THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2015 Sep.; 26(10), 876 884. http://dx.doi.org/10.5515/kjkiees.2015.26.10.876 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) Design of a 28 GHz Switched Beamforming Antenna System Based on 4 4 Butler Matrix 박성춘 김승현 손지훈 신현철 Seongchun Park Seunghyeon Kim Jihoon Sohn Hyunchol Shin 요약 5 28 GHz., 4. 28 GHz 4.,. 3, 5 mil RO3003. 20.3 13.0 mm 2, 21.2 19.9 mm 2. 34 +33, Sidelobe level(sll) 12.9 db. Abstract In this paper, a switched beamforming antenna system at 28 GHz frequency band is described for 5 th generation wireless communication. The butler matrix is used as a beamforming system and it produces linear spaced phase difference at four output ports. Array antenna is designed that can be steered in desired 4 different directions 28 GHz frequency band. Operation of designed butler matrix that composed of couplers and feedline is explained. The antenna system is designed in RO3003 substrate that has a height of 5 mil and dielectric constant of 3. The size of butler matrix is 20.3 13.0 mm 2 and size of array antenna is 21.2 19.9 mm 2. This system can be steered from 34 to 33 and minimum sidelobe level is 12.9 db. Key words: Beamforming, Switched-Beamforming, Millimeter-Wave, Butler Matrix, Array Antenna. 서론, 5 [1]. 28, 38 GHz,, 28 GHz, [2]. RF, RF (14-911-01-001). (Department of Wireless Communications Engineering, Kwangwoon University) Manuscript received July 10, 2015 ; Revised September 23, 2015 ; Accepted October 2, 2015. (ID No. 20150710-10S) Corresponding Author: Hyunchol Shin (e-mail: hshin@kw.ac.kr) 876 c Copyright The Korean Institute of Electromagnetic Engineering and Science. All Rights Reserved.
ADC/DAC [3]. RF., RF, N element N,.,. [4] [7].,, 28 GHz.. 스위치빔포밍안테나시스템설계 4 4, [8].,. 1. 2-1 배열안테나 28 GHz, 300 MHz Switch N x N Butler Matrix N-array Antenna. Input return loss 10 db. Rogers RO3003, (ε r ) 3, (h) 5 mil.. (2) (3) W, L, h, c, f r, ε r, ε reff. (1) (W). (2) (3), (4) L [9]. 3.785 2.823 mm 2. 3 S-parameter. 27.82 GHz 28.20 GHz 380 MHz, 28 GHz. L (1) (4) RF Signal 50Ω line W 그림 1. N- Fig. 1. Structure of N-switched beamforming system. 그림 2. Fig. 2. Layout of single patch antenna. 877
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 10, Oct. 2015. 그림 3. Fig. 3. Input return loss of single patch antenna. 1 4 4 4 (4-element series-fed array), 4 λ/2 1 4 [10],[11]. 1 4 4, 21.2 19.9 mm 2. 5 4 3. 2-2 버틀러매트릭스 4 4 그림 4. 1 4 Fig. 4. Layout of 1 4 array antenna. 그림 5. 4 Fig. 5. Input return loss of 4-element series-fed array. Input ports Port 1 Port 2 Port 3 Port 4 3dB 3dB Butler Matrix 45 0dB 45 3dB 3dB 그림 6. Fig. 6. Block diagram of butler matrix. 0dB Output ports Port 5 Port 6 Port 7 Port 8 4 4. 6 2 0-dB, 4 3-dB (coupler) 45. 3-dB 4, 2 Isolation. 3-dB, 90. 7 9 3-dB, S-parameter. 8, 2.95 db, Isolation 24.0 GHz 33.6 GHz 10 db, 878
0-dB 3-dB 2 4, 10 3-dB 2 Isolation [12] [14]. 10 0-dB 3-dB 그림 7. 3-dB Fig. 7. Layout of 3-dB coupler. 2, 180 Isolation,.. 11, 0.2 db, Isolation 26.0 GHz 33.0 GHz 10 db, Isolation. 12 그림 8. 3-dB S- Fig. 8. S-parameter of 3-dB coupler. 그림 10. 0-dB Fig. 10. Layout of 0-dB coupler. 그림 9. 3-dB Fig. 9. Phase difference of 3-dB coupler. Isolation., 9 88.97. 그림 11. 0-dB S- Fig. 11. S-parameter of 0-dB coupler. 879
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 10, Oct. 2015. Port 5 Port 6 Port 7 Port 8 Port 1 Port 2 Port 3 Port 4 그림 12. Fig. 12. Layout of Butler matrix... 4 4 port 1, 4, ±45, port 2, 3, ±135. 20.3 13.0 mm 2. 13 4., 1 4, 4. 50 ohm, 13 28 GHz 1. 1 Ideal Gap. Gap Ideal Gap 7%. 표 1. Table 1. Phases of output ports. Port 5 Port 6 Port 7 Port 8 Ideal Gap Port 1 139.3 94 46.7 0 45 Port 2 46.5 173.4 33.4 92.1 +135 Port 3 90.7 34.8 174.2 46 135 Port 4 0.1 46.8 94.6 139.9 +45 그림 13. Fig. 13. Phases of output ports. 880
Array factor [15]. ±42, ±13, ±15, +33, 34.. 2-3 전체시스템 1 4 4 4. 14, 36.2 20.6 mm 2. 2, 15. 15 ADS Momentum EM. 15 Port 1, 4. 12 15. 16 S- 그림 15. Fig. 15. Beam direction about each inputs. 그림 14. Fig. 14. Layout of total system. 표 2. Table 2. Direction of beam according to input ports. Intput port Port 1 Port 2 Port 3 Port 4 Direction 15 34 33 15.,. Port 2, 3 7.1 db 6.6 db 0.5 db, Port 1, 4 7.5 db 6.5 db 1.0 db. 15 4. Port 2, 3 Port 1, 4.. 881
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 10, Oct. 2015.. 1 4,.,, [16].... λ/2,,,. [17],[18].. 결과 4 4 5 28 GHz. 34 33, Sidelobe level(sll) 12.9 db. References 그림 16. S- Fig. 16. S-parameter of output ports. [1] W. Roh et al., "Millimeter-wave beamforming as an enabling technology for 5G cellular communications", IEEE Communications Magazine, vol. 52, pp. 106-113, Feb. 2014. [2] T. Rappaport et al., "Millimeter wave mobile communications for 5G cellular: It will work!", IEEE Access, vol. 1, pp. 335-349, May 2013. [3], "5G ",, pp. 2027-2028, 2014 6. 882
[4] K. Wincza et al., "Reduced sidelobe four-beam antenna array fed by modified Butler matrix", Electronics Letters, vol. 42, pp. 508-509, Apr. 2006. [5] W. R. Li et al., "Switched-beam antenna based on modified Butler matrix with low sidelobe level", Electronics Letters, vol. 40, pp. 290-292, Mar. 2004. [6] R. A. Alhalabi et al., "High-gain yagi-uda antennas for millimeter-wave switched-beam systems", IEEE Transactions on Antenna and Propagation, vol. 57, pp. 3672-3676, Nov. 2009. [7] H. Wang, "A switched beam antenna with shaped radiation pattern and interleaving array architecture", IEEE Transactions on Antennas and Propagation, vol. 63, pp. 2914-2921, Apr. 2015. [8],,,, " 4 4 ",, p. 51, 2015 6. [9] M. M. Alam, "Microstrip antenna array with four port butler matrix for switched beam base station application", 12 th International Conference on Computers and Information Technology, 2009. ICCIT 09.CCIT, pp. 531-536, Dec. 2009. [10] M. M. Alam et al., "Design and performance analysis of microstrip array antenna", Progress in Electromagnetics Research Symposium Proceedings, pp. 1837-1842, Aug. 2009. [11] M. T. I. Huque et al., "Design and performance analysis of microstrip array antennas with optimum parameters for X-band applications", International Journal of Advanced Computer Science and Applications, vol. 2, pp. 81-87, 2011. [12] J. S. Wight et al., "A microstrip and stripline crossover structure", IEEE Transactions on Microwave Theory and Techniques, vol. 24, p. 270, May 1976. [13] N. S. A. Archad et al., "0 db coupler employing slot technique on planar microstrip", 2014 International Conference on Computer, Communications, and Control Technology(I4CT), pp. 294-299, Sep. 2014. [14] T. A. Denidni et al., "Wide band four-port butler matrix for switched multibeam antenna arrays", 14 th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, vol. 3, pp. 2461-2464, Sep. 2003. [15] W. L. Stuzman et al., G. A. Thiele, Antenna Theory and Design 3 rd Edition, pp. 316-326, May 2012. [16] LG Electronics Inc., " ", PCT, WO2014204070A1(2014. 12. 24) [17] H. Steyskal et al., "Mutual coupling compensation in small array antennas", IEEE Transactions on Antennas and Propagation, vol. 38, pp. 1971-1975, Dec. 2014. [18],,,,, " ",, 16(8), pp. 803-809, 2005 8. 2014 2 : ( ) 2014 3 : [ 주관심분야 ] Beamforming System 2010 2 : ( ) 2010 3 : [ 주관심분야 ] CMOS Low Power Transceiver 883
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 10, Oct. 2015. 2010 2 : ( ) 2010 3 : [ 주관심분야 ] CMOS Frequency Synthesizer 1991 2 : ( ) 1993 2 : ( ) 1998 2 : ( ) 1997 4 1997 : Daimler-Benz Research Center 1998 1 2000 : 2000 4 2002 4 : UCLA 2002 5 2003 8 : Qualcomm 2010 8 2011 8 : Qualcomm Corporate R&D Visiting Faculty 2003 : [ 주관심분야 ] RF/Analog/Microwave Integrated Circuits and Systems 884