에너지경제연구 Korean Energy Economic Review Volume 12, Number 2, September 2013 : pp. 33~58 지구온난화가가정부문에너지소비량에미치는 영향분석 : 전력수요를중심으로 33
~ ~ ~ ~ ~ ~ ~ 34
~ 35
~ 36
~ 37
< 표 1> 변수들의기초통계량 ~ ~ ~ ~ 38
[ 그림 1] 로그변수들의시간에대한추세 39
< 표 2> 단위근검정결과 40
ln ln ln ln ln ln ln ln ln ln ln ln ln 41
< 표 3> ARDL- 한계검정결과 ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ~ 42
ln ln ln ln ln ln ln ln ln ln ln ln ln 43
< 표 4> ARDL 가정용전력수요함수추정 44
시계열상관이없다 는귀무가설에대하여 Breusch-Godfrey LM test 를실행한결과역시귀무가설을기각하는하는것으로, 시계열상관이있는것으로나타났다. 시계열상관문제를다루고자 Newey-West 표준오차를이용하였다. 이때의 Newey-West 표준오차는일치추정량이된다. 45
[ 그림 2] 장기가정용전력수요함수의잔차항추이 ln ln ln ln ln ln ln 13) 식 (4) 의오차수정모형의도출과정은부록에설명되어있다. 46
< 표 5> 단기가정용전력수요함수추정 47
48
[ 그림 3] 49
[ 그림 4] 50
51
접수일 (2013 년 3 월 4 일 ), 수정일 (2013 년 6 월 11 일 ), 게재확정일 (2013 년 7 월 2 일 ) 52
. 2011... 2011... 2000.... 2012.... 2009.... 1986.... 2006... Al-Faris, A. R. 2002. The Demand for Electricity in the GCC Countries. Energy Policy 30 : pp117-124. Beenstock, M., E. Goldin and D. Nabot. 1999. The Demand for Electricity in Israel. Energy Economics 21 : pp168-183. Egelioglu, F., A. A. Mohamad and H. Guven. 2001. Economic Variables and Electricity Consumption in Northern Cyprus. Energy : pp355-362. Engle, R. F., and C. W. Granger. 1987. Co-integration and Error Correction: Representation, Estimation, and Testing. Econometrica: Journal of the Econometric Society 55 : pp251-276. Filippini, M. 1999. Swiss Residential Demand for Electricity. Applied Economics Letters 6 : pp533-538. Fullerton, T. M., D. A. Juarez and A. G. Walke. 2012. Residential Electricity Consumption in Seattle. Energy Economics 34 : pp1693-1699. Glickman, T. 2000. Glossary of Meteorology. 2d ed : Amer. Meteor. Soc. Halicioglu, F. 2007. Residential Electricity Demand Dynamics in Turkey. Energy Economics 29 : pp199-210. 53
Houthkker, H. S. 1951. Some Calculations on Electricity Consumption in Great Britain. Journal of the Royal Statistical Society 114 : pp359-371. IPCC. 2007. Fourth Assessment Report: Climate Change(AR4). MRCC. cited 2007. Weather Terminology. Midwestern Regional Climate Center. [http://mrcc.sws.uiuc.edu/resources_links/wxfaq5.htm.] Narayan, P. K. 2005. The Saving and Investment Nexus for China: Evidence for Cointegration Test. Applied Economics 37 : pp1979-1990. Narayan, P. K. and R. Smyth. 2005. The Residential Demand for Electricity in Australia: An Application of the Bounds Testing Approach to Cointegration. Energy Policy 33 : pp467-474. Nasr, G., E. A. Badr and G. Dibeh. 2000. Econometric Modelling of Electricity consumption in Post-war Lebanon. Energy economics 22 : pp627-640. Newey, W. K., and K. D. West. 1987. A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix. Econometrica: Journal of the Econometric Society, 55 : pp703-708. Pesaran, M. H. and B. Pesaran. 1997. Working with Microfit 4.0: Interactive Econometric Analysis. Oxford : Oxford University Press. Pesaran M. H. and Y. Shin. 1999. An Autoregressive Distributed Lag Modelling Approach to Cointegration Analysis, Oxford : Oxford University Press. Pesaran, M. H., Y. Shin and R. J. Smith. 2001. Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics 16 : pp289-326. Rajan, M. and V. K. Jain. 1999. Modelling of Electrical Energy Consumption in Delhi. Energy 24 : pp351-361. Shin, J. S. 1985. Perception of Price When Price Information is Costly: Evidence from Residential Electricity Demand. The Review of Economics and Statistics 67 : pp591-598. York, R. 2007. Demographic Trends and Energy Consumption in European Union Nations, 1960-2025. Social Science Research 36 : pp.855-872. 54
부록 ln ln ln ln ln ln ln ln ln ln ln ln ln 55
ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln 56
ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln 57
ABSTRACT The annual average temperature has increased because of climate change due to global warming. This constant rise in temperature is expected to continue. Climatic change can affect social and economic features including energy consumption. This paper analyzes how global warming makes an effect on residential electricity demand. The long and short-run demands for residential electricity were estimated with the ARDL model and Error correction model. The results show that CDD(Cooling Degree Days) variables significantly have an effect on residential electricity demand. But electricity demand is not influenced by HDD(Heating Degree Days). If 1% of CDD increase, the residential electricity consumption will rise 0.35% in the long-run and 0.11% in the short-run. The effect of CDD on the residential electricity demand in the long-run is larger than in the short-run. Key Words : Global warming, Residental electricity demand, ARDL JEL Codes : Q47 58