23(6) 10.fm

Similar documents
304.fm

14.531~539(08-037).fm

605.fm

< DC1A4C3A5B5BFC7E22E666D>

박사학위논문 샤프트의복합효과를이용한고층건물연돌효과의영향저감에관한연구 Study for Reducing the Influence of Stack Effect in High-rise Buildings Using the Complex Effect of Multiple Sha

82-01.fm

10(3)-09.fm

16(1)-3(국문)(p.40-45).fm

14(4) 09.fm

12(2)-04.fm

10(3)-10.fm

69-1(p.1-27).fm

untitled

50(1)-09.fm

10(3)-12.fm

416.fm

16(2)-7(p ).fm

12.077~081(A12_이종국).fm

DBPIA-NURIMEDIA

10(3)-02.fm

12(4) 10.fm

15(2)-07.fm

10(1)-08.fm

32(4B)-04(7455).fm

9(3)-4(p ).fm

15.101~109(174-하천방재).fm

07.051~058(345).fm

12(3) 10.fm

14(2) 02.fm

23(2) 71.fm

82.fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

ePapyrus PDF Document

Microsoft Word - KSR2013A320

23(4) 16.fm

untitled

fm

23(4) 06.fm

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

17.393~400(11-033).fm

2007 Ju l y C o n t e n t s

14.fm

51(4)-13.fm

7(4)-07.fm

11(5)-12(09-10)p fm

07.045~051(D04_신상욱).fm

143.fm

27(5A)-07(5806).fm

29(4)-07(김봉채).fm

11(1)-15.fm

31(3B)-07(7055).fm

인문사회과학기술융합학회

02이용배(239~253)ok

50(5)-07.fm

19(1) 02.fm

18211.fm

415.fm

8(3)-15(p ).fm

<312D303128C1B6BAB4BFC1292E666D>

93.fm

8(2)-4(p ).fm

201.fm

untitled

202.fm

27(3D)-07.fm

Microsoft Word - KSR2013A299

Microsoft Word - KSR2012A038.doc

<30332DB9E8B0E6BCAE2E666D>

49(6)-06.fm

11(4)-03(김태림).fm

Microsoft Word - KSR2012A021.doc

06.177~184(10-079).fm

fm

26(3D)-17.fm

14(4)-14(심고문2).fm

<30312D303720B9DAC1A4BCF62E666D>

012임수진

( )-103.fm

04.fm

**Á¦ÀÏ 2¿ùÈ£(Èæ¹é)

03.fm

3.fm

< C0E5BFC1C0E72E666D>

fm

01.01~08(유왕진).fm

m, w, w w. xœ y t y w en, ùw,, ƒ y (, 1994; w, 2000). ƒ x œ (NGA; National Geospatial-intelligence Agency) t t wù x (VITD; Vector product Interim Terr

11(5)-7(09-37)p fm

fm

10.063~070(B04_윤성식).fm

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

» t d» y w š q, w d» y ƒ ƒ w tree-ring t w d» y ƒ w š w. w tree-ring t mw»z y p q w š w. Tree-ring t mw, 500» ƒ wš p w» ƒ, y»z p wš»»z y. ù tree-ring

w wƒ ƒw xù x mw w w w w. x¾ w s³ w» w ƒ z š œ Darcy-Weisbach œ w ù, ù f Reynolds (ε/d) w w» rw rw. w w š w tx x w. h L = f --- l V 2 Darcy Weisbach d

17(3)-00(282).fm

DBPIA-NURIMEDIA

17(2)-00(268).fm

(163번 이희수).fm

거창전문대학훈령182.hwp

4.fm

51(2)-09.fm

27(6A)-10(5570).fm

Transcription:

J. of Korean Institute of Fire Sci. & Eng. [ ] Vol. 23, No. 6, 2009 šd z»t sƒ The Performance Evaluation of Natural Smoke Ventilators Due to Stack Effect and Wind Velocities in High-rise Buildings x*á½ ³**Á y Chae-Hyun Lim* Bum-Gyu Kim** Yong-Hwan Park * Ÿ œ, **y w w, y w w (2009. 9. 7. /2009. 12. 11. k) y z» w ü ³ wš šd z e w w» w x x w ww. x x e šd», s d mw z w. w» w p j CONTAMW w x mw» w xwš sƒw. ABSTRACT Natural smoke ventilator is one of domestic prescriptive methods to be used to exhaust smoke in case of fire in a high-rise buildings. The goal of this study is to evaluate the stack effect and the smoke exhaust performance in high-rise buildings with the opening of natural smoke ventilators using computer modeling technology, thus to estimate its effectiveness as a tool of smoke exhaust. For this purpose, the pressure differential in a domestic high-rise building with natural smoke ventilators was experimentally measured to analyze the stack effect with the closure or the opening of natural smoke ventilators and to calculate compensated air leakage of the building. Computer modeling based on experimentally measured data was carried out to estimate effectiveness of natural smoke ventilators in high-rise buildings using CONTAMW network program. Key words : Stack effect, High-rise building, Neutral plane, Smoke ventilator, Differential pressure 1. z w ù ƒ y w d, d d w. d 1967 Tamura Wilson 1) š d w s d TDC(Thermal Draft Coefficient) w» ƒ z e w w, d 1991 Tamblyn 2)» y» l mw E-mail: yhpark@hoseo.edu z w š d 1995 Klote 3) ƒ y vù» vù l(eees, Emergency Elevator Evacuation System) š w z» t w»e w» w» l w. ù ü 1990 l w d y w š d l x, x x, w ƒ w š. 4-7) w, w üá w ü z» t e ƒ w 82

šd z»t sƒ 83 (3,460), T o» (K), T s vp ü (K), h l (m) ùkü. 2.2 t z t z»t w w» ƒ w t w s ùkü z w., x x w y ƒ e (2) ùkü. w ƒw w d ƒ, d ü t ³x, ù w t (3) e. P w = 1 2 --C w ρ o V H 2 (2)» P w t e t (Pa), C w, ρ o» (Kg/m 3 ), V H H t (m/s) ùkü. Figure 1. Flow chart for the process of this study. vù y ƒ q. ü» w ³e 14 ³ wš šd z e w w» w x, x d x, w sƒ w Figure 1. 2. 2.1 z z üá w œ»ƒ w w x w, šd ƒ» z w j w. z w (1) ùkü. 1 P so = K s ---- ---- 1 T o T s h (1)» P so z w (Pa), K s V H = V 0 A ----- H H o B» V H H t (m/s), V o d d w t (m/s), H wš w (m), H o d d w (m), A, B x ùkü. 2.3 e w 2 ƒ vp z š (A a ) (A b )» w ƒƒ w ƒ vp e (4) w. H n = 1 ------------------------------------------------ 1 + ( T s /T o )( A b /A a ) 2 Hs» H n l ¾ (m), H s vp (m), T s vpü (K), T o» (K), A a (m 2 ), A b w (m 2 ) ùkü. 3. z x (3) (4) d wš šd J. of Korean Institute of Fire Sci. & Eng., Vol. 23, No. 6, 2009

84 xá½ ³Á y Table 1. Indoor and Outdoor Temperature Conditions Description Room Corridor Indoor Lobby Stairway Case 1 Outdoor Case 2 Case 3 Temperature 22 o C 21 o C 20 o C 19 o C 5 o C 1 o C 5 o C Table 2. Scenario of Experiment Scenario Fire Floor Status of Natural Smoke Ventilators Scenario 1 None All closed Scenario 2 38F Upper Story (38F, 39F) Open Scenario 3 19F Middle Story (19F, 20F) Open Scenario 4 1F Lower Story (1F) Open Figure 2. Structure of the building. e w 6d, 40d, 168m ³ w 6d~ w 2d, w 1d~5d q, 6d~39d v l, 40d q š w. Figure 2 2 g (Core) ƒ š w œ e g fp (Curtain wall). g ü vù w p vù lƒ e w 6d 40d¾ m.»ƒ ƒ e š v ld 6d 39d¾ e Figure 3. Flow chart for experiment. Table 3. Specification of Natural Smoke Ventilators Open Story 38, 39F Size (m) Valid Area (m 2 ) Quantity (EA) 1 1.3 0.65 8 0.3 1.3 0.39 8 Total Valid Area (m 2 ) 8.32 1 1.3 0.65 8 19, 20F 8.32 0.3 1.3 0.39 8 1F 0.9 2.1 1.89 5 9.45

y y d d w. z x 2008 12 Figure 4. Stack effect with natural smoke ventilators in open mode. (Differential pressure between ambient and stair) šd z»t sƒ 85 ü» Table 1 š»t 1m/s w d w. x d ù Table 2 4 ù ƒ š» ƒƒ,, 39d, 29d, 19d, 9d, 1d d w x m Figure 3.» v l p ü w wš y d d ó e 4 v ù ƒ w w d w w d 1d e 2 d w z w d w. w w Table 3. Figure 4» d ù» ùkü v» ƒ û z w ƒwš d w s p.» d(38d, 39d) w d (Negative pressure) x š w d(1d) d (Positive pressure) y w. 4. l x d ùkù d w (», ) mw w» w NIST(National Institute of Standards and Technology) z» w (Joetal., 2007; Khoukhial., 2006; Jacques, 1996; Lovatt and Wilson, 1994) š œ» w v CONTAMW w, v y w w w w. l x d l(», ü, z ³ ) k w.» p ü l 8) Table 4 y w,» ASHRAE g 9) l w. ùkù x d w»» w q J. of Korean Institute of Fire Sci. & Eng., Vol. 23, No. 6, 2009

86 xá½ ³Á y Table 4. Air Leakage Area of the Doors Type of Door Leakage Area (m 2 ) Residential Entrance Door 70cm 2 /item Stairwell Door 120cm 2 /item Elevator Door 323cm 2 /item Condition P = 10Pa, C D =0.6 P = 10Pa, C D =0.6 P = 10Pa, C D =0.6 Table 5. Compensated Leakage Areas of Exterior Walls Tightness Area Ratio (A/Aw) Condition Average 0.17 10 3 P = 75Pa, Tight 0.5 10 4 Loose 0.35 10 3 C D =0.65 Compensated 0.12 10 3» w» w d. Table 5 ASHRAE g» w» ùküš. 5. 5.1» z e w» 10 (1996 ~2005 )» l k w t» l (12 ~2 ) TAC(Technical Advisory Committee) 2.5% 11.1 o C w»t w»z t w s³t 2.4m/s t 16.7m/ s w w.»»t Table 6. Terrain Coefficient and Exponent Terrain Type Coefficient (A 0 ) Exponent (a) Urban 0.35 0.40 Suburban 0.60 0.28 Airport 1.00 0.15 Table 7. Wind Pressure Coefficient (C w ) Plan A B C D C Wind A ý B 0.8 0.25 0.8 0.8 D Figure 5. Stack effect in the stairway with different outdoor temperatures. x Table 6 x ƒ Urban w. w t Table 7 s³ w s³t MacDonald w.» e w t A, r w t B,»k d w t C, D š w. Figure 5» ƒ z e w ùkü v. z w» 5 o C 109Pa, 1 o C 159Pa, 5 o C 193Pa, 11.1 o C 248Pa TAC 2.5% 11.1 o C 5 o C w 3.3 ù j w. w, x e» 5 o C vp 28.1%, 1 o C 28.7%, 5 o C 28.9%, 11.1 o C 29.3% 5 w 11.1 o C 1.2% w. û x w š w œm d y x q ù, Á d e q ù y d ƒ» z w Áw d w š d vù ƒ. Figure 6»»

šd z»t sƒ 87 Figure 6. Stack effect with various wind velocities in outdoor temperature. t z e w ùkü v,»t z w š ex w.» t ex e w r w s³t (2.4m/s) s ù t (16.7m/s) s j w., 5 C t ƒ o vp 28.1% x ù s ³t 28.4%, t 38.8% ƒw, 1 C t o 28.7%, s³t 28.8%, t 36.0%, 5 C t o 28.9%, s³t 29.1%, t 35.0%, 11.1 C t o 29.3%, s³t 29.3%, t 34.0% ƒw. t s j» ƒ» w û»t» ƒ š w»t»ƒ ƒ w q. w» w ü s w s» x w šdy»t š w» y ƒ v w š q. 5.2 z e w w y d d w 2 d y d w 1 d š. x ü ³ J. of Korean Institute of Fire Sci. & Eng., Vol. 23, No. 6, 2009

88 xá½ ³Á y w yw ³ ù x œ š. d 2 d y d w 1 d w w d vù ƒ w x Figure 7. Neutral plane with various opening mode of natural smoke ventilators. (T = 11.1 o C) š w. Figure 7 TAC 2.5%( 11.1 o C) x e d ùkü v» t 1 d 2 d ƒ û x. e w e d w ƒ x z w» w. z» w 2 d 1 d v w š q w z ƒ ù š w» w v w š q. 5.3 sƒ ü z w»t w ƒ j. z üá» ù x e ùkù ü s s x w. w s d e s y ƒ š w»t t s x w w. sƒ (Mass flow rate, kg/s) w (+)»ƒ ü š ( ) üœ»ƒ» w œ» y» (+)»ƒ ü» w š ( ) üœ»ƒ» š w. Figure 8 d» w w» TAC 2.5%( 11.1 o C)»t t, s³t (2.4m/s), t (16.7m/s) ùkü v. d w y d

šd z»t sƒ 89 Table 8. Performance Range of Smoke Control with the Natural Smoke Ventilators in Open Mode. (Classified by Wind Velocity) Open Mode No Wind V = 2.4m/s V = 16.7m/s 1 Floor Open 2 Floors Open Over 15F (46%) Over 3F (21%) Over 18F (51%) Over 6F (29%) None None Figure 8. Mass flow rates with natural smoke ventilators open. (T = 11.1 o C) d w 2 d y d w 1 d w w wì vù ƒ w x š w. l e 6d l 39d¾ d y w mw ùkü y d»t w ƒ j tw w ew / w., 2 d 1 d 20% w š 100% ƒw w 1 d w q. d x 2 d s³t š w vp 53% 16d d» w ù, 1 d w 29% d 6d d d(6 d~39d) y w q. l 14d, 15d y s j w 6d l 15 d¾ mw (10.8m 36m)» ƒ x q sƒ w.»t w Table 8 2 d t vp 46% d 15d d, s³ t 51% d 18d d {w ù t d» w. 1 d t vp 21% d 3d d, s³t 29% d 6d d {w d 6d d l e d {w t 2 d w». 6. x x mw m» w v NIST CONTAMW w x m w» w x wš sƒw. (1) w J. of Korean Institute of Fire Sci. & Eng., Vol. 23, No. 6, 2009

90 xá½ ³Á y y d d w 2 d y d w 1 d w. s³t 2 d vp 51% d ù 1 d 29% d, 2 d 1 d 20% w š 100% ƒw w ùkû,» ƒ û ƒ d ƒ¾ š. (2)»t e w j ùkû»t w. 1 d t vp 21% d 3d d, s³t 29% d 6d d {w 6d d l e d {w t d»ƒ. š x Caused by Chimney Effect in the Tall Buildings, ASHRAE, Vol.73, Part2(1967b). 2. R.T. Tamblyn, Coping with Air Pressure Problems in Tall Buildings, ASHRAE, Vol.97, Part1, pp.824-837(1991). 3. J.H. Klote, Design of Smoke Control System for Elevator Fire Evacuation Including Wind Effects, Proceedings, 2nd symposium, ASME, pp.59-77 (1995). 4. ½, šd ùkù z, w y wz, Vol.1, No.1, pp.14-20(2007). 5. ½, z ƒ»ƒ l e w w x x, w y wz, Vol.22, No.3, pp.194-200(2007). 6. x, ½ ³,, y,»t šd z e w, w y wz, Vol.22, No.4, pp.20-26(2008). 7. x, ½ ³, y, šd w z e w w x, w wz, Vol.9, No.3, pp.89-94 (2009). 8. z, šd z w s d sƒ, w w w (2005). 9. ASHRAE, ASHRAE Handbook Fundamentals Ch.26 Ventilation and Infiltration, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.(2001). 1. G.T. Tamura and A.G. Wilson, Pressure Differences