Biological autonomy and control of function in circadian cycle Chul-wook Park* International Institute for Applied Systems Analysis [Purpose] [Methods] [Results] [Conclusions] Key words:
Fig. 1. Representation of the circadian rhythm. The plot on the upper denotes circadian process oscillation. the plot on the bottom denotes temperature process oscillation between the circadian temperature (horizontal axis) and the body temperature (vertical axis).
Table 1. Experimental design 1 Condition Participants Normal 8 points 5:00 12:00 17:00 00:00 Trials at each circadian Task/rest (min) 6 1/5 cos cos
Fig. 2. Reflection of a potential function (HKB model). The plot on the left denotes the intrinsic dynamics of the potential function [V(ϕ)], and the black balls symbolize stable states (attractors) and red balls correspond to unstable states (repellors), ϕ2 ϕ1 0 denotes a condition of nearly synchronized in-phase, and ϕ2 ϕ1 π (= 3.14, -3.14) indicates this in an anti-phase. The plot on the right represents the observed relative phase or phase relation between two oscillators at ϕ 0 deg (in-phase), or ϕ ± 3.14 deg (anti-phase = π). The movement speed denotes control parameter and the arrow indicates attractor. max max max max sin Fig. 3. Graphical representation of the data analysis 1. The plot on the left denotes the frequency range of the amplitude (horizontal axis = time series and vertical axis = displacement, with the upper figure denoting the left-hand side and the bottom denoting the right-hand side). The plot on the right illustrates the discrete relative phase synchrony (horizontal axis = time series, vertical axis = relative phase checked peaks).
Table 2. Experimental design 2 Condition Participants Normal 8 Abnormal (heat) 8 points 5:00 17:00 5:00 17:00 Trials at each circadian Task/rest (min) 6 1/5 6 1/5 Figure 4. Illustration of the temperature according to the experimental design. The horizontal axis denotes the temperature check time (TO = take off the ice/heat vest under the perturbation condition). The vertical axis is the level of the temperature change as normalized calculation. Table 3. Experimental design 3 Condition Participants Normal 8 Abnormal (ice) 8 points 5:00 17:00 5:00 17:00 Trials at each circadian Task/rest (min) 6 1/5 6 1/5 cos cos cos cos
cos cos π sin sin and and cos cos cos cos cos cos log log Fig. 5. Graphical representation of the data analysis 2 and 3. The plot on the left denotes the estimated entropy states (vertical axis) according to the time series (horizontal axis), corresponding entropy forces (plot on the right).
Table 4. Experimental result 1 5:00 12:00 17:00 00:00 P1 1.1 6.0 0.8 5.2 1.5 6.7 6.0 43.1 P2 4.0 43.1 2.8 10.8 5.0 6.2 3.8 16.0 P3 11.2 6.7 4.0 6.0 1.5 5.4 3.9 7.7 P4 2.67 77.3 1.7 83.7 6.6 10.1 7.6 6.7 P5 6.18 40.7 3.0 13.6 2.7 11.3 4.6 20.6 P6 1.95 38.0 5.6 59.7 5.8 33.3 4.62 41.1 P7 3.52 40.1 4.4 20.9 0.8 6.1 3.8 55.2 P8 4.25 17.3 5.5 40.0 1.9 35.9 7.1 44.1 T(C ) 36.6 36.8 37.0 36.6 Figure 6. General tendencies in the normal condition. Normalized = standard score (Z calculation), blue line = fixed point shift, red line = variability as a function of the frequency competition, Temp = temperature (Celsius), 5:00, 12:00, 17:00, and 00:00. Table 5. Experimental result 2 N_5:00 N_17:00 Ab_5:00 Ab_17:00 N(I) 8 8 8 8 AVER(H) 0.410-0.165 0.564-0.809 STDEV(H) 0.651 0.664 0.627 0.745 SES 0.230 0.235 0.222 0.264 Table 6. Experimental result 3 N_5:00 N_17:00 Ab_5:00 Ab_17:00 N(I) 8 8 8 8 AVER(H) 0.404-0.172 0.608-0.840 STDEV(H) 0.446 1.031 0.518 0.993 SES 0.158 0.365 0.183 0.351
Fig. 7. Entropy forces. The plot on the left denotes the entropy forces of the heat-based normal vs. abnormal conditions, which data was from the results 2. The plot on the right denotes the entropy forces of the ice-based normal vs. abnormal conditions, which data was from the results 3. Fig. 8. Illustration of the three-different experimental results. The contour (black ~ white) represents the 24 hour circadian process (T = temperature, H = entropy) as expressed by a sine function (pi/2 = 5:00, pi = 12:00, pi3/2 = 17:00, pi2 = 00:00) according to the optimized value of the system s state with arbitrary units of -1 to 1.
Aldemir, H., Atkinson, G., Cable, T., Edwards, B., Waterhouse, J., & Reilly, T. (2000). A comparison of the immediate effects of moderate exercise in the early morning and late afternoon on core temperature and cutaneous thermoregulatory mechanisms. Chronobiology international, 17(2), 197-207. Amazeen, P. G. (2002). Is dynamics the content of a generalized motor program for rhythmic interlimb coordination?. Journal of motor behavior, 34(3), 233-251. Amazeen, E. L., Amazeen, P. G., Treffner, P. J., & Turvey, M. T. (1997). Attention and handedness in bimanual coordination dynamics. Journal of Experimental Psychology: Human Perception and Performance, 23(5), 1552. Aschoff, J. (1983). control of body temperature. Journal of Thermal Biology, 8, 143-147. Baron, K. G., & Reid, K. J. (2014). misalignment and health. International Review of Psychiatry, 26(2), 139-154. Bell, J. S. (1964). On the einstein-podolsky-rosen paradox. Physics, 1(3), 195-200. Bernstein, N. A. (1967). The co-ordination and regulation of movements. Oxford: Pergamon Press. Blake, M. J. F. (1967). Time of day effects on performance in a range of tasks. Psychonomic science, 9(6), 349-350. Bohm, D. (1969). Some remarks on the notion of order. In C. H. Waddington (Ed.), Towards a theoretical biology, Volume 2 (pp. 18-40). Chicago: Aldine Publishing Company. Borbély, A. A., & Achermann, P. (1999). Sleep homeostasis and models of sleep regulation. Journal of biological rhythms, 14(6), 559-570. Cariani, P. (1993). To evolve an ear. Epistemological implications of gordon pask's electrochemical devices. Systems research, 10(3), 19-33. Carrier, J., & Monk, T. H. (2000). rhythms of performance: new trends. Chronobiology international, 17(6), 719-732. Clausius, R. (1867). On Different Forms of the Fundamental Equations of the Mechanical Theory of Heat and their Convenience for Application. The Second Law of Thermodynamics, edited by J. Kestin, Dowden, Hutchinson and Ross, 162-193. Defense Advanced Research Projects Agency (DARPA). (2009). Physical intelligence. Defense Sciences Office, BAA-09-63, 1 38. Edholm, O. G., Fox, R. H., & Wolf, H. S. (1973). Body
temperature during exercise and rest in cold and hot climates. Archives des sciences physiologiques, 27(3), 339. Ford, B. J. (2008). Microscopical substantiation of intelligence in living cells. Infocus Magazine, (12), 4. Goldstein, D., Hahn, C. S., Hasher, L., Wiprzycka, U. J., & Zelazo, P. D. (2007). Time of day, intellectual performance, and behavioral problems in morning versus evening type adolescents: Is there a synchrony effect?. Personality and individual Differences, 42(3), 431-440. Gibson, J. J. (1950). The perception of the visual world. Riverside Press, Cambridge, England. Haken, H., Kelso, J. S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological cybernetics, 51(5), 347-356. Harrison, D. (1982). Bell s inequality and quantum correlations. American Journal of Physics, 50(9), 811-816. Iberall, A. S. (1977). A field and circuit thermodynamics for integrative physiology. I. Introduction to the general notions. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 233(5), R171-R180. Iberall, A. S., & Soodak, H. (1987). A physics for complex systems. In Self-organizing systems (pp. 499-520). Springer US. Johnson, M. P., Duffy, J. F., Dijk, D. J., Ronda, J. M., Dyal, C. M., & Czeisler, C. A. (1992). Short term memory, alertness and performance: a reappraisal of their relationship to body temperature. Journal of sleep research, 1(1), 24-29. Kay, B. A., Kelso, J. S., Saltzman, E. L., & Schöner, G. (1987). Space time behavior of single and bimanual rhythmical movements: Data and limit cycle model. Journal of Experimental Psychology: Human Perception and Performance, 13(2), 178. Kelso, J. A. (1984). Phase transitions and critical behavior in human bimanual coordination. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 246(6), 1000-1004. Krauchi, K., & Wirz-Justice, A. (1994). rhythm of heat production, heart rate, and skin and core temperature under unmasking conditions in men. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 267(3), 819-829. Kräuchi, K., & Wirz-Justice, A. (2001). clues to sleep onset mechanisms. Neuropsychopharmacology, 25, 92-96. Kugler, P. N., Kelso, J. S., & Turvey, M. T. (1980). 1 On the Concept of Coordinative Structures as Dissipative Structures: I. Theoretical Lines of Convergence. Advances in Psychology, 1, 3-47. Kugler, P. N., & Turvey, M. T. (1987). Information, natural law and the self-assembly of rhythmic movement. Hillsdale, NJ: Erlbaum. Latash, M. L., Turvey, M. Texterity and its development.., & Bernshteĭn, N. A. (1996). D Lawrence Erlbaum. Marcheva, B., Ramsey, K. M., Buhr, E. D., Kobayashi, Y., Su, H., Ko, C. H.,... & Lopez, J. P. (2010). Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature, 466(7306), 627-631. Maury, E., Ramsey, K. M., & Bass, J. (2010). rhythms and metabolic syndrome from experimental genetics to human disease. Circulation research, 106(3), 447-462. Monk, T. H., Weitzman, E. D., Fookson, J. E., Moline, M. L., Kronauer, R. E., & Gander, P. H. (1983). "Task variables determine which biological clock controls circadian rhythms in human performance." Nature 304, 543. Reed, E. S. (1996). Encountering the world: Toward an ecological psychology (Vol. 1). New York: Oxford University Press. Rosen, R. (1987). Some epistemological issues in physics and biology. In B. J. Hilley & F. D. Platt (Eds.), Quantum implications: Essays in honor of David Bohm (pp. 315-327). New York: Routlege & Kegan. Rosen, R. (1991). Life itself. New York: Columbia University Press. Saltzman, E. (1986). The task dynamic coordination of the speech articulators: A preliminary model. In H. Heuer and C. Fromm (eds.), Generation and modeling of action patterns (pp. 129-144). New York: Springer-Verlag. Strogatz, S. H. (1994). Nonlinear dynamics and chaos. Reading, MA: Addison-Wiley. Strong Jr, D. R., & Ray Jr, T. S. (1975). Host Tree Location Behavior of a Tropical Vine (Monsters gigontea) by S kototropism. Science, 190, 804-806 Thun, E., Bjorvatn, B., Flo, E., Harris, A., & Pallesen, S. (2015). Sleep, circadian rhythms, and athletic performance. Sleep medicine reviews, 23, 1-9. Treffner, P. J., & Turvey, M. T. (1996). Symmetry, broken
symmetry, and handedness in bimanual coordination dynamics. Experimental Brain Research, 107(3), 463-478. Turvey, M. T., & Carello, C. (2012). On intelligence from first principles: Guidelines for inquiry into the hypothesis of physical intelligence (PI). Ecological Psychology, 24(1), 3-32. Turvey, M. T., Shaw, R. E., Reed, E. S., & Mace, W. M. (1981). Ecological laws of perceiving and acting: In reply to Fodor and Pylyshyn (1981). Cognition, 9(3), 237-304. Von Neumann, J. (1951). The general and logical theory of automata. Cerebral mechanisms in behavior, 1-41. Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J.,... & Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 416(6879), 389-395. Waterhouse, J., Drust, B., Weinert, D., Edwards, B., Gregson, W., Atkinson, G.,... & Reilly, T. (2005). The circadian rhythm of core temperature: origin and some implications for exercise performance. Chronobiology international, 22(2), 207-225. Zanone, P. G., & Kelso, J. S. (1997). Coordination dynamics of learning and transfer: collective and component levels. Journal of Experimental Psychology: Human Perception and Performance, 23(5), 1454.