< F444F49BBE8C1A65FB4EBC7D1B9B0B8AEC0C7C7D0C8B8C1F620372D342E687770>

Similar documents
Microsoft PowerPoint - 발표자료(KSSiS 2016)

스포츠과학 143호 내지.indd

Lumbar spine

012임수진

제10강: 골관절과 골반대

DBPIA-NURIMEDIA


< FC7D0C8B834C2F7BCF6C1A45FB4EBC7D1B9B0B8AEC0C7C7D0C8B820382D342E687770>

Kinematic analysis of success strategy of YANG Hak Seon technique Joo-Ho Song 1, Jong-Hoon Park 2, & Jin-Sun Kim 3 * 1 Korea Institute of Sport Scienc

DBPIA-NURIMEDIA

서론 34 2

03이경미(237~248)ok

72 순천향의과학 : 제14권 2호 2008 Fig.1. Key components of the rehabilitation evaluation of patients with the rheumatic diseases. The ICF provides a good frame

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re


대한물리의학회지제 6 권제 4 호,2011 년 11 월 Vol.6,No.4,November2011.p489~496 1) 6 주간의활지지테이핑 (arch support taping) 적용이과도하게엎침된발의발바닥압력과발배뼈높이에미치는영향 김태호 고은경 1 정도영 2 대구보

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong


16_이주용_155~163.hwp

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>


원위부요척골관절질환에서의초음파 유도하스테로이드주사치료의효과 - 후향적 1 년경과관찰연구 - 연세대학교대학원 의학과 남상현



Rheu-suppl hwp

14.531~539(08-037).fm

12이문규


139~144 ¿À°ø¾àħ

DBPIA-NURIMEDIA

<31302D D DB1E8B5B5C7F62CC1A4B5B5BFB52E687770>

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: * Strenghening the Cap

Effects of detachable forefoot outsole angles and shapes on muscle activity of the lower extremity during downhill walking Haeng-Seob Lee, Jae-Hu Jung

???? 1


歯1.PDF

Æ÷Àå82š

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>


Abstract Background : Most hospitalized children will experience physical pain as well as psychological distress. Painful procedure can increase anxie

DBPIA-NURIMEDIA

한국성인에서초기황반변성질환과 연관된위험요인연구

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

,,,.,,,, (, 2013).,.,, (,, 2011). (, 2007;, 2008), (, 2005;,, 2007).,, (,, 2010;, 2010), (2012),,,.. (, 2011:,, 2012). (2007) 26%., (,,, 2011;, 2006;

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

hwp

( )Jkstro011.hwp

9(3)-4(p ).fm

54 한국교육문제연구제 27 권 2 호, I. 1.,,,,,,, (, 1998). 14.2% 16.2% (, ), OECD (, ) % (, )., 2, 3. 3

278 경찰학연구제 12 권제 3 호 ( 통권제 31 호 )

PJTROHMPCJPS.hwp

DBPIA-NURIMEDIA

<31382D322D3420BDC5B1D4C8AF5FB3EDB9AE28C3D6C1BEBABB292E687770>

:,,.,. 456, 253 ( 89, 164 ), 203 ( 44, 159 ). Cronbach α= ,.,,..,,,.,. :,, ( )

(5차 편집).hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

433대지05박창용

. 45 1,258 ( 601, 657; 1,111, 147). Cronbach α=.67.95, 95.1%, Kappa.95.,,,,,,.,...,.,,,,.,,,,,.. :,, ( )

<C7D1B1B9B1A4B0EDC8ABBAB8C7D0BAB85F31302D31C8A35F32C2F75F E687770>

DBPIA-NURIMEDIA


THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

전립선암발생률추정과관련요인분석 : The Korean Cancer Prevention Study-II (KCPS-II)

09È«¼®¿µ 5~152s

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Study on the Pe

Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI: 3 * Effects of 9th

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

레이아웃 1

<30345F D F FC0CCB5BFC8F15FB5B5B7CEC5CDB3CEC0C720B0BBB1B8BACE20B0E6B0FCBCB3B0E8B0A120C5CDB3CE20B3BBBACEC1B6B8ED2E687770>

04조남훈

44-4대지.07이영희532~

[ 영어영문학 ] 제 55 권 4 호 (2010) ( ) ( ) ( ) 1) Kyuchul Yoon, Ji-Yeon Oh & Sang-Cheol Ahn. Teaching English prosody through English poems with clon

현대패션의 로맨틱 이미지에 관한 연구

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A Research Trend

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

<333320BCD5C1F6C8C62DB4EBC7D020BFA4B8AEC6AE20C4ABB3AAB5F0BEF020BCB1BCF6B5E92E687770>

A 617

Microsoft Word - 1-차우창.doc

「메디시티 대구 브랜드 활성화를 위한」 웰니스토탈케어 솔루션[WTCS] 센터 운영계획

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

1..

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

Journal of Educational Innovation Research 2016, Vol. 26, No. 2, pp DOI: * The Mediating Eff

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

Microsoft PowerPoint - evaluation(창원대)

J Korean Soc Phys Ther Vol.26, No.1, February 2014 The Journal of Korean Society of Physical Therapy plssn elssn X Original articles

歯5-2-13(전미희외).PDF

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: : A basic research

975_983 특집-한규철, 정원호

ISSN 제 3 호 치안정책연구 The Journal of Police Policies ( 제29권제3호 ) 치안정책연구소 POLICE SCIENCE INSTITUTE

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: The Effect of Caree

인문사회과학기술융합학회

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

APOGEE Insight_KR_Base_3P11

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: * Review of Research

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

PowerPoint 프레젠테이션

005송영일

Transcription:

Journal of The Korean Society of Physical Medicine, 2012; 7(4): 471-480 Online ISSN: 2287-7215 Print ISSN: 1975-311X Research Article Open Access 안쪽세로발바닥활을지지한인솔의착용이평발을가진경직성뇌성마비아동의보행에미치는영향 김성경 ㆍ류영욱 1 ㆍ김형동 28) 대구가톨릭대학교일반대학원물리치료학전공, 1 대구가톨릭대학교물리치료학과, 2 고려대학교물리치료학과 The Effects of Insole Supporting Medial Longitudinal Arch while Walking in Spastic Cerebral Palsy with Pes Planus Sung Gyung Kim, PT, MS, Young Uk Ryu, PT. PhD 1, Hyeong Dong Kim, PT, PhD 2 Department of Physical Therapy, General Graduate School, Catholic University of Daegu, 1 Department of Physical Therapy, Catholic University of Daegu, 2 Department of Physical Therapy, Korea University Received: August 27, 2012 / Revised: September 26, 2012 / Accepted: October 15, 2012 c 2012 Journal of the Korean Society of Physical Medicine Abstract PURPOSE: The object of the present study is to investigate the effects of the insole supporting medial longitudinal arch while walking in spastic cerebral palsy with pes planus. METHODS: Ten spastic bilateral cerebral palsy children with pes planus participated in this study. The insole were custom-made for the individual child. Muscle activity was measured by surface EMGs attached on tibialis anterior (TA), gastrocnemius (GA), vastus medialis oblique (VMO), biceps femoris long head (BF). temporal-spatial parameters such as velocity, step length, stride length, stance time, toe angle were collected while the subjects walked on the GAITRite system. RESULTS: The results of the present study were Corresponding Author : htsk96@naver.com This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. summarized as follows: 1. Muscle activities in mean EMGs while walking: Left VMO, Right TA, Left BF and GA revealed significant reductions after applying insole. 2. Muscle activities in peak EMGs while walking: Left TA and BF demonstrated reductions significantly after applying insole. 3. There were improvements in temporal-spatial gait parameters with insole: velocity, both step length, Right stride length and Right toe angle were increased(p<.05). CONCLUSION: Therefore the current study demonstrated that insole supporting the medial longitudinal arch would be effective on gait of the spastic cerebral palsy with pes planus. Key Words: Insole, Pes planus, Spastic cerebral palsy Ⅰ. 서론일반적으로어린이의발은 5세경까지생리적평발양상을보이다가연령이증가함에따라안쪽세로발바닥활이형성되어 6세경에완성된다 (Hennin과 Rosenbaum,

472 대한물리의학회지제 7 권제 4 호 1991). 그러나경직성뇌성마비아동은이러한정상적인발의성장과정을거치지못하고다리근육의경직과약화, 동시수축이나조화롭지못한근작용에의해발의변형을가져오게된다 (Flett, 2003). 그리고경직성뇌성마비에서의평발 (pes planus 또는 flat foot) 은특히아킬레스건구축에의해 2차적으로초래될수있는데발뒤쪽이엎침 (pronation) 되고중간발의세로발바닥활이무너져체중은발의안쪽으로이동하여발바닥활이소실되며, 결과적으로목말뼈 (talus) 와발배뼈 (navicular) 가안쪽하방으로이동하는특성이있다 (Staheli, 1999). 경직성뇌성마비아동은과도한발바닥반사로앞발부분에집중되는압력에의해발의변형과통증을동반하기도한다. 따라서발바닥의비대칭적인근긴장도를낮추어주면고유수용감각에의해발바닥반사를이완시킬수있으며이신호가뇌의감각겉질에전달되어운동영역에까지영향을줌으로써그에적합한새로운움직임을이끌어낼수있다. 또한체중지지자세에서발및발목관절의균형과지지에도움을주어구조적대치 (structural alteration) 는아니지만기능적변형으로인한비정상적인특성을바꾸어줄수도있다 (Lockard, 1988). 이러한평발특성을동반한경직성뇌성마비아동의경우안쪽세로발바닥활을받쳐지면에발닿기를더안정되게하고더이상의변형을예방하는것이필요하다. 현재까지는발과발목의변형이초래된경직성뇌성마비아동에게단하지보장구 (Ankle-Foot Orthosis; AFO) 를주로적용하여더이상의변형예방및보행안정성을부여하고있으며, 이를적용하여영향성을평가한연구가대부분이다 (Morris, 2002). 그러나변형된발과발목에대한제한으로안정감을더할수는있지만다양한형태의 AFO가있음에도불구하고보행시근육활동이나운동역학적인요소변화에는큰영향을미치지못한다 (Lampe 등, 2004). 반면꿈치들린휜발 (equinus) 을동반한뇌성마비아동의경우에는일부보행의시공간적요소가증가되어보행기능에긍정적인영향을줄수는있었으나 (Abel 등, 1998) 궁극적으로 AFO는꿈치들린휜발변형에대해적용되는보장구이므로 (Radtka 등, 1997) 평발을동반한독립보행수준의뇌성마비아동에 게는큰도움이되지못한다. 인솔 (insole) 은발의정렬을맞추고받쳐줌으로써발의기능을개선시키거나변형을예방또는교정하기위한목적으로사용하는의학적도구라고정의된다 (Wu, 1990). 인솔의효과및장점으로는크게세가지가제시되는데 (Landorf와 Keenan, 2000; Teodorescu 등, 2001). 첫째, 인솔을착용함으로써발바닥접촉면을넓혀체중지지시발수준에서의안정성을높여준다. 둘째, 발이엎침 (pronation) 되거나뒤침 (supination) 되었을때돌림작용의영향을감소시켜준다. 셋째, 인솔은발바닥중요부분인중간면에적용되므로발바닥의감각입력 (sensory input) 을증가시킬수있다. 인솔은일반적으로발에특별한질환이있는경우 (Coughlin 등, 1995), 안굽이무릎 (genu varum), 밖굽이무릎 (genu valgum) 같이다리가휘거나 (Van Gheluwe 등, 2005) 다리길이차이가나는사람 (Hawke 등, 2008), 그리고통증이있는사람 (Dananberg와 Guiliano, 1999) 과운동선수에이르기까지다양하게적용되고있다 (Stewart등, 2007). 이러한대상자에게인솔을적용하여발바닥압력분포변화와 (Ahroni 등, 1998) 통증개선및보행의운동형상학적평가를한연구가대부분이다 (Powell 등, 2005). 이와같이발관련질환자및운동선수를대상으로적용하는인솔을경직성뇌성마비아동에게적용한연구는거의없다. 뇌성마비아동에게발바닥활지지를통한발바닥압력의변화를조사한연구가이루어졌으나발변형이동반되지않은매우경한경우이고, 발바닥압력에국한된연구였다 (Park 등, 2003). 따라서본연구는평발을가진경직성뇌성마비아동을대상으로안쪽세로발바닥활을지지하는인솔을적용하여보행에미치는영향을알아보고, 일상생활에서뇌성마비의정렬과활동에도움이되는한도구적수단으로제시할수있을지확인해보고자한다. 이에본연구에서는평발을가진경직성뇌성마비아동이안쪽세로발바닥활을지지하는인솔을착용하고보행하는동안다리근육의평균활성값과최대활성값이감소할것이며보행의시공간적요소는향상되어보행에긍정적인영향을미칠것이라는가설을설정하였다.

안쪽세로발바닥활을지지한인솔의착용이평발을가진경직성뇌성마비아동의보행에미치는영향 473 Ⅱ. 연구방법 업 : 다듬기와정렬조정 8) 커버 (cover) 작업 1. 연구대상본연구는평발을가진 6세이상 15세이하의경직성양쪽다리뇌성마비환자 (Spastic bilateral cerebral palsy) 10명을남녀구분없이대상자로선정하였다. 대상자선정조건은다음과같다. 첫째, 대상자의경직수준은다리에대한 Modified Ashworth Scale(MAS) 측정을통해 Grade 0에서 Grade 2까지분류되는아동을선정하였다 (Fosang 등, 2003). 둘째, 발배뼈하강테스트를통해앉아있을때와서있을때의안쪽세로발바닥활의차이가 10mm 이상이고무너짐이시각적으로관찰되는평발을동반한경직성뇌성마비아동을대상으로하였다 (Mueller 등, 1993). 셋째, 대동작기능분류시스템 (Gross Motor Function Classification System: GMFCS) level 1에서 level 2에분류되는스스로보행가능한아동을대상으로하였다 (Rosenbaum 등, 2002). 넷째, 의사소통과지시를이해하기위한시각과청각, 인지수준에문제가없는아동을대상자로선정하였다 (WeeFIM SystemSM, 1998). 2. 연구도구및측정방법 1) 인솔의제작본연구에서대상자들이착용한인솔은대상자각자의발모양에맞게본뜨기한맞춤형으로서 PU(polyurethane) 소재로만들어졌으며고밀도반발탄성패드, 발바닥활지지용컵솔, 발뒤꿈치충격흡수용저탄성패드와폴리머젤 (polimer gel) 을복합적으로사용한제품이다 (Figure 1). 인솔은연구자가대상자의발을측정및평가후캐스팅하여알푸스 (Alfoots, 한국 ) 사에제작의뢰하는동일한절차에따라다음과같이제작되었다. 1) 발의측정및평가 2) 캐스팅 (casting): 발폼 (Pedilen foam) 을이용한양발모양본뜨기 3) 양성석고모델 (positive plaster model) 준비 4) 석고수정 : 압박부위나민감부위체크 5) 셸 (shell) 제작 : 열가소성플라스틱을사용성형가공 (modeling) 7) 포스팅 (posting) 및연마작 Fig 1. Insole supporting medial longitudinal arch 2) 표면근전도 (Surface Electromyography) 근육의자발적인신경근활성에대한전기적신호를수집함으로써인솔의착용전과후보행시앞정강근 (tibalis anterior), 장딴지근 (gastrocnemius), 안쪽넓은근 (vastus medialis oblique), 넙다리두갈래근 (biceps femoris long head) 네개의다리근육의최대값및평균값을비교해보고자 NORAXON Telemyo 2400T(NORAXON Inc., Scottsdale, AZ. 미국 ) 장비를사용하였다. 근전도자료처리는주파수대역폭을 20-500Hz로하였고, 표본추출물 (sampling rate) 은 1000Hz로설정하였다. 자료를수집한후완파정류 (full-wave rectification) 로처리하고실효치값 (root mean square; RMS) 을컴퓨터파일로저장하여자료처리에이용하였다. 잡음제거를위해 60Hz로 notch filtering하여기타처리하였다. 근전도분석을위해 MyoResearch Master Edition 1.06 XP software를사용하였다. 3) GAITRite system 보행의시공간적인변수로서걸음속도 (velocity), 걸음길이 (step length), 온걸음길이 (stride length), 디딤시간 (stance time) 과발진행각 (toe angle) 을알아보기위해인솔착용전과후보행시발의압력을감지하여자료를수집할수있는장비인 GAITRite(CIR System Inc. 2010. 미국 ) 를사용하였다. GAITRite는길이 4.5m, 폭 0.9m인전자식보행판으로서직경이 0.6cm인 13,824개의센서가 1.27cm마다보행로를따라수직으로배열되어시간적ㆍ공간적변수에대한정보를수집한다. 그리고보행

474 대한물리의학회지제 7 권제 4 호 판의전체길이중중심을기준으로길이 3.6m, 폭 0.61m 는이들센서가압력을인지하는활성부위이다. 보행시대상자발에의한부하를초당 90Hz의표본율로수집하여이들정보를직렬인터페이스케이블에의해컴퓨터로보내게된다. 수집된시공간적변수에대한정보는 GAITRite system version 3.8 소프트웨어로처리하였다. 3. 연구절차및측정방법연구자는모든대상자및보호자에게실험을시작하기전연구목적과방법에대해충분히설명을하였고, 보호자의동의및승낙이있었던아동들을실험에참여시켰다. 실험전근전도자료를얻기위해접착식단일표면전극 (single surface electrode) 을양쪽앞정강근, 장딴지근, 안쪽넓은근, 넙다리두갈래근에 2cm의일정한간격을두어부착하였고각근육에대한전극부착위치는다음과같다 (Park 등, 2010). 안쪽넓은근은위안쪽무릎뼈면의수직선에서 55도위치의위로 4cm, 안쪽으로 3cm부위에부착하였다. 앞정강근은무릎관절가쪽융기와종아리뼈의가쪽복사뼈를연결한선의위쪽 75% 부위에부착하였고, 넙다리두갈래근은궁둥뼈거친면과넙다리뼈가쪽관절융기사이의 50% 부위에부착하였으며, 장딴지근은무릎관절가쪽융기와발뒤꿈치뼈를연결한선의상위 30% 부위에부착하였다. 단일기준전극 (single reference electrode) 은무릎뼈주위에부착하였다. 피부저항을최소화하기위해부착위치를알코올솜으로닦아내었고, 부착하는작업은항상한명의숙련된검사자가시행하여오차의소지를줄였다. 측정을시작하기전진폭을표준화하기위해대상자의우세한쪽각근육에최대근수축 (maximal voluntary contraction; MVC) 검사를시행하였다. 보행실험은대상자에게 GAITRite 보행판을따라일상속도로걷게하여전체보행구간양하지근육의근전도자료를얻어내었고중간 5초동안의값을 RMS로구하여각근육의 MVC에대한비율로써근전도최대값과평균값을전후비교하였다. 보행검사는먼저인솔을착용하지않은상태에서 GAITRite의보행판위를대상자스스로걷게하여 3개의잘수집된데이터를선택하여평균값을구하였다. 5분간휴식을취한뒤인솔을착용하고보행판위를위와같은방법으로다시보행하도록하였다. 4. 분석방법자료의통계적분석을위해 SPSS 18.0을사용하였고인솔을착용하기전과후, 보행시다리의근활성과시공간적요소의차이를짝비교 (paired t-test) 하였다. 유의수준 (α) 은.05로하였다. Ⅲ. 연구결과 1. 연구대상자의일반적특성실험에참여한대상자는평발을가진경직성양쪽다리뇌성마비아동 10명으로대상자각자의일반적특성은 Table 1과같다. 2. 평균근활성값 (mean EMG) 의전후비교인솔을착용하지않고보행할때 (before) 와착용하고보행할때 (after) 를비교한결과왼쪽안쪽넓은근, 오른쪽앞정강근, 왼쪽넙다리두갈래근, 왼쪽장딴지근의평균근활성값이통계적으로유의하게감소하였다 (p<.05)(table 2). 3. 최대근활성값 (peak EMG) 의전후비교인솔을착용하지않고보행할때와착용하고보행할때를비교한결과왼쪽앞정강근과왼쪽넙다리두갈래근의최대값이 p<.05로유의하게감소하였다 (Table 3). 4. 보행의시공간적요소 (temporal-spatial parameters) 의전후비교 GAITRite를통한보행의시공간적요소들을인솔을착용하기전과후를측정하여비교한결과걸음속도, 양쪽걸음길이, 오른쪽온걸음길이그리고발진행각이 p<.05로유의하게증가하였다 (Table 4).

안쪽세로발바닥활을지지한인솔의착용이평발을가진경직성뇌성마비아동의보행에미치는영향 475 Table 1. General characteristics of each participants (N=10) subject Age (yr) Gender GMFCS MAS Wee FIM MAD ( mm ) Height (cm) Weight (kg) foot length ( mm ) foot width ( cm ) 1 6 M 2 2 27 10 105 18 160 8 2 9 M 2 1 25 13 115 25 180 10 3 15 F 1 1 32 16 155 38 225 12 4 6 M 2 1 27 10 102 15 150 6 5 6 F 2 1 25 12 96 16 150 6 6 11 M 1 1 34 11 156 32 230 13 7 12 F 2 2 30 14 158 39 235 11 8 7 M 2 2 32 13 110 18 170 10 9 16 F 2 2 32 17 153 35 220 12 10 12 F 2 2 25 13 150 28 210 11 Mean ±SD 10 ±3.77 N/A 2 ±.66 2 ±.52 Mean±Standard deviation GMFCS: Gross Motor Function Classification System MAS: Modified Ashworth Scale Wee FIM: Functional Independence Measure for children MAD: Medial arch difference 28.9 ±3.47 12.9 ±2.33 130 ±26.25 26.4 ±9.32 193 ±34.41 9.9 ±2.46 Table 2. Comparison of mean EMG during walking between insole and no insole (Unit: %MVIC) Muscle vastus medialis oblique tibialis anterior biceps femoris gastrocnemius p<.05 Rt: right Lt: left Before After Mean±SD Mean±SD t p Rt 10.27±5.15 9.34±6.32.99.17 Lt 12.06±5.93 9.83±4.57 1.74.05 Rt 15.37±7.99 13.42±6.19 2.15.03 Lt 19.14±12.89 17.59±14.52 1.55.07 Rt 10.01±3.75 9.11±3.07 1.33.10 Lt 13.02±5.88 11.55±5.66 2.19.02 Rt 12.27±5.50 11.32±4.61 1.70.06 Lt 14.36±6.17 12.57±5.35 1.82.05

476 대한물리의학회지제 7 권제 4 호 Table 3. Comparison of peak EMG during walking between insole and no insole (Unit: %MVIC) Muscle vastus medialis oblique tibialis anterior biceps femoris long head gastrocnemius p<.05 Before After Mean±SD Mean±SD t p Rt 27.28±11.77 23.54±13.05 1.52.08 Lt 26.73±16.56 22.44±9.03 1.34.10 Rt 31.82±20.55 28.33±14.11 1.37.10 Lt 30.45±19.94 25.76±15.85 2.39.02 Rt 23.76±7.13 21.24±5.66 1.34.10 Lt 32.80±15.07 26.06±13.48 3.08.00 Rt 28.44±16.48 26.56±14.02 1.37.10 Lt 31.04±18.21 31.30±18.22 -.10.45 Table 4. Comparison of temporal-spatial parameters during walking between insole and no insole (N=10) Temporal-spatial parameters Before After Mean±SD Mean±SD t P Velocity( cm /sec) 50.99±20.83 60.68±22.78-4.41.00 Step length( cm ) Rt 30.01±13.52 35.04±13.94-2.38.02 Lt 29.87±10.56 33.95±10.52-2.01.03 Stride length( cm ) Rt 55.15±28.74 69.62±24.39-1.81.05 Lt 65.54±21.53 69.97±23.58-1.35.10 Stance time(sec) Rt 0.88±0.47 0.86±0.15 1.06.15 Lt 0.86±0.47 0.85±0.49 0.59.28 toe angle(degree) Rt 3.21±10.74 7.21±7.01-2.08.03 Lt 7.23±9.15 7.74±8.34 -.20.42 p<.05 Ⅳ. 고찰경직성뇌성마비아동은다리근육의경직과약화, 동시수축이나조화롭지못한근작용을특징으로하여발의변형이초래되는데특히서기와걷기단계에서무릎과엉덩관절의굽힘및모음구축에의해평발이나타날수있다 (Flett, 2003). 그러나경직성뇌성마비아동의발변형의형태와정도가다양함에도불구하고정렬의보호와보행안정 성을부여하기위한수단으로대부분 AFO를적용한다 (White 등, 2002). 그러므로경직성뇌성마비환자를대상으로 AFO 착용유무에따른운동학및운동역학적요소, 근활성그리고에너지소비에대한연구가대부분이다 (Carlson 등, 1995). 그러나여러종류의 AFO의적용에도불구하고보행에있어기능적변화를가져오지못했으며 (Crenshaw 등, 2000) Morris(2002) 는뇌성마비에대한 AFO의고찰논문에서 AFO는궁극적으로꿈치들린휜발을동반한경직성뇌성마비환자에게발목

안쪽세로발바닥활을지지한인솔의착용이평발을가진경직성뇌성마비아동의보행에미치는영향 477 관절가동의개선을위해효과적인보장구라고하였다. 한편발의구조와모양을바로잡아신체정렬을유지하는데사용되는도구로서인솔이있는데발에변형이있거나, 휜다리또는다리길이차이가나는정형외과적질환이있는일반인, 당뇨에의한동통성발질환자, 그리고운동선수들에게주로적용된다 (Hunter 등, 1995). 일반적으로인솔을착용하면쿠션효과와안쪽세로발바닥활을받침으로써최대부하반응을감소시키고 (Dixon, 2007) 다리안정성을높여동적인생체역학적효과 (dynamic biomechanical effect) 가있다고한다 (Razeghi와 Batt, 2000). 그러나평발을동반한뇌성마비환자를대상으로한인솔적용관련연구는찾아보기힘들다. 이에본연구는평발을가진경직성뇌성마비아동을대상으로안쪽세로발바닥활을지지해주는인솔을적용했을때보행시근활성과시공간적요소들이어떻게달라지는지그영향을알아보았다. 본연구의결과, 인솔을착용하지않았을때보다착용했을때보행하는전체기간동안표면근전도상의평균근활성값 (mean EMG) 과최대값 (peak EMG) 이감소하였다. 근전도상에서전체평균값과최대값이감소한것은인솔이발의접촉면을증가시킴으로써쿠션전략 (strategic cushioning) 을제공하여다리근육의과도한보상에의한근활성을줄인결과로보여진다 (Stewart, 2007). 경직성뇌성마비의경우, 경직으로인한비정상적인근육의동원과힘의결합으로넙다리안쪽비틀림 (internal femoral torsion), 정강뼈가쪽비틀림 (external tibial torsion) 이나타나고이는발목밑관절아탈구 (subluxation of subtalar joint) 의원인이되어밖굽이발 (pes valgus) 이나평발을초래하게된다 (Berker와 YalÁIn, 2008). 이러한하지의비틀림을보상하기위해인대와근육의과도한작용이지속되는상태가되고, 보행에있어서도걸음속도를유지하기위한근단위의동원이더크며, 동원시간은길게작용한다 (Dejaeger 등, 2001; Schwartz 등, 2008). 따라서본연구에쓰인안쪽세로발바닥활을지지한인솔의착용으로앞서언급한쿠션전략과더불어과도한근작용과보상을줄임으로써근활성평균값과최대값이감소하였다고생각된다. 즉 인솔이안쪽세로발바닥활을받쳐다리근피로를줄여주었으며, 이는생체역학적으로효율적인잇점이있음을나타낸다 (Carley 등, 1999; Orlando와 King, 2004). 인솔은체중부하에관련된보조도구이므로착용후보행시각주기별로주동근의활성이증가되는지여부를보는시간변인에따른근전도연구가많다 (Landorf 와 Keenan, 2000). 그러나본연구는보행전체기간동안근활성의양을보았다. 발바닥활의엎침이줄어정상발활의형태로근육이작용함으로써동시수축및공동근으로서의과도한근활동과같은보상이줄면근활성의최대값과평균값이감소될것이라는가설하에연구를진행하였다 (Murley등, 2009). 게다가인솔의적용으로발접촉면증가와선자세균형반응이개선되어다리의과도한근작용은감소하고근효율성이높아진다고하였다 (Carley, 1999; Barnes와 Smith, 1994). Sanders와 Morse(2005) 는인솔적용후근활성이감소하는것은혈관과신경조직에주어지는압박력의감소로혈액순환개선, 대사성물질의제거에도움이되며곧피로감소가될수있다고하였고, 이미여러선행연구에서인솔은하지근육의피로방지를위해사용할수있는방법으로제시된바있다 (Orlando와 King, 2004; Kim 등, 2008). 따라서근활성평균값과최대값의감소가근피로에의한것이아니라오히려보행시근효율성이높아진결과라고생각된다. 또한본연구에쓰인인솔의착용은속도, 걸음길이, 온걸음길이, 발의진행각과같은보행의시공간적요소들을향상시켰다. 걸음속도가증가한것은균형의증가를의미하고 (Patterson 등, 2008) 온걸음길이의증가는걸음길이증가에의한것으로이는곧다리기능의개선과연관성이높다 (Wang 등, 2007). 그리고발진행각이정상에가깝게바깥쪽돌림이증가한것은 Nakajimaa 등 (2009) 의보고에따라인솔에의해가쪽으로의체중분산이일어나고생체역학적으로발목밑관절에영향을주면서무릎의모음모멘트가줄면서나타났을것이다. 본연구를통해평발을가진경직성뇌성마비아동에게인솔적용으로안쪽세로발바닥활을지지해줌으로써보상에의한과도한근활성이줄어보행효율성이증대되었고, 균형과안정성및대칭성에관련된보행의

478 대한물리의학회지제 7 권제 4 호 시공간적요소들이개선됨을알수있었다. 따라서안쪽세로발바닥활을지지해주는인솔은평발을가진경직성뇌성마비아동의보행에긍정적인영향을미치는유용한도구가될것으로사료된다. 그러나심한평발변형을가졌거나경직이높아꿈치들린휜발변형을동반한경우까지인솔이효과적이라고단언하기는어려우며, 향후인솔의즉각적인변화뿐아니라효과가지속되는지의여부, 인솔과비교될수있는맨발, 신발, AFO를적용한다양한조건에서평발을동반한뇌성마비환자의보행에대한비교연구가필요하겠다. Ⅴ. 결론본연구의결과는다리근육의보상이줄면서보행전체주기동안의평균근활성과최대근활성이감소하였으며, 보행의시공간적요소들이향상되었음을보여주었다. 즉, 평발을가진경직성뇌성마비아동에게안쪽세로발바닥활을지지한인솔의적용은보행에긍정적인영향을미친다. 더나아가본연구는정형외과적다리관련변형을동반한일반인, 대사성발질환자그리고운동선수위주로만적용되는인솔을평발을가진경직성뇌성마비아동에게도적용할수있다는것과, 대체적으로경직성뇌성마비아동들이 AFO를처방받는실정에서벗어나인솔이장착된일상화를신고좀더정상에가깝게생활할수도있다는것을시사한다. 참고문헌 Abel MF, Juhl GA, Vaughan CL et al. Gait assessment of fixed ankle-foot orthoses in children with spastic diplegia. Arch Phys Med Rehabil. 1998;79(2):126-33. Ahroni JH, Boyko EJ & Forsberg R. Reliability of F-scan in-shoe measurements of plantar pressure. Foot Ankle Int. 1998;19(10):668-73. Barnes R & Smith P. The role of footwear in minimizing lower limb injury. J Sports Sci. 1994;12(4):341-53. Berker AN & YalcIn MS. Cerebral palsy: Orthopedic aspects and rehabilitation. Pediatr Clin North Am. 2008; 55(5):1209-25. Carley P. Features-Healing the Pain-Low-cost, size-specific polyurethane shoe inserts help in managing perceived back and knee pain. Occup Health Saf. 1999; 68(8):92-119. Carlson W, Damiano D, Abel M et al. Biomechanics of orthotic management of gait in spastic diplegia. Gait Posture. 1995;3(2):102-02. Coughlin MJ & Roger A. Mann Award. Juvenile hallux valgus: etiology and treatment. Foot Ankle Int. 1995; 16(11):682-97. Crenshaw S, Herzog R, Castagno P et al. The efficacy of tone-reducing features in orthotics on the gait of children with spastic diplegic cerebral palsy. J Pediatr Orthop. 2000;20(2):210-16. Dananberg HJ & Guiliano M. Chronic low-back pain and its response to custom-made foot orthoses. J Am Podiatr Med Assoc. 1999;89(3):109-17. DeJaeger D, Willems PA & Heglund NC. The energy cost of walking in children. Pflugers Arch. 2001;441(4): 538-43. Dixon SJ. Influence of a commercially available orthotic device on rearfoot eversion and vertical ground reaction force when running in military footwear. Mil Med. 2007;172(4):446-50. Flett PJ. Rehabilitation of spasticity and related problems in childhood cerebral palsy. J Paediatr Child Health. 2003;39(1):6-14. Fosang AL, Galea MP, McCoy AT et al. Measures of muscle and joint performance in the lower limb of children with cerebral palsy. Dev Med Child Neurol. 2003;45(10):664-70. Hawke F, Burns J, Radford JA et al. Custom-made foot orthoses for the treatment of foot pain. Cochrane Database

안쪽세로발바닥활을지지한인솔의착용이평발을가진경직성뇌성마비아동의보행에미치는영향 479 Syst Rev. 2008;16;(3):CD006801. Hennig EM & Rosenbaum D. Pressure distribution patterns under the feet of children in comparison with adults. Foot Ankle. 1991;11(5):306-11. Hunter S, Dolan MG & Davis JM. Foot orthotics in therapy and sport. Human Kinetics Publishers. 1995. Kim JJ, Choi SB & Cha SE. A Study on the kinematic variables in different safety shoes and applying insole during walking. Journal of the Korean Society of Safety. 2008;23(1):35-45. Lampe R, Mitternacht J, Schrödl S et al. Influence of orthopaedic-technical aid on the kinematics and kinetics of the knee joint of patients with neuroorthopaedic diseases. Brain Dev. 2004;26(4):219-26. Landorf KB & Keenan AM. Efficacy of foot orthoses. What does the literature tell us? J Am Podiatr Med Assoc. 2000;90(3):149-58. Lockard MA. Foot orthoses. Phys Ther. 1988;68(12):1866-73. Merletti R & Roy S. Myoelectric and mechanical manifestations of muscle fatigue in voluntary contractions. J Orthop Sports Phys Ther. 1996;24(6):342. Morris C. A review of the efficacy of lower-limb orthoses used for cerebral palsy. Dev Med Child Neurol. 2002;44(3):205-11. Mueller MJ, Host JV & Norton BJ. Navicular drop as a composite measure of excessive pronation. J Am Podiatr Med Assoc. 1993;83(4):198-202. Murley GS, Menz HB & Landorf KB. Foot posture influences the electromyographic activity of selected lower limb muscles during gait. J Foot Ankle Res. 2009;2(35):1-9. Nakajima K, Kakihana W, Nakagawa T et al. Addition of an arch support improves the biomechanical effect of a laterally wedged insole. Gait Posture. 2009; 29(2):208-13. Orlando AR & King PM. Relationship of demographic variables on perception of fatigue and discomfort following prolonged standing under various flooring conditions. J Occup Rehabil. 2004;14(1):63-76. Park CI, Bae HS, Ko YH et al. The characteristics of foot pressure in children with mild spatic diplegic cerebral palsy related to medial arch formation. The Journal of Korean Academy of Rehabilitation Medicine. 2003;27(1):33-7. Park SB, Lee KD, Kim DW et al. Biomechanical analysis of trail running shoes applied to korean shoe-lasts. Korean Society of Sports Biomechanics. 2010;20(2): 221-30. Patterson SL, Rodgers MM, Macko RF et al. Effect of treadmill exercise training on spatial and temporal gait parameters in subjects with chronic stroke: a preliminary report. J Rehabil Res Dev. 2008;45(2): 221-8. Powell M, Seid M & Szer IS. Efficacy of custom foot orthotics in improving pain and functional status in children with juvenile idiopathic arthritis: a randomized trial. J Rheumatol. 2005;32(5):943-50. Radtka SA, Skinner SR, Dixon DM et al. A comparison of gait with solid, dynamic, and no ankle-foot orthoses in children with spastic cerebral palsy. Phys Ther. 1997;77(4):395-409. Razeghi M & Batt ME. Biomechanical analysis of the effect of orthotic shoe inserts: a review of the literature. Sports Med. 2000;29(6):425-38. Rosenbaum PL, Walter SD, Hanna SE et al. Prognosis for gross motor function in cerebral palsy. JAMA. 2002;288(11):1357-63. Sanders MJ & Morse T. The ergonomics of caring for children: an exploratory study. Am J Occup Ther. 2005;59(3): 285-95. Schwartz MH, Rozumalski A & Trost JP. The effect of walking speed on the gait of typically developing children. J Biomech. 2008;41(8):1639-50. Staheli LT. Planovalgus foot deformity. Current status. J Am Podiatr Med Assoc. 1999;89(2):94-9. Stewart LA. Effects of orthotic wear on the kinetic, kinematic and electromyographic characteristics of walking and

480 대한물리의학회지제 7 권제 4 호 running. ProQuest. 2007. Teodorescu EHNL, Zambarbieri D et al. Sensory feedback for lower limb prostheses Intelligent Systems and Technologies in Rehabilitation Engineering. Ed. Horia-Nicolai L. Teodorescu and Lakhmi C. Jain Boca Raton: CRC Press LLC, 2001. Van Gheluwe B, Kirby KA & Hagman F. Effects of simulated genu valgum and genu varum on ground reaction forces and subtalar joint function during gait. J Am Podiatr Med Assoc. 2005;95(6):531-41. Wang RY, Lin PY, Lee CC et al. Gait and balance performance improvements attributable to ankle-foot orthosis in subjects with hemiparesis. Am J Phys Med Rehabil. 2007;86(7):556-62. WeeFIM SystemSM. WeeFIM SystemSM Clinical Guide: Version 5.0. Buffalo. NY: Uniform Data System for Medical Rehabilitation. 1998. White H, Jenkins J, Neace WP et al. Clinically prescribed orthoses demonstrate an increase in velocity of gait in children with cerebral palsy: a retrospective study. Dev Med Child Neurol. 2002;44(4):227-32. Wu KK. Foot orthoses: principles and clinical applications. Williams & Wilkins. 1990. Zambarbieri D, Schmid M & Verni G. Sensory feedback for lower limb prostheses. CRC Press Inc. 2001;129-51.