THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2015 May; 265, 506 513. http://dx.doi.org/10.5515/kjkiees.2015.26.5.506 ISSN 1226-3133 Print ISSN 2288-226X Online Ethanol Concentration Sensor Using Microfluidic Metamaterial Absorber 김형기 유민영 임성준 Hyung Ki Kim Minyeong Yoo Sungjoon Lim 요약. SRCR: Split Ring Cross Resonator. SRCR capacitive LC...,.,. Abstract In this paper, we proposed a novel ethanol concentration sensor using microfluidic metamaterial absorber. The metamaterial absorber comprises a split-ring-cross resonatorsrcr and a microfluidic channel. The SRCR can generate LC resonance that is very sensitive to changes in the effective dielectric constant around the capacitive gap. In addition, microfluidic channels can change the effective dielectric constant of the dielectric substrate by using an infinitesimal quantity of a liquid on the order of microliters. The proposed absorber can detect the electrical properties of different concentration of ethanol. The performance of the proposed absorber is demonstrated using the absorption measurements of a fabricated prototype sample with waveguides. In addition, the simulated results and measurement results show good agreement. Key words: Metamaterial Absorber, Frequency-Tunable Absorber, Microfluidics, Ethanol Sensor, Split Ring Cross ResonatorSRCR. 서론., GHS: Globally Harmonized System of classification and labelling of chemicals MSDS: Material Safety Data Sheets.,., [1].,, [2] [6]. 2014 No. 2014R1A2A1A11050010. School of Electrical and Electronics Engineering, Chung-Ang University Manuscript received March 16, 2015 ; Revised April 21, 2015 ; Accepted May 12, 2015. ID No. 20150316-021 Corresponding Author: Sungjoon Lim e-mail: sungjoon@cau.ac.kr 506 c Copyright The Korean Institute of Electromagnetic Engineering and Science. All Rights Reserved.
[7],[8]..,.,, [6]. - RFRadio Frequency. RF, [9] [11]. SRR: Split Ring Resonator LC ELC [12]. capacitive inductive, [13]. SRR. [14]... SRCR: Split Ring Cross Resonator FR4.... 흡수체설계 1 SRCR. SRCR LC 그림 1. Fig. 1. Layout of the proposed metamaterial absorber without microfluidicsa=14, b=0.5, c=2, d=0.4, e=5.5, and f=0.8 [units: mm].. SRCR capacitive 1 [15]. 1 1 d, [16]. 1 SRCR,. SRCR,..., Finite Element MethodFEM ANSYS High Frequency Structure SimulatorHFSS 2 SRCR. SRCR,, capacitive. 507
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 5, May 2015.., Young-Laplace equation [11]. 3 meandering 그림 2. Fig. 2. Magnitude of electric field distribution of proposed metamaterial absorber without microfluidics. capacitive. 3. SRCR capacitive. 4 3. 3, SRCR,,.,.,,. 4.. 5 그림 3., meandering Fig. 3. First design with a large square microfluidic space, second design with a meandering microfluidic channelg=1, h=1.25, i=8 [units: mm]. 그림 4. 3 Fig. 4. Three-dimensional and top views of the final design. 508
그림 5. Fig. 5. Electric and magnetic field distribution for empty state and filling with DI water. 그림 6. 20 % 80 % Fig. 6. Electric and magnetic field distribution for 20 % and 80 % concentrations of ethanol.., 12.12 GHz SRCR, 10.42 GHz 5., DI water: Deionized water 10.42 GHz SRCR, 12.12 GHz 5. 6. 20 %, 10.64 GHz. 80 %, 11.33 GHz.... 2. 2 1, 377 Ω.,. 7 retrieval method [17]., 12.12 GHz. 7 10.42 GHz. 7c d.. 결과 8. 3, 3.7, 509
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 5, May 2015. c 그림 7. d 미세유체 채널의 상태에 따른 상대 유전율과 투자율의 시뮬레이션 결과. 빈 채널, 탈이온수, c 20 % 에 탄올, d 80 % 에탄올 Fig. 7. Real and imaginary values of simulated relative permittivity and permeability for Empty state, Filling with DI water, and for c 20 % and d 80 % concentrations of the ethanol. 체 주입구와 배출구를 제작하여 채널에 쉽게 액체를 주 입하거나 배출시킬 수 있도록 하였다. 제안된 흡수체의 흡수율을 측정하기 위하여 도파관 측 정 환경을 그림 9와 같이 구축하였다. 두 개의 WR-90 도파관과 Anritsu MS2038C 벡터 회로망 분석기를 측정에 사용하였다. 도파관 사이에 시제품 흡수체를 위치시켜 반 사 계수를 측정하였다. 제안된 흡수체의 바닥면은 구리 박막으로 덮여 있어 투과파가 발생하지 않게 된다. 따라 서 식 3을 이용하여 흡수율을 계산할 때, 투과 성분은 고려하지 않아도 된다. [18] 제작된 흡수체의 시제품 그림 8. Fig. 8. Fabricated prototype sample. 손실 0.02의 FR4 기판을 사용하여 제작하였다. 첫 번째 층의 SRCR 패턴은 0.1 mm 두께의 FR4 기판을 사용하여 포토리소그래피 공정을 사용하여 제작하였다. 두 번째 층 의 미세유체 채널은 0.1 mm 두께의 FR4 기판을 깎아서 제작하였다. 세 번째 층은 0.8 mm 두께의 FR4 기판을 사 용하였고, 바닥면은 구리 박막으로 덮었다. 각 층은 라미 네이팅 필름을 사용하여 접착하였고, 플라스틱 재질의 액 510 3 그림 10에서 다양한 액체에 대한 흡수율 시뮬레이션 결과와 측정결과를 비교하였다. 제안된 흡수체는 채널이 비어 있을 경우, 12.12 GHz에서 92.9 %의 흡수율을 보였
에탄올의 농도를 검출하기 위한 미세유체 메타물질 흡수체 도파관 측정 환경 그림 9. Fig. 9. Measurement environments using the rectangular waveguides. 고, 채널에 에탄올, 수돗물 그리고 탈이온수가 주입되었 을 경우에는 주파수가 각각 11.46 GHz, 10.54 GHz, 10.42 GHz로 이동함을 확인하였다. 또한, 흡수율과 반치폭FWHM: Full Width at Half Maximum이 주입된 액체의 유전 손실의 차이에 의해 변화됨을 확인할 수 있다. 제안된 흡수체의 편파에 대한 특성을 분석하기 위하여 시제품 흡수체를 수평편파와 수직편파에서 측정하여 그 림 10에서 비교하였다. 편파에 큰 영향 없이 성능이 일 정하게 유지되는 것을 확인하였다. 또한, 다양한 농도의 에탄올을 채널에 주입하여 측정한 결과를 그림 11에 도시하였다. 에탄올의 농도가 20 %에서 80 %로 바뀜에 다양한 액체에 대한 흡수율 시뮬레이션 및 측정 결과, 편파 시뮬레이션 및 측정 결과 다양한 농도의 에탄올에 대한 흡수율 측정 결과, 에탄올 농도에 따른 공진주파수 그림 10. 그림 11. Fig. 10. Simulated and measured absorptivity of proposed absorber, and measured absorptivity for different polarizations. Fig. 11. Measured absorptivity and resonant frequency for ethanol with different concentrations, from 0 %DI water 100 % to 100 %. 511
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 5, May 2015., 10.64 GHz 11.33 GHz 11... 결론. 3,.. 20 % 80 %, 10.64 GHz 11.33 GHz.,.. References [1] G. Wen, X. Wen, S. Shung, and M. Choi, "Whole-cell biosensor for determination of methanol", Sensors Actuators B: Chem., vol. 201, no. 1, pp. 586-591, Oct. 2014. [2] I. Dimov, L. Basabe-Desmonts, J. Garcia-Cordero, B. Ross, A. Ricco, and L. Lee, "Stand-alone self-powered integrated microfluidic blood analysis systemsimbas", Lab on a Chip, vol. 11, no. 5, pp. 845-850, Mar. 2011 [3] E. Delamarche, A. Bernard, H. Schmid, A. Bietsch, B. Michel, and H. Biebuyck, "Microfluidic networks for chemical patterning of substrates: Design and application to bioassays", J. Am. Chem. Soc., vol. 120, no. 3, pp. 500-508, Jan. 1998. [4] A. Martinez, S. Phillips, G. Whitesides, and E. Carrilho, "Diagnostics for the developing world: Microfluidic paper-based analytical devices", Anal. Chem., vol. 82, no. 1, pp. 3-10, Jan. 2010. [5] K. Abe, K. Suzuki, and D. Citterio, "Inkjet-printed microfluidic multianalyte chemical sensing paper", Anal. Chem., vol. 80, no. 18, pp. 6928-6934, Sep. 2008. [6] B. Cook, J. Cooper, and M. Tentzeris, "An inkjet-printed microfluidic RFID-enabled platform for wireless lab-onchip applications", IEEE Trans. on Microw. Theo. and Tech., vol. 61, pp. 4714-4723, Nov. 2013. [7] W. Mullett, K. Levsen, D. Lubda, and J. Pawliszyn, "Biocompatible in-tube solid-phase microextraction capillary for the direct extraction and high-performance liquid chromatographic determination of drugs in human serum", Journal of Chromatography A, vol. 963, no. 1, pp. 325-334, Jul. 2002. [8] R. Dahlgren, E. Nieuwenhuyse, and G. Litton, "Transparency tube provides reliable water-quality measurements", Calif. Agric., vol. 58, no. 3, pp. 149-153, Sep. 2004. [9] J. Mateu, N. Orloff, M. Rinehart, and J. Booth, "Broadband permittivity of liquids extracted from transmission line measurements of microfluidic channels", IEEE/MTT- S International Microwave Symposium, pp. 523-526, Jun. 2007. [10] T. Chretiennot, D. Dubuc, and K. Grenier, "A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solutions", IEEE Trans. on Microw. Theo. and Tech., vol. 61, no. 2, pp. 972-978, Dec. 2012. [11] G. Hayes, J. So, A. Qusba, M. Dickey, and G. Lazzi, "Flexible liquid metal alloyegain microstrip patch antenna", IEEE Trans. on Ant. and Prop., vol. 60, no. 5, pp. 2151-2156, Apr. 2012. [12] N. Landy, S. Sajuyigbe, J. Mock, D. Smith and W. Padilla, "Perfect metamaterial absorber", Phys. Rev. Lett., vol. 100, no. 20, pp. 207402, May 2008. [13] E. Ekmekci, G. Turhan-Sayan, "Metamaterial sensor applications based on broadside-coupled SRR and V-shaped resonator structures", IEEE International Symposium on Antennas and PropagationAPSURSI, pp. 1170-1172, 512
에탄올의 농도를 검출하기 위한 미세유체 메타물질 흡수체 Jul. 2011. [14] R. Melik, E. Unal, N. Perkgoz, C. Puttlitz, and H. Demir, "Metamaterial-based wireless strain sensors", Appl. Phys. Lett., vol. 95, no. 1, pp. 011106, Jul. 2009. [15] W. Withayachumnankul, C. Fumeaux, and D. Abbott, "Compact electric-lc resonators for metamaterials", Optics Express, vol. 18, no. 25, pp. 25912-25921, Dec. 2010. [16] K. Gupta, R. Garg, and I. Bahl, Microstrip Lines and Slotlines, Artech House, 1979. [17] D. Smith, D. Vier, T. Koschny, and C. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials", Physical Review E, vol. 71, no. 3, pp. 036617, Mar. 2005. [18] H. Chen, J. Zhang, Y. Bai, Y. Luo, L. Ran, Q. Jiang, and J. Kong, "Experimental retrieval of the effective parameters of metamaterials based on a waveguide method", Optics Express, vol. 14, no. 26, pp. 12944-12949, Dec. 2006. 김형기 임성 준 유민 영 년 2월: 중앙대학교 전기전자공학부 공학사 년 2월 현재: 중앙대학교 전기전자 공학과 석사과정 [주 관심분야] 메타물질 및 전자파 흡수 기술 2014 2014 년 월 연세대학교 전자공학과 공학 사 년 월 전기공학과 공학석사 년 월 전기공학과 공학박사 년 년 Irvine Post-Doc. 2007년 3월 현재: 중앙대학교 전자전기공학부 부교수 [주 관심분야] 마이크로파 회로 및 안테나 2002 2 : 2004 2 : University of California Los Angeles 2006 2 : University of California Los Angeles 2006 2007 : University of California, 년 월 중앙대학교 전기전자공학부 공학사 년 월 중앙대학교 전기전자공학과 공학석사 년 월 현재: LG 이노텍 안테나 설계 및 전자파 흡 수 기술 2013 2 : 2015 2 : 2015 2 [주 관심분야] 513