J Korean Soc Phys Med, 2018; 13(1): 89-98 http://dx.doi.org/10.13066/kspm.2018.13.1.89 Online ISSN: 2287-7215 Print ISSN: 1975-311X Research Article Open Access 수중발목커프착용후수중트레드밀보행훈련이뇌졸중환자의균형과보행능력에미치는영향 윤의섭 최종덕 1 대전대학교보건의료대학원물리치료학과, 1 대전대학교보건의료과학대학물리치료학과 The Effects of Underwater Treadmill Walking Training with Aquatic Cuff Weights on Balance and Walking Abilities in Stroke Patients Eui-Seob Yoon, PT Jong-Duk Choi, PhD, PT 1 Dept. of Physical Therapy, Graduate School of Health and Medicine, Daejeon University 1 Dept. of Physical Therapy, College of Health and Medical Science, Daejeon University Received: November 13, 2017 / Revised: December 1, 2017 / Accepted: December 30, 2017 c 2018 J Korean Soc Phys Med Abstract 1) PURPOSE: While underwater, patients with hemiplegia experience unwanted limb flotation on their paretic side due to low muscle mass and high body fat. However, only a limited number of studies support the effectiveness of this practice. Therefore, the purpose of this study was to determine how the balance and walking abilities of patients with hemiplegia due to stroke were affected by wearing an aquatic cuff on their ankles during underwater treadmill walking. METHODS: Twenty stroke patients were divided into an experimental group comprised of 20 patients who would wear an aquatic cuff and a control group comprised of 10 patients without an aquatic cuff. Both groups underwent a six-week Corresponding Author : Jong-Duk Choi choidew@dju.kr, http://orcid.org/0000-0002-9663-4790 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. intervention for 30 minutes a day three times a week. To evaluate the groups balance and walking abilities before and after the intervention, the 10 m walking test, timed up go test, Berg Balance Scale, functional reaching test, and the GAITRite system were used. RESULTS: The results of the 10 m walking test, timed up go test, differences between the left and right gait cycles, and functional reaching test showed statistically significant differences in the rates of change between the two groups (p<.05). CONCLUSION: The study results suggest that underwater treadmill training in stroke patients can be more effective when they wear an aquatic cuff on their ankles compared to wearing no aquatic cuff. Key Words: Balance, Gait, Stroke, Treadmill gait training Ⅰ. 서론뇌혈관질환은허혈성또는출혈성으로인해뇌의정상적인혈액공급에문제가발생하여일어나며발생
90 J Korean Soc Phys Med Vol. 13, No. 1 빈도가높은신경학적질환이다 (Kim과 Bae, 2010; Park 등, 2017). 뇌졸중발생후생존자는운동, 감각, 인지, 지각, 감정및언어장애를비롯한다양한신경학적결손을보여준다 (Jung 등, 2010). 일차운동장애는마비, 근육긴장의변화, 선택적운동조절의부재, 비정상적인반사및균형부족을수반한다 (O Sullivan와 Schmitz, 2007). 이러한특성으로인하여보행능력이떨어진다 (Jung 등, 2010). 뇌졸중생존자의약 20% 가주로휠체어사용자로남아있는반면, 대부분의사람들은보행능력을회복한다 (Wade 등, 1987). 그러나운동능력을되찾았음에도불구하고일반성인과비교하였을때느린보행속도, 비효율적인에너지소비, 변경된보행패턴, 제한된보행지구력및낮은보행안정성과같은다양한어려움이발생한다 (Jung 등, 2010). 게다가, 골반을올리며걷거나뒤꿈치가닿지않고휘돌림과같은편마비성보행이나타나보상움직임의패턴이종종관찰된다 (Kirtley, 2006; O Sullivan와 Schmitz, 2007; Perry와 Davids, 1992). 지상트레드밀을이용하여보행훈련을하는경우보폭을줄이고보행률, 입각기비율, 한발로서있는자세및보행중마비측의하지에입각기와유각기의비율을증가시킨다 (Aaslund와 Moe-Nilssen, 2008; Bayat 등, 2005). 그리고트레드밀보행훈련은하지근력, 보행속도, 보행지구력및심혈관기능의증가등에효과가있다 (Ada 등, 2003; Macko 등, 2005; Patterson 등, 2007; Silver 등, 2000). 게다가트레드밀을이용하여보행훈련을하는경우가일반적인운동치료보다실제보행패턴과유사하므로보행능력을향상시키는데더효과적이다 (Miller 등, 2002; Trueblood, 2001). 편마비환자가트레드밀보행중본인의무게를견딜수없거나균형을유지할수없는경우에체중을보조해주는트레드밀을사용하여보행훈련을시킬수있다. 편마비환자가체중을보조해주는트레드밀에서보행훈련을하는경우한발서기, 유각기의비율및스윙시좌우대칭이증가할뿐만아니라두발모두지지하는시간이짧아진다 (Hesse 등, 1999). 몇몇연구에서는체중을지지해주는트레드밀보행훈련후지상보행속도, 보행지구력, 균형운동능력, 근력및산소소비가 증가하였다 (Jung 등, 2010). Jeong 등 (2008) 의연구에선체중지지트레드밀보행훈련이아급성기뇌졸중환자들에게있어보행과균형을증진시키는데효과적이라고하였다. 수중운동은편마비환자들의재활에관심을점점많이받고있다. 수중치료는편마비환자들의보행훈련및기타재활운동에이상적인환경을제공할수있다 (Nishiyori 등, 2016). 수중치료로인하여보행속도, 마비측사지의근력증가, 우울증과같은심리적불안감을해소시키는데효과가있다 (Nishiyori 등, 2016). 또한, 수위가증가함에따라, 부력으로인한하지의지지양이적어져보행에다양한이점을줄수있다 (Barela 와 Duarte, 2008). 그뿐만아니라수중트레드밀보행훈련은온도, 점도, 정수압, 난기류및저항력과같은물의특성으로부터도이익을얻고, 보행훈련이어려운환자는낙상의염려없이보행연습을할수있다 (Bates, 1996). 생리적이점외에도수중운동은동기부여와자신이도움을받고있다는느낌을줄수있다 (Jung 등, 2010). 그러나편마비환자들의마비측사지는낮은근육량과높은지방량으로인하여수중에있는동안사지의원치않은사지의부양을만들어낸다 (Bates, 1996). 그로인해많은수중치료사는수중운동과보행훈련중편마비환자들의원치않은사지의부양을막기위해수중커프를사용한다 (Nishiyori 등, 2016). Nishiyori 등 (2016) 의연구에선발목에수중커프를착용시킨후수중에서의보행중시공간및운동학적보행변수가어떻게영향을받는지조사하였다. Jung 등 (2010) 의연구에선 3차원수중운동분석시스템을통해수중트레드밀보행을하는동안편마비환자의마비측하지에추가적인무게를적용시켰을때어떠한영향이있는지알아보았다. 하지만이러한연구들은커프를착용한상태에서보행을분석할뿐중재후변화를보진않았다. 따라서, 수중커프를착용후수중트레드밀보행훈련에대한근거는뒷받침할연구가부족한실정이다. 그렇기에본연구에서는편마비환자들을대상으로마비측발목에수중커프를착용후트레드밀훈련이편마비환자의보행과균형능력에영향을얼마나미치는지에대해알아보고자한다.
수중발목커프착용후수중트레드밀보행훈련이뇌졸중환자의균형과보행능력에미치는영향 91 Ⅱ. 연구방법 1. 연구대상자본연구는 D 시에위치한 D 요양병원에입원중인성인뇌졸중발병후편마비환자로보행장애를가지고있는대상으로하였다. 처음에는 23명의환자로시작하였으나낙상, 퇴원그리고중도포기로인해 3명이제외되어남자 14명, 여자 6명총 20명이참여하였다. 대상자의선정조건은뇌졸중발병기간이 6개월이상인자, 보행보조도구를이용하거나치료사의감독하에 10 m 이상독립적인보행이가능한자, 30분이상수중트레드밀훈련이가능한자, 버그균형척도 (Berg Balance Scale, BBS) 점수가 45점미만인자, 한국형간이정신상태판별검사점수가 21점이상인자, 신장이 155 cm에서 175 cm인자, 본연구참여에동의한자이다. 대상자의제외조건은심혈관계또는기타의학적소견이있는자, 정형외과수술을한지 4개월이내인자, 외상성상처가있는자이다. 선정된 20명은각 10명씩무작위배치하여수중트레드밀보행훈련시발목에수중커프를착용하는훈련군과수중커프를착용하지않는훈련군으로나누어실시하였다. 본연구는대전대학교기관생명윤리위원회의승인을받은후수행을하였다 (1040647-201706-HR-006-01). Fig. 1. Underwater treadmill walking training after wearing underwater cuff Fig. 2. Underwater treadmill walking training without wearing underwater cuff 2. 중재방법수중트레드밀 (Aqua Zone, SUNION, Korea) 을이용하여보행훈련을 30분씩일주일에 3번, 총 6주간시행하였다. 수온은 33 에서 34 를유지하였으며물의깊이는환자의검상돌기와배꼽사이의깊이로설정하였다. 실험군은추가적인무게를사용하기위해발목에수중커프를착용한후보행훈련을하고 (Fig. 1), 대조군은수중커프를착용하지않고보행훈련을하였다 (Fig. 2). 수중커프의처음무게는몸무게가 70 kg 이상인자는 2.25 kg 커프를착용하고미만인자는 1.15 kg을착용시켰다. 훈련전무게에대한불편함을호소하면더편안한무게의커프로착용시켰다. 처음 5분간편안한속도로걷기시작하고, 2분마다.5 km/h 씩천천히올렸다. 운동자각지수가 13점 ( 약간힘듦 ) 을유지한채로걸었 다. 마지막 5분은다시편안한속도로유지하며마무리운동을하였다 (Yang과 Choi, 2015). 3. 측정방법 1) 10 m 보행검사보행능력을평가하기위하여 10 m 보행검사 (10Meter Walking test, 10 MWT) 를시행하여소요되는시간을측정하였다 (Hunt 등, 1981). 총 14 m를시행하고시작과끝부분 2 m씩을제외하고시간을측정하였다. 10 m 보행검사는보행기능의수준을평가하는도구로측정자내신뢰도.89~1.00이다(Dean 등, 2000). 총 3번측정후평균값을측정값으로사용하였다. 평가시대상자의안전을위해평가자가옆에있었다.
92 J Korean Soc Phys Med Vol. 13, No. 1 2) 시공간적보행능력평가보행능력을시공간적으로평가하기위하여 GAITRite system을사용하였다. 이장비로분속수 (Cadence; CA), 왼발과오른발의보행주기시간의차이값 (Cycle Time Differential; CTD), 왼발과오른발의스텝수차이값 (Step Time Differential; STD) 을측정하였다. 길이 366 cm, 폭 61 cm인전자식보행판으로보행판 5 m전부터걷기시작하여보행판을걸은후 5 m를더걷는다 (Bang과 Cho, 2017a). 보행판위에서걸은시간만측정하였다. 그모든값은총 3번측정후평균값을측정값으로사용하였다. 타당도와신뢰도는.92~.99이다(Webster 등, 2005). 평가시대상자의안전을위해평가자가옆에있었다. 3) 일어나걸어가기검사동적균형및보행능력을평가하기위하여일어나걸어가기검사 (Timed Up and Go test, TUG test) 를사용하였다. 평가방법은일어선후 3 m 걸어갔다다시돌아와앉기로구성되어있으며이를시간으로측정한다. 편마비환자들에게유용하게사용되며타당도와신뢰도는.99이다(Ng와 Hui-Chan, 2005). 총 3번측정후평균값을측정값으로사용하였다. 평가시대상자의안전을위해평가자가옆에있었다. 4) 버그균형척도검사균형에대한기능적인보행능력을측정하기위하여 버그균형척도 (Berg Balance Scale, BBS) 를사용하였다. 정적균형능력과동적균형능력을객관화하는척도로측정자내신뢰도.99와측정자간신뢰도.98이다(Berg 등, 1992). 균형에관한 14개의항목을각항목당 0에서 4점으로평가하며총점수는 0점에서 56점이며, 독립적이고안전한이동을위해서는 45점이상이필요하다 (Bang과 Cho, 2017b). 평가시대상자의안전을위해평가자가옆에있었다. 5) 기능적팔뻗기검사기능적팔뻗기검사 (Functional Reach test) 는동적균형평가를위해사용하였고피검자가서서한쪽팔을수평을유지한채평행하게팔을앞으로뻗도록하여뻗은거리를측정하였다. 총 3회를측정한후평균값을측정값으로사용하였다 (Kang 등, 2012). 평가시대상자의안전을위해평가자가옆에있었다. 4. 자료분석측정된자료는윈도우용 SPSS version 18.0을사용하여통계처리를하였다. 정규성검정은샤피로-윌크검정 (Shapiro-Wilk test) 을사용하였다. 기술통계를이용하여대상자의일반적특성의평균과표준편차를계산하였다. 훈련전과훈련후의차이를비교하기위해서윌콕슨부호순위검정 (Wilcoxon s signed-ranks test) 를사용하였다. 두군간의시점별차이를비교하기위하 Table 1. Characteristics of participants Variables Experimental group (n=10) Control group (n=10) p Sex (male/female) 5/5 9/1 Age (years) 58.9±18.20 58.00±8.92 Height (cm) 166.50±5.62 170.80±4.73 Weight (kg) 68.20±6.66 73.20±9.62 Body Mass index 24.62±2.32 25.07±2.95 >.05 Time after stroke (months) 22.30±8.10 19.00±10.40 Side of stroke (right/left) 6/4 8/2 Leg Length (right) 84.60±5.34 88.10±3.54 Leg Length (left) 83.95±5.69 87.95±3.35 Values Mean±±SD
수중발목커프착용후수중트레드밀보행훈련이뇌졸중환자의균형과보행능력에미치는영향 93 Table 2. Outcome measurements of walking ability 10 MWT (m/sec) TUG (cm) Experimental group (n=10) Control group (n=10) z pre 62.41±46.31 35.01±30.63-2.419* Post 55.28±43.86 32.77±28.18-2.117* z -2.803* -2.803* Rate of change -12.16±8.56-5.80±5.72-1.965* Pre 63.51±50.32 35.73±30.73.059 Post 58.47±46.92 35.30±30.35-1.890 z -2.803* -1.274 Rate of change -8.43±5.26 -.98±5.58-2.797* Values Mean±SD 10 MWT, 10 m walking test; TUG, timed up and go *p<.05 Table 3. Outcome measurements of GATERite system CA (step/min) CTD (sec) STD (sec) Experimental group (n=10) Control group (n=10) z pre 60.20±15.03 68.80±21.67 -.983 Post 68.81±16.67 78.11±28.57 -.832 z -2.803* -2.395* Rate of change 14.87±8.82 12.64±15.38-1.058 pre.05±.09.02±.01 -.227 Post.03±.07.02±.01-1.098 z -2.803* -1.844 Rate of change -34.21±22.09-13.30±25.75 -.907* Pre.32±.43.21±.11 -.151 Post.25±.38.17±.10 -.265 z -2.803* -2.092* Rate of change -25.99±22.18-17.54±20.26 -.907 Values Mean±±SD CA, cadence CTD, cycle time differential; STD, step time differential *p<.05 여맨휘트니 U (Mann-Whitney U test) 를사하였다. 유의수준은.05로하였다. 유의한차이가없었다 (p>.05). 연구대상자들의일반적인특성은 Table 1과같다. Ⅲ. 연구결과 1. 연구대상자의일반적특성두군간일반적특성인성별, 나이, 키, 몸무게, 체질량지수, 다리길이, 발병기간, 마비측의모든변수에서 2. 10 m 보행검사실험군과대조군의중재전 후와변화율의보행능력을나타내는 10 MWT에대한비교결과는 Table 2와같다. 발목에커프를착용하지않은대조군에서 5.805.72% 가유의하게감소하고 (p<.05) 발목에커프를착용한실헌군은 12.168.56% 유의하게감소되었다
94 J Korean Soc Phys Med Vol. 13, No. 1 Table 4. Outcome measurements of balance ability BBS FRT (cm) Experimental group (n=10) Control group (n=10) z pre 29.80±12.04 39.10±8.36-2.185* Post 37.80±14.94 45.30±9.62-1.291 z -2.670* -2.677* Rate of change 26.47±17.91 16.21±10.80-1.892 Pre 7.97±7.30 16.45±11.51 -.983 Post 14.58±8.85 21.00±13.97-1.134 z -2.803* -2.668* Rate of change 181.01±178.83 29.77±19.71-2.495* Values Mean±SD BBS, berg balance scale; FRT, functional reach test *p<.05 (p<.05). 변화율에대해서실험군이대조군에비해유의하게감소되었다 (p<.05). 3. 시공간적보행능력실험군과대조군의중재전 후와변화율의시공간적보행능력을나타내는 CA, CTD, STD에대한비교결과는 Table 3과같다. CA에서실험군은 14.878.82% 유의하게증가하였고 (p<.05) 대조군에서도 12.6415.38% 감소하였다 (p<.05). 그러나변화율에대해선두군간유의한차이가없었다 (p>.05). CTD에서실험군은 34.2122.09% 유의하게감소하였고 (p<.05) 대조군은 13.3025.75% 감소하였지만통계상으로는유의하지않았다 (p>.05). 두군간변화율차이에선실험군이대조군보다유의하게높았다 (p<.05). STD에서실험군은 25.9922.18% 유의하게감소되었고 (p<.05) 대조군은 17.5420.26% 유의하게감소하였다 (p<.05). 그러나두군간변화율차이에서는유의한차이가없었다 (p>.05). 4. 일어나걸어가기검사실험군과대조군의중재전 후와변화율의동적균형및보행능력을나타내는 TUG에대한비교결과는 Table 2와같다. 실험군은 8.435.26% 유의하게감소되었고 (p<.05) 대조군은.985.58% 감소하였지만통계상으로는유의하지않았다 (p>.05). 두군간변화율에대해서실험군이대조군에비해유의한감소를나타내었다 (p<.05). 5. 버그균형척도검사실험군과대조군의중재전 후와변화율의균형능력을나타내는 BBS에대한비교결과는 Table 4와같다. 실험군은 26.4717.91% 유의하게증가되었고 (p<.05) 대조군은 16.2110.80% 유의하게증가하였다 (p<.05). 두군간변화율에대해서실험군이대조군에비해유의한증가를나타내었다 (p<.05). 6. 기능적팔뻗기검사실험군과대조군의중재전 후와변화율의동적균형능력을나타내는 FRT에대한비교결과는 Table 4와같다. 실험군은 181.01178.83% 유의하게증가되었고 (p<.05) 대조군은 29.7719.71% 유의하게증가하였다 (p<.05). 두군간변화율에대해서실험군이대조군에비해유의한증가를나타내었다 (p<.05). Ⅳ. 고찰본연구는뇌졸중후편마비환자를대상으로수중트레드밀보행훈련시부양되는사지를막기위해수중커프를착용한상태로수중트레드밀보행훈련을한실험군과커프를착용하지않고수중트레드밀보행훈련을한대조군간의균형능력과보행능력향상정도를비교하여뇌졸중환자의균형능력과보행능력에
수중발목커프착용후수중트레드밀보행훈련이뇌졸중환자의균형과보행능력에미치는영향 95 더효과적인수중트레드밀보행훈련방법을제시하기위하여실시하였다. 균형과보행능력평가로 10 m 보행검사, 시공간적보행능력검사, 일어나걸어가기검사, 버그균형척도검사, 기능적팔뻗기검사를하였다. 두군간의동질성을고려하여결과값의변화율을비교하였다. 그결과, 두군모두균형능력과보행능력에유의한향상을나타내었고, 10 m 보행검사, 왼발과오른발의보행주기시간의차이값, 일어나걸어가기검사, 기능적팔뻗기검사에선실험군이대조군에비해더유의한능력향상을나타내었다. Franceschini 등 (2009) 은균형능력과보행능력은뇌졸중후편마비환자의회복수준을확인할수있는척도와독립적인생활을하는데지표가된다고하였다. 뇌졸중환자의흔한보행패턴은시공적인비대칭및운동학적보행특성과관련된편마비성보행이다. 뇌졸중환자의마비측다리는보폭의변화, 단발지지시간감소, 엉덩관절및무릎관절각도감소, 발바닥굽힘각도증가등을보여준다. 게다가, 골반을올리며걷거나뒤꿈치가닿지않고휘돌림과같은편마비성보행중에보상움직임패턴이종종관찰된다 (Jung 등, 2010). 뇌졸중환자가균형능력이저하되는주요한원인은기초입력감각이감소되어있고입력된감각의통합이어렵기때문이다. 그리고운동조절력과근력의감소로인하여자세의안정성이결여되어균형을유지하는데어려움이있다. 떨어진균형감각으로인해서있는동안비대칭적인체중지지를보이고자세동요가증가한다 (Marigold와 Eng, 2006). 이러한근거에의해뇌졸중발병후편마비환자의보행능력, 균형능력의향상을위해적절한물리치료가포함되어야한다. 선행논문들에서트레드밀보행훈련이걷기속도의향상과많은거리를이동할수있게한다고보고하여뇌졸중환자에게보행훈련이꼭포함돼있어야한다고하였다 (Polese 등, 2013). 또한트레드밀보행훈련으로마비측의체중지지시간을연장시켜대칭성을향상시키고, 정상적인보행의감각입력을제공하여뇌졸중후편미바환자의보행능력과균형능력및근력강화에효과적이라고한다 (Yang과 Choi, 2015). 현재는수중트레드밀사용으로인해지상에서보행이힘든환자들 도지상보다쉽게보행훈련이가능하게되었다. 수중트레드밀보행훈련은지상트레드밀보행훈련보다뇌졸중후편마비환자들에게심리적으로안정감을가지고보행훈련을할수있고, 물의물리적특성으로인한이점으로근력, 근지구력과관절가동범위의증진, 심폐능력의향상이가능하고보행능력과균형능력을향상시킬수있다 (Yang과 Choi, 2015). 그러나뇌졸중후환자들의마비측부위가낮은근육량과높은지방량으로인해원치않은사지부양을하게되어수중보행훈련에불편함을가져온다. 이를해소하기위하여선행논문에선무릎과발목에수중커프를착용시켜추가적인무게를적용함으로써사지의원치않은부양을해소시켰다 (Jung 등, 2010). 이전의논문에선 3차원수중운동분석시스템을통해수중트레드밀보행을하는동안뇌졸중후편마비환자의마비측하지에추가적인무게를적용했을때어떠한영향이있는지알아보았다. 그결과마비측하지의입각기비율에서유의한증가를보였으며, 스윙단계후기에서마비측하지의엉덩관절굽힘의최대각도에유의한감소도보였다 (Jung 등, 2010). Nishiyori 등 (2016) 의연구에선발목에수중커프를착용시킨후수중에서의보행이분속수, 보폭그리고걸음속도의증가를보여줬다. 본연구에선수중트레드밀보행훈련중발목에수중커프를착용시키는경우가착용시키지않는경우와균형과보행능력에있어서어떠한차이가있는지알아보기위해시행하였다. 보행속도는뇌졸중후편마비환자들의기능회복과공동체보행의유용한척도로이용할수있다 (Schmid 등, 2007). 10 m 보행검사에서실험군과대조군모두유의한감소를보였고 (p<.05) 변화율에서는실험군이대조군보다유의한감소를보였다 (p<.05). 그리고일어나걸어가기검사에서도실험군은유의한감소를보였지만 (p<.05) 대조군은유의한차이를나타내지못했다 (p>.05). 변화율은실험군이대조군보다유의한감소를보였다 (p<.05). 지상에서의트레드밀훈련에따른보행속도의증가가지상보행패턴으로옮겨질수있다 (Visintin 등, 1998). 그리고뇌졸중후편마비환자에게지상트레드밀훈련보다수중트레드밀훈련이일어선후걸어다녀오기검사에서향상된값을보여줬다
96 J Korean Soc Phys Med Vol. 13, No. 1 (Yang과 Choi, 2015). 위와같은논문들과같이본연구에서도수중트레드밀보행훈련후에보행속도와일어선후걸어다녀오기검사의능력이향상되었다. 특히발목에수중커프를착용한실험군에서대조군보다보행속도와일어선후걸어다녀오기검사의변화율이유의하게감소하였다 (p<.05). 편마비환자들은보행속도가느리고보행중환측하지의입각기가짧아편측보행이유발되며, 환측에체중지지가감소하여보행에대한에너지소모율이증가한다 (Yoon, 2004). 보행에서속도가분속수, 보행한주기에걸리는시간과길이, 입각기시간, 유각기시간과상관관계가있기때문에편마비보행의분석은시간적공간적요소도함께측정해야한다 (Roth 등, 1997). 본연구에선 GAITRite를이용하여시공간적보행분석을하였다. GAITRite를이용하여분속수, 왼발과오른발의스텝수차이값, 왼발과오른발의보행주기시간의차이값을측정하였다. 그결과분속수검사에서실험군과대조군모두초당스텝수가유의하게감소되었으나 (p<.05), 두군간변화율의감소차이는유의하지않았다. 왼발과오른발의보행주기시간의차이값에서실험군은유의하게감소하였지만 (p<.05) 대조군은수치상으로는감소하였지만통계상으로는유의하지못하였다 (p>.05). 두군간변화율에서유의한차이가있었다 (p<.05). 왼발과오른발의스텝시간차이값은실험군과대조군모두유의한감소를보였지만 (p<.05), 두군간의변화율에서는유의한차이를나타내지못했다 (p>.05). GAITRite를이용한시공간적보행분석결과에서는왼발과오른발의보행주기시간에서의변화율이대조군과실험군사이에유의한차이를보였다. Jung 등 (2010) 은발목에수중커프를착용후수중트레드밀보행훈련을하면보행주기의입각기비율이증가한다고했다. 보행주기중입각기의비율이증가된상태로수중트레드밀훈련을한것이지상에서의보행주기에도영향을끼쳤다고생각된다. 뇌졸중환자에게수중운동이균형과우울함에미치는효과를비교하여수중운동이지상운동보다균형능력향상에더효과적이다 (Kim 등, 2014). 그리고수중트레드밀훈련이뇌졸중후편마비환자의환측으로의체중 이동을증가시켜균형능력의향상을나타낸다 (Park 등, 2012). 또한뇌졸중후편마비환자에게지상운동보다수중운동이정적인균형능력과기능적팔뻗기의유의한향상을보였다 (Lee, 2008). 본연구에서도버그균형척도점수가두군모두유의하고증가하였고 (p<.05), 기능적팔뻗기검사에서도두군모두유의한증가를보였다 (p<.05). 두군의변화율차이에서도버그균형척도와기능적팔뻗기검사둘다유의한차이가있었다. 본연구는수중트레드밀훈련중원치않은사지부양을막기위해발목에수중커프를착용후수중트레드밀훈련이균형과보행능력에어떠한영향을미치는지알아보았다. 그결과수중트레드밀훈련중원치않은사지부양을막기위해발목에수중이러한결과로미루어볼때발목에수중커프를착용하여원치않은사지부양을막은상태로수중트레드밀훈련을하는경우가수중커프를착용하지않은상태로수중트레드밀훈련을하는경우보다균형과보행능력에더좋은영향을미친다고할수있다. 하지만본연구의대상자가 20명으로한정되어있고, 수심을환자개인에게맞추지못하여키를제한함으로써다양하고많은대상자를연구하지못하여일반화하기에는제한점이있다. 6주간의수중트레드밀보행훈련을통해결과에미치는효과를알아본연구로써중재가장기적으로시행되었을때나타나는장기효과를예측하기어렵고, 후속평가또한이루어지지않아중재의효과가지속되었는지알수없다. 그러므로향후연구에는이러한제한점들을보완하고뇌졸중후편마비환자에대한심리적인상태까지포함된수중트레드밀보행훈련에대한연구들이지속적으로이루어져야할것이다. Ⅴ. 결론본연구는뇌졸중발병후편마비환자들을대상으로마비측발목에수중커프를착용후수중트레드밀보행훈련이균형과보행능력에미치는영향을알아보고자실시하였다. 그결과, 마비측발목에커프를착용한실험군이커프를착용하지않은대조군보다균형
수중발목커프착용후수중트레드밀보행훈련이뇌졸중환자의균형과보행능력에미치는영향 97 및보행능력에통계학적으로더유의한능력향상을나타내었다 (p<.05). 따라서수중트레드밀훈련을할때원치않은사지부양을막기위해발목에커프를착용하는것이편마비환자의균형과보행능력개선에효과적인방법이라고사료된다. References Aaslund MK, Moe-Nilssen R. Treadmill walking with body weight support effect of treadmill, harness and body weight support systems. Gait Posture. 2008;28(2): 303-8. Ada L, Dean CM, Hall JM, et al. A treadmill and overground walking program improves walking in persons residing in the community after stroke: a placebocontrolled, randomized trial. Arch Phys Med Rehabil. 2003;84(10):1486-91. Bang DH, Cho HS. The Effect of Arm Training in Standing Position on Balance and Walking Ability in Patients with Chronic Stroke. J Korean Soc Phys Med. 2017a;12(2):75-82. Bang DH, Cho HS. The Effect of Postural Control Training on Balance and Walking Ability in Patients with Chronic Stroke. J Korean Soc Phys Med. 2017b; 12(2):59-66. Barela AM, Duarte M. Biomechanical characteristics of elderly individuals walking on land and in water. J Electromyogr Kinesiol. 2008;18(3):446-54. Bates A. Aquatic exercise therapy. WB Saunders Company. 1996. Bayat R, Barbeau H, Lamontagne A. Speed and temporaldistance adaptations during treadmill and overground walking following stroke. Neurorehabil Neural Repair. 2005;19(2):115-24. Berg KO, Maki BE, Williams JI, et al. Clinical and laboratory measures of postural balance in an elderly population. Arch Phys Med Rehabil. 1992;73(11):1073-80. Dean CM, Richards CL, Malouin F. Task-related circuit training improves performance of locomotor tasks in chronic stroke: a randomized, controlled pilot trial. Arch Phys Med Rehabil. 2000;81(4):409-17. Franceschini M, Carda S, Agosti M, et al. Walking after stroke: what does treadmill training with body weight support add to overground gait training in patients early after stroke? Stroke. 2009;40(9):3079-85. Hesse S, Konrad M, Uhlenbrock D. Treadmill walking with partial body weight support versus floor walking in hemiparetic subjects. Arch Phys Med Rehabil. 1999;80(4):421-7. Hunt SM, McKenna S, Williams J. Reliability of a population survey tool for measuring perceived health problems: a study of patients with osteoarthrosis. J Epidemiol Community Health. 1981;35(4):297-300. Jeong DG, Lee HK, Lee SY, et al. The Effect of Body Weight Support Treadmill Training on Gait and Balance in Patient with Subacute Stroke. J Korean Soc Phys Med. 2008;3(2):135-44. Jung T, Lee D, Charalambous C, et al. The influence of applying additional weight to the affected leg on gait patterns during aquatic treadmill walking in people poststroke. Arch Phys Med Rehabil. 2010;91(1):129-36. Kang HK, Kim Y, Chung Y, et al. Effects of treadmill training with optic flow on balance and gait in individuals following stroke: randomized controlled trials. Clin Rehabil. 2012;26(3):246-55. Kim CS, Bae SS. The comparison of effect of treadmill and ergometer training on gait and balance in stroke. J Korean Soc Phys Med. 2010;5(3):435-43. Kim SH, Lee DK, Kim EK. Effect of aquatic exercise on balance and depression of stroke patients. J Korean Soc Phys Ther. 2014;26. Kirtley C. Clinical gait analysis: theory and practice. Elsevier Health Sciences. 2006. Lee D. Effect of the aquatic training on balance and walking in stroke patients. Journal of Special E Education
98 J Korean Soc Phys Med Vol. 13, No. 1 & Rehabilitation Science. 2008;47:21-41. Macko RF, Ivey FM, Forrester LW, et al. Treadmill exercise rehabilitation improves ambulatory function and cardiovascular fitness in patients with chronic stroke. Stroke. 2005;36(10):2206-11. Marigold DS, Eng JJ. The relationship of asymmetric weightbearing with postural sway and visual reliance in stroke. Gait Posture. 2006;23(2):249-55. Masumoto K, Shono T, Hotta N, et al. Muscle activation, cardiorespiratory response, and rating of perceived exertion in older subjects while walking in water and on dry land. J Electromyogr Kinesiol. 2008; 18(4):581-90. Miller EW, Quinn ME, Seddon PG. Body weight support treadmill and overground ambulation training for two patients with chronic disability secondary to stroke. Phys Ther. 2002;82(1):53-61. Ng SS, Hui-Chan CW. The timed up & go test: its reliability and association with lower-limb impairments and locomotor capacities in people with chronic stroke. Arch Phys Med Rehabil. 2005;86(8):1641-7. Nishiyori R, Lai B, Lee DK, et al. The Use of Cuff Weights for Aquatic Gait Training in People Post-Stroke with Hemiparesis. Physiother Res Int. 2016;21(1):47-53. O'Sullivan SB, Schmitz TJ. Physical rehabilitation. ed. Philadelphia, PA: FA Davis Company. 2007. Park JE, Lee JH, Cha YJ. The Effect of Treadmill Gait Training in an Adjusted Position from Functional Training System on Chronic Stroke Patients Walking and Balance Ability. J Korean Soc Phys Med. 2017; 12(1):35-42. Park SE, Kim SH, Lee SB, et al. Comparison of underwater and overground treadmill walking to improve gait pattern and muscle strength after stroke. J Phys Ther Sci. 2012;24(11):1087-90. Patterson SL, Forrester LW, Rodgers MM, et al. Determinants of walking function after stroke: differences by deficit severity. Arch Phys Med Rehabil. 2007;88(1):115-9. Perry J, Davids JR. Gait analysis: normal and pathological function. Journal of Pediatric Orthopaedics. 1992; 12(6):815. Polese JC, Ada L, Dean CM, et al. Treadmill training is effective for ambulatory adults with stroke: a systematic review. J Physiother. 2013;59(2):73-80. Roth EJ, Merbitz C, Mroczek K, et al. Hemiplegic gait: Relationships between walking speed and other temporal parameters1. Am J Phys Med Rehabil. 1997;76(2):128-33. Schmid A, Duncan PW, Studenski S, et al. Improvements in speed-based gait classifications are meaningful. Stroke. 2007;38(7):2096-100. Silver KH, Macko RF, Forrester LW, et al. Effects of aerobic treadmill training on gait velocity, cadence, and gait symmetry in chronic hemiparetic stroke: a preliminary report. Neurorehabil Neural Repair. 2000;14(1): 65-71. Trueblood PR. Partial body weight treadmill training in persons with chronic stroke. NeuroRehabilitation. 2001;16(3): 141-53. Visintin M, Barbeau H, Korner-Bitensky N, et al. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke. 1998;29(6):1122-8. Wade D, Wood V, Heller A, et al. Walking after stroke. Measurement and recovery over the first 3 months. Scand J Rehabil Med. 1987;19(1):25-30. Webster KE, Wittwer JE, Feller JA. Validity of the GAITRite walkway system for the measurement of averaged and individual step parameters of gait. Gait Posture. 2005;22(4):317-21. Yang Hj, Choi Jd. Effects of Underwater Treadmill Gait Training on Gait, Balance, and Pulmonary Function in Stroke Patients. Phys Ther Korea. 2015;22(4):34-43. Yoon S. The effect of energy consumption during walking with arm sling in adult hemiplegic patients. master's thesis, Graduate School of Hanyang University. 2004.