09È«¼®¿µ 5~152s

Similar documents
04김이현(31~44)ok

05 목차(페이지 1,2).hwp

09이훈열ok(163-

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

03¹Ú³ë¿í7~272s

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

08원재호( )

歯1.PDF

, V2N(Vehicle to Nomadic Device) [3]., [4],[5]., V2V(Vehicle to Vehicle) V2I (Vehicle to Infrastructure) IEEE 82.11p WAVE (Wireless Access in Vehicula

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

인문사회과학기술융합학회

02¿ÀÇö¹Ì(5~493s

07이재희(3p)(123~131)ok

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Aug.; 30(8),

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

08김현휘_ok.hwp

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

광덕산 레이더 자료를 이용한 강원중북부 내륙지방의 강수특성 연구

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소


THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 30(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

06장소영(f2.4)(115~122)ok

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 28(2),

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

서론 34 2

00내지1번2번

04 김영규.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1),

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>


1..

03-서연옥.hwp

03-ÀÌÁ¦Çö


Development of culture technic for practical cultivation under structure in Gastrodia elate Blume

DBPIA-NURIMEDIA

<31372EC0CCC8C6BFAD28B1E8C0CCC7F6292E687770>

October Vol

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

민속지_이건욱T 최종

09구자용(489~500)

¨ë Áö¸®ÇÐȸÁö-¼Û°æ¾ðOK

45-51 ¹Ú¼ø¸¸

DBPIA-NURIMEDIA

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

09권오설_ok.hwp

Can032.hwp

<B3EDB9AEC1FD5F3235C1FD2E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A S

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

Lumbar spine

<31372DB9DABAB4C8A32E687770>

10(3)-10.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 30(2),

PowerPoint 프레젠테이션

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

02À±¼ø¿Á

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

Æ÷Àå½Ã¼³94š

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 28, no. 4, Apr (planar resonator) (radiator) [2] [4].., (cond

09오충원(613~623)

82-01.fm

한국성인에서초기황반변성질환과 연관된위험요인연구

다문화 가정의 부모

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Oct.; 27(10),


02이용배(239~253)ok

8(3)-01.fm

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

012임수진

<C7D1B9CEC1B7BEEEB9AEC7D03631C1FD28C3D6C1BE292E687770>

hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 26(3),

<332EC0E5B3B2B0E62E687770>

264 축되어 있으나, 과거의 경우 결측치가 있거나 폐기물 발생 량 집계방법이 용적기준에서 중량기준으로 변경되어 자료 를 활용하는데 제한이 있었다. 또한 1995년부터 쓰레기 종 량제가 도입되어 생활폐기물 발생량이 이를 기점으로 크 게 줄어들었다. 그러므로 1996년부

<C7D1B9CEC1B7BEEEB9AEC7D C3D6C1BE295F31392EB9E8C8A3B3B22E687770>

02ÇãÀÎÇý ~26š

°í¼®ÁÖ Ãâ·Â

04 최진규.hwp

433대지05박창용

DBPIA-NURIMEDIA


8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

13장문현(541~556)ok

< C6AFC1FD28B1C7C7F5C1DF292E687770>

14.531~539(08-037).fm

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

Vol.259 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M

2011´ëÇпø2µµ 24p_0628

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

Transcription:

Korean Journal of Remote Sensing, Vol.23, No.2, 2007, pp.45~52 Measurement of Backscattering Coefficients of Rice Canopy Using a Ground Polarimetric Scatterometer System Suk-Young Hong*, Jin-Young Hong**, Yi-Hyun Kim*, and Yi-Sok Oh** *National Institute of Agricultural Science and Technology, Rural Development Administration **Department of Radio Science and Communication Engineering, Hongik University Abstract : The polarimetric backscattering coefficients of a wet-land rice field which is an experimental plot belong to National Institute of Agricultural Science and Technology in Suwon are measured using ground-based polarimetric scatterometers at.8 and 5.3 GHz throughout a growth year from transplanting period to harvest period (May to October in 2006). The polarimetric scatterometers consist of a vector network analyzer with time-gating function and polarimetric antenna set, and are well calibrated to get VV-, HV-, VH-, HH-polarized backscattering coefficients from the measurements, based on single target calibration technique using a trihedral corner reflector. The polarimetric backscattering coefficients are measured at 30, 40, 50 and 60 with 30 independent samples for each incidence angle at each frequency. In the measurement periods the ground truth data including fresh and dry biomass, plant height, stem density, leaf area, specific leaf area, and moisture contents are also collected for each measurement. The temporal variations of the measured backscattering coefficients as well as the measured plant height, LAI (leaf area index) and biomass are analyzed. Then, the measured polarimetric backscattering coefficients are compared with the rice growth parameters. The measured plant height increases monotonically while the measured LAI increases only till the ripening period and decreases after the ripening period. The measured backscattering coefficientsare fitted with polynomial expressions as functions of growth age, plant LAI and plant height for each polarization, frequency, and incidence angle. As the incidence angle is bigger, correlations of L band signature to the rice growth was higher than that of C band signatures. It is found that the HH-polarized backscattering coefficients are more sensitive than the VV-polarized backscattering coefficients to growth age and other input parameters. It is necessary to divide the data according to the growth period which shows the qualitative changes of growth such as panicale initiation, flowering or heading to derive functions to estimate rice growth. Key Words : Polarimetric scatterometer, backscattering coefficient, rice canopy, LAI, biomass, plant height. syhong@rda.go.kr 45

Korean Journal of Remote Sensing, Vol.23, No.2, 2007 s s 46

Measurement of Backscattering Coefficients of Rice Canopy Using a Ground Polarimetric Scatterometer System g A ill = 2 (q, f) s ds () R 4 (q, f) S vv = [_ 2C 2( + ) + ( + C2 ) ( _ C 2 ) 2 m + C ( u vv )] 2 m 0 vv m u hh m 0 s0 hh S hh = [_ 2C 2( + ) + ( + C2 ) ( _ C 2 ) 2 m + C ( u hh )] 2 m 0 hh m u vv m 0 s0 vv S vh = [ 2 m u vh + m u 2C2 hv _ ( + C 2 ) ( _ C 2 ) 2 m + ( u vv m u hh m m )] 0 0 s0 vv hh S hv = [ 2 m u hv + m u 2C2 vh _ ( + C 2 ) ( _ C 2 ) 2 m + ( u vv m u hh m m )] 0 0 s0 vv hh m 0 2m 0 2 a a, C = ( a ) (2) m 0 m 0 22 m 0 vh m 0 hv m u vh m 0 vh m u vh m 0 vh m u hv m 0 hv m u hv m 0 hv m 0 hv m 0 vh 47

Korean Journal of Remote Sensing, Vol.23, No.2, 2007 s 0 m 0 pq m U pq s 0 4p pq = Ω S pqω 2 (3) A ill, pq 48

Measurement of Backscattering Coefficients of Rice Canopy Using a Ground Polarimetric Scatterometer System Fig.. Backscattering coefficients of rice growth as a function of time at different wavelengths, incidence angles, and polarization. 49

Korean Journal of Remote Sensing, Vol.23, No.2, 2007 Table. Correlations of radar backscattering to rice growth..95 GHz (L-band)5.3 GHz (C-band).95 GHz (L-band) 5.3 GHz (C-band) vv-pol hh-pol hv-pol vv-pol vh-pol hh-pol vv-pol hv-pol hh-pol vh-pol hv-pol vv-pol vh-pol hh-pol hv-pol vh-pol Plant Height 0.94 0.97 0.9 0.92 0.8 0.98 0.87 0.87 Overall LAI 0.92 0.94 0.88 0.88 0.83 0.98 0.86 0.86 TFW 0.82 0.84 0.79 0.80 0.63 0.89 0.78 0.77 TDW 0.7 0.73 0.70 0.70 0.49 0.76 0.66 0.65 Plant Height 0.94 0.96 0.90 0.90 0.92 0.98 0.86 0.86 30 Heading st. LAI 0.90 0.9 0.84 0.84 0.89 0.96 0.83 0.82 TFW 0.82 0.84 0.76 0.76 0.80 0.9 0.79 0.79 TDW 0.8 0.83 0.75 0.75 0.83 0.9 0.79 0.78 Plant Height 0.92 0.96 0.90 0.90 0.93 0.96 0.77 0.77 Panicle Ini. LAI 0.93 0.95 0.90 0.90 0.93 0.95 0.75 0.74 TFW 0.84 0.90 0.84 0.84 0.87 0.92 0.8 0.8 TDW 0.80 0.87 0.80 0.80 0.85 0.89 0.78 0.79 Plant Height 0.88 0.97 0.90 0.90 0.59 0.98 0.88 0.87 Overall LAI 0.85 0.94 0.85 0.85 0.6 0.98 0.87 0.86 TFW 0.74 0.87 0.78 0.78 0.34 0.9 0.76 0.76 TDW 0.63 0.78 0.70 0.70 0.8 0.8 0.65 0.64 Plant Height 0.89 0.96 0.87 0.87 0.85 0.99 0.86 0.85 40 Heading st. LAI 0.83 0.92 0.82 0.82 0.78 0.98 0.82 0.8 TFW 0.74 0.84 0.72 0.72 0.7 0.93 0.78 0.77 TDW 0.73 0.83 0.72 0.72 0.70 0.93 0.76 0.75 Plant Height 0.89 0.97 0.88 0.88 0.87 0.99 0.77 0.75 Panicle Ini. LAI 0.89 0.97 0.88 0.89 0.86 0.99 0.76 0.74 TFW 0.82 0.9 0.8 0.8 0.86 0.92 0.77 0.77 TDW 0.78 0.89 0.77 0.77 0.82 0.90 0.73 0.73 Plant Height 0.8 0.99 0.90 0.90 0.27 0.95 0.93 0.92 Overall LAI 0.80 0.96 0.85 0.85 0.30 0.94 0.9 0.89 TFW 0.63 0.90 0.79 0.79 0.0 0.83 0.80 0.78 TDW 0.52 0.80 0.72 0.72-0.2 0.7 0.68 0.67 Plant Height 0.85 0.98 0.85 0.85 0.7 0.97 0.93 0.9 50 Heading st. LAI 0.79 0.95 0.79 0.79 0.62 0.93 0.87 0.85 TFW 0.68 0.89 0.70 0.70 0.50 0.86 0.83 0.8 TDW 0.69 0.89 0.69 0.69 0.49 0.84 0.80 0.78 Plant Height 0.89 0.97 0.85 0.85 0.85 0.97 0.88 0.87 Panicle Ini. LAI 0.89 0.97 0.86 0.86 0.85 0.97 0.87 0.85 TFW 0.83 0.93 0.80 0.80 0.78 0.90 0.88 0.86 TDW 0.79 0.9 0.75 0.75 0.74 0.87 0.84 0.83 Plant Height 0.67 0.99 0.89 0.89-0.20 0.87 0.89 0.89 Overall LAI 0.67 0.97 0.86 0.85-0.29 0.88 0.85 0.85 TFW 0.48 0.89 0.79 0.78-0.3 0.68 0.75 0.75 TDW 0.35 0.78 0.69 0.69-0.9 0.52 0.65 0.64 Plant Height 0.79 0.98 0.85 0.84 0.00 0.96 0.9 0.90 60 Heading st. LAI 0.72 0.95 0.79 0.78-0.09 0.9 0.84 0.83 TFW 0.6 0.89 0.7 0.70-0.28 0.82 0.76 0.74 TDW 0.62 0.89 0.69 0.68-0.27 0.80 0.73 0.7 Plant Height 0.86 0.97 0.83 0.82 0.64 0.96 0.92 0.9 Panicle Ini. LAI 0.86 0.97 0.83 0.83 0.68 0.97 0.9 0.9 TFW 0.8 0.93 0.76 0.75 0.46 0.86 0.89 0.85 TDW 0.77 0.9 0.7 0.70 0.38 0.82 0.84 0.80 50

Measurement of Backscattering Coefficients of Rice Canopy Using a Ground Polarimetric Scatterometer System Fig. 2. Relationship between radar backscattering coefficients and rice growth at 50 degree incidence angle. 5

Korean Journal of Remote Sensing, Vol.23, No.2, 2007 Hong, S. Y., S. H. Hong, and S. K. Rim, 2000. Relationship between Radarsat backscattering coefficient and rice growth, Korean J. Remote Sensing, 6(2): 09-6. Inoue, Y., 2003. Remote sensing and GIS for spatial assessment of agro-ecosystem Dynamics. In Proc. of the First Int l Symposium on Assessing and Rational Management of the Agro-Ecosystem for Clean and Friendly Future Environment, October 22, 2003, Seoul, Korea, pp.-98. Sarabandi, K. and F. T. Ulaby, 990. A Convenient Technique For Polarimetric Calibration of Single-Antenna Radar Systems, IEEE Trans. Geosci. Remote Sensing, 28(6): 022-033. 52