic Fourier. - 25 -

. [12][13] Gate 2 P1dB (IP3). P1dB (IP3). HPA(High Pow er Amplifier) Predistortion 16 main Amplifier,. 16. Predistortion - 26 -

17. overdriving Predistortion ( 16 ) P1dB, main Amp P1dB back- off, main Amplifier., main Amp. 17 ( 16 ), P1dB, overdriving. 17, 3, 5 Single Gate FET,. Phase Shifter., P1dB, 3. Single- Gate FET Dual- Gate FET, 17 B Gate 2, E Dual- Gate FET. Single- Gate FET,. Dual- Gate FET Gate 2,. - 27 -

17. - 28 -

. Philips Dual- Gate MOSFET BF904, Dual- Gate FET mode, Gate 2 Variable Gain Amplifier,, HP ADS(Advanced Design System) simulation.,. 18 simulation. 18. BF904 Dual- Gate MOSFET Model - 29 -

4.1. FET 4.1.1. mode Variable Gain Amplifier bias VDS=6V, IDS=10mA, VG2=4V. VGS1 1.5V. 19 VDS 6V mode. VG2 2.3V mode A mode B. 19. VDS=6V BF904 mode - 30 -

4.1.2. Variable Gain Amplifier Gate 2 bias, RF Gate 2 RF. 3. Variable Gain Amplifier, VG2 Gate 2 S- parameter, 3 = 0. 20, 21, 22 VG2 1.5V 4.2V, Gate 2 RF 3 = 0 S- parameter. RF cascode S12, S22. S- Parameter, 3 = 0 RF, RF S22 1, 3 = 0. 20. Gate 2 S11 S22-31 -

. 21. Gate 2 S21 22. Gate 2 S12-32 -

4.2. Variable Gain Amplifier 4.2.1. : Philips BF904 Dual- Gate MOSFET : 849 869MHz (KMT - CDMA ) : 10dB VSWR : 1.2 (return Loss:- 20dB) VSWR : 1.2 (return Loss:- 20dB) 4.2.2. 7.5dB - 2.5dB Variable Gain Amplifier Gate 2 3 = 0. VSW R 1.2. 23 24 7.5dB, - 2.5dB. 23. 7.5dB - 33 -

24. - 2.5dB 25 VG2 simulation. Gate 2 0.2V. 25. VG2-34 -

26 VG2 P1dB simulation. 27-15dBm/tone, VG2 IP3 simulation. 26. P1dB simulation 27. IP3 simulation - 35 -

28, VG2 IP3. 28. IP3 4.3. 29,. Dual- Gate FET Gate 2 3V, - 10dBm/tone 12dBm/tone VG2 phase shifter 30 31. 3 20dB - 3dBm/tone 12dBm/tone 15dB Dynamic Range. - 36 -

29. 30. - 37 -

31. - 38 -

. Dual- Gate FET DC, mode. Gate 2 RF, Gate 2 S- parameter 3=0, Variable Gain Amplifier. Variable Gain Amplifier Philips BF904 Dual- Gate MOSFET, KMT - CDMA 10dB - 20dB. Variable Gain Amplifier (P1dB, IP3), HP ADS(Advanced Design System) simulation. simulation mode A, mode B. mode (VG2=2.3V)., IP3, mode, bias ID. VG2. Simulation Body Effect, FET 4. conversion error,. Variable Gain Amplifier. Single- Gate FET, 15dB 20dB. - 39 -

[1] M. Maeda and Y. Minai, Microw ave variable- gain amplifier w ith dual- gate GaAs FET, IEEE T rans. Microw ave T heory T ech., vol. MT T - 22, pp.1226-1230, Dec. 1974. [2] C. A. Liechti, Performance of Dual- Gate GaAs MESFET ' s as Gain- Controlled Low - Noise Amplifiers and High- Speed Modulators, IEEE T rans. Microw ave T heory T ech., vol. MT T - 23, pp.461-469, June. 1975. [3] S. C. Crippss, O. Nielsen, D. Parker, and J. A. T urner, An experimental evaluation of X- band GaAs FET mixers using single- and dual- gate devices, MT T - S International Microw ave Symposium Digest, pp.285-287, 1977. [4] R. E. Miles and M. J. How es, Large- Signal Equivalent- Circuit Model of a GaAs Dual- Gate MESFET Mixer, IEEE T rans. Microw ave T heory T ech., vol. MT T - 33, pp.433-436, May. 1985. [5] I. D. Robertson, MMIC Design, Chap. 7, T he Institution of Electrical Engineers, 1988. [6] C. T sironis and R. Meierer, Microw ave Wide- Band Model of GaAs Dual Gate MESFET ' s, IEEE T rans. Microw ave T heory T ech., vol. MT T - 30, pp.243-251, Mar. 1982. [7] R. A. Minasian, Modelling DC characteristics of dual- gate GaAs MESFET s, IEE Proc. Solid- State Electron., vol.130, pp. 182-186, Aug. 1983. - 40 -

[8] J. R. S cott and R. A. Minas ian, A Simplified Microw ave Model of the GaAs Dual- Gate MESFET, IEEE T rans. Microw ave T heory T ech., vol. MT T - 32, pp.243-247, Mar. 1984. [9] S. A. Mass, Nonlinear Microw ave Circuits, Artech House, 1988. [10] J. H. Haywood, Y. L. Chow, Intermodulation Distortion Analysis Using a Frequency- Domain Harmonic Balance T echnique, IEEE T rans. Microw ave T heory T ech., vol. MT T - 36, pp. 1251-1257, Aug. 1988. [11] R. A. Minasian, Intermodulation Distortion Analysis of MESFET Amplifier Using the Volterra Series Representation, IEEE T rans. Microw ave T heory T ech., vol. MT T - 28, pp.1-8, Jan. 1980. [12] R. C. T upynamba and E. Camargo, MESFET Nonlinearities Applied T o Predistortion Linearizer Design, MT T - S International Microw ave Symposium Digest, vol., pp.955-958, 1992. [13] Y. Kim, Y. Yang, S. Kang and B. Kim, Linearization of 1.85GHz Amplifier Using Feedback Predistortion Loop, MT T - S International Microw ave Symposium Digest, vol., pp.1675-1678, 1998. - 41 -