Jurnal f the Krean Ceramic Sciety Vl. 46, N. 4, pp. 50~56, 009. DOI:10.4191/KCERS.009.46.4.50 Synthesis and Characterizatin f (Cr, Fe)-dped Y -Al Red Pigments Kyung-Hyun Shin and Byung-Ha Lee Department f Materials Science & Engineering, Myngji University, Yngin 449-78, Krea (Received January 0, 009; Revised April 7, 009; Accepted June 15, 009) (Cr, Fe)-dped Y -Al w p x Áw w œw œw (009 1 0 ; 009 4 7 ; 009 6 15 ) ABSTRACT Pervskite cdped with chrmium and irn have been studied. Samples with (Cr 0.04-x Fe x ) (x=0.01, 0.0, 0.0, 0.04) were prepared by slid state reactin at 1450 C fr 6 h and were characterized by XRD, FT-IR, Raman spectrscpy, SEM and UV-vis spectrphtmeter. The clr f the synthesized pigments were frm red t dark brwn(in bulk). Up t 0.0 mle Fe fr substituting Cr develpment f clr in lime-glaze gives gd red clr but as increasing amunt f Fe and decreasing Cr prprtinally prduce frm brwnish red t brwn. Increasing Fe amunt lead t weaken crystal field relatively due t have smaller inic radius than Cr inic ne. The UV-vis peaks were shifted t lwer wavelength. Key wrds : Cdped, Pigment, Red clr, Crystal field 1. yw y ¾ šw w. p(casnsio 5 :Cr), g(al :Cr r Mn), s g(zrsio 4 :Fe) e s g(zrsio 4 :Cd,Se). ù e w š w ƒ. w greenkite e s w w e y e w w w w wwš. p š y š. š j(iii)yw l y Cr() y ƒ ws» w š. 1) Crrespnding authr : Kyung-Hyun Shin E-mail : shinsaem@naver.cm Tel : +8-1-0-6461 Fax : +8-1-0-6457 šw ) w j y»w j š w w» w j ƒ j ù w ww xw.. x.1. w š» ww» w Y (France, industrial grade), Al(OH) (Junsei, Japan, chemical pure), Cr (Duksan, Krea, 99%), Fe (Hanil Chem., Krea, first grade), FeCl 6H O (Duksan, Krea, extra pure), CrCl 6H O (Duksan, Krea, extra pure), NaF(Duksan, Krea, practical grade), MgF (Junsei, Japan, chemical pure), Li C (Kant, Japan, Cica-Reagent) w. x w š x) w ƒ 1450 C Cr 0.04 w kw x w. j 0.04 mle w j 0.01 mle 0.04 mle ¾ y w w x w (Table 1). rep ww» 50
(Cr, Fe)-dped Y -Al w p 51 Table 1. Cmpsitins f Samples Sample N. Cmpsitin Cr4(CrCl) Fe1(CFCl, FeCl) Fe Fe Fe4 w Ÿy 6wt% ƒ w. w 10) yj y w w» w y w x Table 1 w Cr4 y Fe1 w y w xw. e p g š k z ƒ Ë z 1450 C w, ƒƒ š 6 k z þƒw. 900 C¾ 5 C/min, š¾ C/min. Cr 0.04 Cr 0.0 Fe 0.01 Cr 0.0 Fe 0.0 Cr 0.01 Fe 0.0 Fe 0.04.. p p X- z(x-ray Diffratmeter, XRD-7000, Shimadzu, Japan), FT-IR(IRPrestige1(Shimadzu, Japan), Raman spectrscpy(dimensin-p Raman), SEM (scanning eletrn micrscpy, SS-550, Shimadzu, Japan), UV-vis spectrphtmeter (401-PC, Shimadzu, Japan) w w... x w x w w xr z 4 4cm xr z(seger frmular t) w. x r» ƒ (silicnite furnace) 160 C 0 w þ w. 900 C¾ 5 C/min, 900~160 C¾ C/min w. Seger frmular. lime-glaze 0.64 KNaO 0.4040 Al.556 SiO 0.6588 CaO 0.0019 Fe 0.0148 MgO.4. w w w w xr UV-vis spectrmeter(401-pc, Shimadzu, Japan) dw (Muncell) t (H : hue), (V : value), (C : chrma) ùkü, z(cie : Cmmissin Internatinale de l'eclairage) ƒ w CIE-L * a * b *t w ùkü. Fig. 1. X-ray diffractin patterns f samples btained n calcining in air fr 6 h at 1450 C.. š.1. XRD X- z w y w. w w j w XRD d j w w ùküš. j» w (0.64 ç, 6 ) j (0.69 ç, 6) w» ƒ... FT-IR Raman FT-IR Raman w. FT-IR reflectance mde reslutin 16 cm w. j eyw w FT-IR Raman spectra Figs. ~4 ùkü. yj w Cr4 y w Fe4 w p 6) 5 cm, 468 cm 560 cm w vjƒ ùkù F4 Fig. (a) vjƒ 16. cm ùkùš. j p6) 555 cm 65 cm w ùkùš 45 cm 407 cm w ùkù Cr4 Fig. (a) YAl pvj7)ƒ ùkù 408.9, 470.6, 54.6, 507.9, 648.0 cm vj š j pvj. Fig. (b) 70~ 700 cm ùkùš. y y w w XRD y w w». ù FT-IRù Raman m w» mw y w 46«4y(009)
신경현 이병하 5 Fig.. FT-IR spectra f (a) samples fired at 1450 C and (b) YAlO and Samples at 70~700cm. Fig.. FT-IR spectra f (a) samples used with chrmium chlride and irn chlride fired at 1450 C and (b) enlarged area 90~600cm. Fig. 4. Raman spectra f samples used (a)xides and (b)chlrides fired at 1450 C. 한국세라믹학회지
(Cr, Fe)-dped Y O -Al O 계 붉은 안료의 합성과 특성 Fig. 5. 5 SEM micrgraphs f samples fired at 1450 C (a) Cr O, (b) Cr O :Fe O (:1), (c) CrCl 6H O, and (d) CrCl 6H O: FeCl 6H O(:1) used as chrmphres. 더 반응성이 좋다는 것을 확인할 수 있었다(Fig., Fig. 4). 산화물을 사용한 Cr4의 경우와 염화물을 사용한 CrCl의 차이이다. Fe1과 CFCl의 경우도 마찬가지이다. FeCl의 경 우는 철은 산화물을 사용하고 크롬만 염화물을 사용한 경우 인데 두 가지를 모두 염화물로 사용한 것보다 578.8 cm 에 서 더 높은 피크를 보였고(Fig. (b)) 유약에서 더 붉게 발 색하였다. Raman 분석에서는 FT-IR에서 미약하게 보였던 차이가 확연하게 보였다. Fig. 4(a)에서 Fe4의 경우 9.76 cm 와 588.1 cm 에서 철의 함량 증가에 따른 특성 밴드가 나타 났다. 염화물을 사용한 Fig. 4(b)의 경우에는 964.9 cm 에서 비대칭이 되고 1099.4 cm 에서 새로운 밴드가 나타났 다. 또한 산화물에서 나타난 밴드인 440 cm 과 500 cm 부 근의 밴드가 염화물을 사용하면 그 사이로 모아진다. 이 것은 천이금속의 양이온을 둘러싼 음이온과의 결합력에 의해 변하는데 산화물보다 결합력이 약한 염화물의 사용 으로 분열된 에너지차를 나타내는 10 Dq의 값이 낮아짐 을 나타낸다. 14).. SEM 합성된 안료의 미세구조는 Fig. 5와 같다. 입형은 육면체 형과 입자 성장에 의한 구형이 나타나고 있다. 발색제로 크롬만을 사용한 Fig. 5(a)와 크롬과 철을 사용한 Fig. 5(b) 를 보면 같은 육면체 형을 보여준다. 발색원료로 사용한 물질이 산화물이 아닌 염화물로 바꾸었을 경우도 같은 형 태를 나타내었다..4. UV-Vis spectra 분석 합성된 안료의 UV-vis spectra를 Fig. 6에 나타내고, 안 료를 하회로 사용하여 석회유를 시유하여 소성한 결과의 UV-vis spectra를 Fig. 7에 나타내었다. 보통 크롬이 고용 된 물질의 색상은 크롬(III)에 적용된 결정장 이론에 의해 설명된다. R. S. Pavlv et al. 등 에 의하면 그것은 d 전 자 배열을 하고 산화물에서 팔면체 배위를 선호하고 몇 가지 전자 전이가 가능하다(Table )고 하였다. Y, U, R과 R' 밴드는 가시광 영역에서 나타나고 이들의 위치와 형태 가 색상에 중요한 역할을 한다. 대부분의 팔면체 위치나 4) 제 46 권 제 4호(009)
54 xáw Fig. 6. UV-vis spectra f (a) samples fired at 1450 C and (b) enlaged area 50~600 nm. Fig. 7. UV-vis spectra f under-glazed tiles with samples fired at 160 C, (a) xides (b) xides and chlrides. Table. Transitins f Cr(III) in Octahedral Crystal Field and Labels used fr their Crrespnding Bands Transitin Band 4A g E g ( G) R 4A g 4A g 4A g 4A g 4A g 4 4 4 ( G) R' T g ( 4 F) U T g ( G) B ( 4 F) Y ( 4 P) Y' e e ù 4,11) r w w (10 Dq) w ew. w ùkù. j š j ƒ w, ³e w e w. j w rep x q y j(iii) w ligand field thery w 4,8,9) p v ƒ Ÿ ew 4 A g4 (F) 4 A g4t (F) š, w v 4 A 4 g (P) Ÿ ew w e. y w x ligand field eƒ š w ùkù. w Cr w wz
(Cr, Fe)-dped Y -Al w p 55 Table. Chrmatic Crdinates f Synthesized Pigments L * a * b * (H) (V)/(C) Cr4 45.48 1.56 1.18 7.R 4.4/7.5 Fe1 50.1 9.9 19.91 7.R 4.9/7.1 Fe 49.5 5.81 18.44 7.8R 4.8/6. Fe 48.7 0.49 16.77 9.0R 4.7/5.1 Fe4 45.9 4.48 1.01 8.5YR 4.4/. CrCl 47.9.96.6 7.4R 4.7/8. CFCl 47.8 0.61 1.7 7.5R 4.6/7.4 FeCl 47.00 9.84 1.09 7.7R 4.6/7. 580 nm 405 nm ùkù. x j 9) w 415 nm 510 nm ùkû. ü Cr(III) w Al(III) ey w Cr-O (Al(III) 0.51 ç, Cr(III) 0.69 ç) w ligand field ƒ ƒ w. Visible spectrum green-blue vilet w rthrhmbic pervskite e û +vj Cr w rep 50 ~ 650 nm w w. j 9) wì w j š y ligand field e. rep ƒ Ba 1-x Sr x Ti (BST) š 5) Ÿw e. w š ã. x SEM d y (Fig. 5). j w (0.64 ç, 6). ƒ w s w. j wì w x ƒx j vj yƒ f. vj vjƒ Table 4. Chrmatic Crdinates f Underglazed Tiles with Lime-glaze L * a * b * (H) (V)/(C) Cr4 4.00 7.65 14.76 5.5R 4.1/6. Fe1 7.9 1.08 11.0 5.8R.7/4.6 Fe 40.6.8 1.8 6.1R.9/5.0 Fe 6.96 14.74 7.88 6.R.6/.1 Fe4 44.57 6.1 14.99 7.8YR 4./.6 CrCl 41.5 0.78 10.40 5.R 4.0/4.6 CFCl 8.90 19.08 9.0 4.9R.8/4.1 FeCl 41.0 1.66 11.88 6.0R 4.0/4.9 š(blue-vilet ) vj(green ) û (Fig. 6(b)). j eyw eƒ ùkûš m ùkþ(fig. 7(a))..5. d ww w r š k z w w. UV-vis spectrmeter(401-pc, Shimadzu, Japan) dw w (Muncell) t (H : hue), (V : value), (C : chrma) CIE-L * a * b *t L * a * b * Table Table 4 ùkü. w (Fig. 8(a)) wz w y w Fig. 8(b) ùkü. j w wì w. w š w ƒw w. j wì w w y y ƒ w. y w w. Fig. 8. Chrmatic clr crdinates f pigment pwders(a) and glazed tiles(b) in the L * a * b * space. 46«4y(009)
56 xáw 4. YAl(Cr) j y» w w» w j w ww. (Cr 0.04-x Fe x ) (x = 0.01, 0.0, 0.0, 0.04) x. 1) j w (L * : 45.48, a * : 1.56, b * : 1.18) 0.01 mle w ƒƒ 50.1, 9.9, 19.91š 0.0 mle w 49.5, 5.81, 18.44 ùkþ. z w wz j w L * : 4.00, a * : 7.65, b * : 14.76, 0.01 mle w ƒƒ 7.9, 1.08, 11.0š 0.0 mle w 40.6,.8, 1.8 ùkþ. j w j wì w j 0.0 mle¾ w. ) wì w w, y y w w * a ùkû. Acknwledgment 008 (w») w w w (N.R0A-006-000- 1044-0) REFERENCES 1. M. Marts, M. Martnez, E. Crdncill, and P. Escriban, Twards Mre Eclgical Ceramic Pigments : Study f the Influence f Glass Cmpsitin n the Clur Stability f a Pink Chrmium-dped Ceramic Pigment, J. Eur. Ceram. Sc., 7 4561-67 (007).. K. H. Shin and B. H. Lee, Synthesis f Cr-dped Y - Al Red Pigments and their Applicatin, J. Kr. Ceram. Sc., 45 [8] 45-58 (008).. E. Stbierska, J. Lis, M. M. Buk, and A. Gubernat, Ceramic Pigments with Pervskite Structure, Advances in Science and Technlgy, 45 76-80 (006). 4. Radstin S. Pavlv, V. B. Marzand, and J. B. Carda, Electrnic Absrptin Spectrscpy and Clur f Chrmiumdped Slids, J. Mater. Chem., 1 85- (00). 5. Y. Zhu, D. Sun, Q. Huang, X. Jin, and H. Liu, Uv-visible Spectra f Pervskite Irn-dpped Ba 0.7 Sr 0.8 Ti, Material Letters, 6 407-9 (008). 6. N. T. McDevitt and W. L. Baun, Infrared Absrptin Study f Metal Oxides in the Lw Frequency Regin(700~40 cm ), Spectrchimica Acta, 0 799-808 (1964). 7. M. J. Weber, Multiphnn Relaxatin f Rare-earth Ins in Yttrium Orthaluminate, Physical Review B, 8 [1] 54-64 (197). 8. R. Galind, M. Llusar, M. A. Tena, G. Mnrs, and J. A. Badenes, New Pink Ceramic Pigments Based n Chrmium(IV)-dped Lutenium Gallium Garnet, J. Eur. Ceram. Sc., 7 199-05 (007). 9. M. Marts, M. Marnetz, E. Crdncill, and P. Escriban, Twards mre Eclgical Ceramin Pigments : Study f the Influence f Glass Cmpsitin n the Clur Stability f a Pink Chrmium-dped Ceramic Pigment, J. Eur. Ceram. Sc., 7 4561-67 (007). 10. M. Shirpur, M. A. Faghihi Sani, and A. Mirhabibi, Synthsis and Study f a New Class f Red Pigments Based n Pervskite YAl Structure, Cermics Internatinal, [8] 147- (007). 11. S. R. Rtman, Cmment n : Optical and Electrn Paramagnetic Resnance Studies f Fe Impurities in Yttrium Aluminum Garnet Crystals, Physical Review B, The American Physical Sciety, 41 [1] 791-9 (1990). 1. D. Dng, K. Xia-Yu, G. Jian-Jun, W. Hui, and Z. Kang- Wei, Optical Absrptin and EPR Study f the Octahedral Fe + Center in Yttrium Aluminum Garnet, Physical Review B, The American Physical Sciety, 7 07101 (005). 1. G. Lrenzi, G. Baldi, F. Di Benedett, V. Fas, L. A. Pardi, and M. Rmanelli, HF EPR Investigatin f a Cr-bearing Garnite Pigment, J. Eur. Ceram. Sc., 6 15-9 (006). 14. W. D. Kingery, H. K. Bwen, and D. R. Uhlmann, Intrductin t Ceramics; p. 680, Inc. nd, Jhn Wiely & Sns, 1976. w wz