Biomaterials Research (2010) 14(1) : 30-36 Biomaterials Research 7 The Korean Society for Biomaterials d,, y w p ez Comparison of Healing Effect of Newly Developed Alginate Using Three Types of Wound Model 1 Á 2 Áx 1 Áx 1 Ár» 3 Á 4 Á 5 Á½k 2 Áy 2 * Eun Jung Oh 1, Jeong Woo Lee 2, Hyun Ju Lim 1, Jin Hyun Choi 1, Do Gi Pyun 3, Soo Bok Lee 4, Dong Jun Chung 5, Tae Jung Kim 2, and Ho Yun Chung 2 * 1 Š Š lš, 2 Š fšhše Œd 3 (j), 4 } (j), 5 Š f Š 1 Department of Advanced Organic Materials Science and Engineering, College of Engineering, Kyungpook National University, 2 Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University 3 R&D Center of T&L Co., Ltd., Yongin, Gyeonggi-do 449-884, Korea, 4 R&D Center of Texanmedtech. CO., LTD. 5 Department of Polymer Science and Engineering, Sungkyunkwan University (Received February 05, 2010/Acccepted February 10, 2010) We divided the Sprague-Dawley rats into three categories by types of wound model which was fresh surgical wound, 3rd degree burn wound, and infectious wound and three different types of wounds were divided into three groups of dressing material: Group A with new developed Alginate dressing materials, Group B with Algisite M as a positive control group, Group C with gauze as a negative control group. We compared each group with gross findings by tracing the remained wound, histological and bimolecular test on each time periods. This study suggest a new developed alginate dressing materials induced stable re-epithelization and collagen synthesis in the wound healing process, and are considered as effective biologic dressing materials. key words: wound healing, dressing, Alginate, Algisite M lf Š ef fš f f, hhf i Œ rf xeš ff f. fš rf xe hf l, l, f 3 Š ff, hf 21f h rf xe hf i. r r ŒŠ f jt h f lš, h fdš fš e i ff il f ehf Œ fd f hf fl f. 1) f hf d v rf Š sf Œ, vœ l, Œ vf hhš, lx lff h f. fš h ŠŠ h g Š eš 80 t gl Š gf f, i Š (transparent polyurethane film dressing), Šfzf (hydrocolloid dressing), Šf (hydrogel dressing), lfƒ (alginate dressing), d~ *sfhf: hy-chung@knu.ac.kr (polyurethane foam dressing), ŠfŒf (hydrofiber dressing), Š (antimicrobial dressing) f f. fd egf Š d Œ d ff ƒ gf f Š x rvš e Š f lš f. j lfƒ Ši eœ~ f j lœ r gf j g d f segf, fd eg(medical textile) if ~ g rœ ftf, g xe tš f g f f f. f hf f lfƒ hg hw r, r, Œ f r xe x d gf f eš, if lfƒ hgf Algisite M (Smith & Nephew, UK) hf l f r xe Š f ŠŠ. x tj 250-300 gf (Sprague-Dawley) 60 fhš 30
s xe/lfƒ 31 Figure 1. Four wounds, 2 cm in diameter, were made on the back of a rat. Fresh surgical wounds were made by full thickness skin defect. Infectious wounds were inoculated with units of S. aureus. Burn wounds were made by 3rd degree contact burn at 140 o C for 10 seconds. f e ešf, hw r, r, Œ 21 3f f. f f hg 3f f f, Af lfƒ hg, Bf i(positive control)f if lfƒ hgf Algisite M, Cf f i(negative control)f j j f gamma radiationf l dš f Š. x (a) lfƒf hi d lfƒ hg 4% ƒ df hiš jf elš hš Dope i l 0.1 mmf 3,000 Hole lf fdš v(polymer throughput ratio)f ihš Š. ff 1.1 hzf w (winding velocity) 10 m/minf Š. fd(coagulation bath)f 1M Œx df dš. f Š f f hš, 24 iš x lfƒ e f, l, f Š i ef f ŒfŠ. hi x lf ƒ e } 51 mm hš, x, Š,, xf hf t 2mm, j 140 g/m f 2 x l hiš. (b) Sprague-Dawley rat w eš eš kg 10 mgf Xylazine-HCl (Rompun, Bayer Korea, Korea) kg 100 mgf Ketamine- HCl (Ketamine-HCl, Huons, Korea) ŒŠŠ jš. w e f f Figure 2. Method of measuring changes in wound size. Wo : the initial wound are, Wi : wound area on the day measured, Ui : area of unepithelized granulation tissue on the day measured, We can suggest these formula: Percentage of wound contraction = (Wo-Wi)/Wo 100 Percentage of wound epithelization = (Wi-Ui)/Wo 100 Percentage of wound healed = (Wo-Ui)/Wo 100. e f f Š betadine alcohol Š u 4 eœf l 2cmf rf Š e Š. f rf Š lfƒ hg, Algisite M, lf ex Š h g hdš rf ex uœš. f ~ f lš eš l f ~ fdš hšf, rf xe l rš. hw r 15 x metzembaumf fdš f l 2cmf eœf hw rf 4 Š. r 15 x metzembaumf fdš f l 2cmf eœf hw rf Š, f e Š eš f r jj f d Staphylococcus aureus ATCC 29213 (1 10 5 CFU/20 µl)f Vol. 14, No. 1
32 fháfhdáf jául Á ÁfÁhjÁ~hÁhŒe Figure 3. The mean percentage of the wound contraction rate (Above), the wound healing rate (Center), the wound epithelization rate (Below) according to time proceeding of fresh, infectious, burn groups by the application of three different dressings (*p < 0.05, values are significantly different from the control by ANOVA & Scheffe test). Figure 4. In Fresh wound profuse inflammatory cell infiltration was observed in all groups on the 6th post-operative day and in infectious wound the most abundant angiogenesis was observed in Group A (red circle) on the 10th post-operative day (H&E staining). Še df d hiš. j 10% glycerolf Š tryptic soy broth (TSB, Difco) -70 o C Šf, j tryptone soy agar (TSA) fjf f Š. 2) Œ Œf eš eš f ihf Š f hfš. f f fhš elš f h j zff g f f htš Œf f f. f htš f l 2cmf e f, 120 gf. f ŠŠ h Œf f wš eš f ŠŠf, 140 o C 10 t htš d 3 Œf ef ŒfŠ f. f fdš 4 Œf eš f, f f Š rf xehf r Š. Biomaterials Research 2010
s xe/lfƒ 33 Figure 5. In Fresh wound the thick and regularly aligned collagen fiber was observed in Group A and B on the 14th post-operative day and abundant angiogenesis was observed in Group A (red circle) on the 21th post-operative day. moreover, the thick and regularly aligned collagen fiber was observed in Group B on the 14th post-operative day and the thick layer of re-epithelization was observed in Group A and B on the 21th post-operative day in infectious wound. (Masson's trichrome stain, 100). Figure 6. Moderate inflammatory cell infiltration was observed in Group A and B on the 6th post-operative day and the abundant angiogenesis was observed in Group A and B (red circle) on the 10th post-operative day and the abundant angiogenesis was observed in Group A and B (red circle) on the 21th post-operative day. xsƒ eh u 63f Š eh eš Image analysis Soft Image J (Scoin Corp., Frederick,MD) hf whš. r l 3) 4, 6, 8, 10, 14f m l lf uš, Image analysis Soft Image J fd Vol. 14, No. 1
34 fháfhdáf jául Á ÁfÁhjÁ~hÁhŒe Š r xe r ve, r xee, r Œef Š. wh f (ANOVA test) (Scheffe's test)f fdš f Œ Š. ilšh u 63f Š ilšh eš r 4, 6, 8, 10, 14, 21fm jf h il f ŠŠ r ht hvš 10% j h~ Š Š ilh f Hematoxylin and Eosin Masson's trichrome f Š. f Š Š rf l f, Œ, eef Œ ~ f g rš. p x lfƒ e Š whš linear density 3.7denier, elongation 13.4%, tenacity 2.0 g/ denf h dš f eff ŒfŠ f. d eh rf f Š rf v Œ lš Œ l f e ilf hh Š rf xe f rš f. r 6fm l f vf v f l Šf, Œ h r f fš vœf r. r vef r xe ht h lfƒ hg Algisite M f l Š hf efš (p < 0.05). r xee r Œef lfƒ hg Algisite M f r 14 fml l Š hf efš (p < 0.05). ilšh r 6fml hw w v Š f l xef wf f rf, Š Algisite M f l xef. r 6fm lf h dš l Œf r. e ef Œ f r 14fm Algisite M d l xhf f f, lfƒ hgf l Š e ef Œf f r. r xe h Algisite M Š e e f l xhf f rf, lf ƒ hg Algisite M g rš f. eh r hw r f f Š r f v Œ lš rf xe f rš f. r 8fml fš f vf vf, l Œ h r f fš vœf r. r xe h f r ve, r xee, r Œef rf hf eff (p < 0.05). ilšh r 6fml hw w v Š f l xef wf f rf, l Š lfƒ hg Algisite M h. r 6fm lf hdš l Œf r. r xe h Algisite M e e g xhf f f, lfƒ h g Algisite M Š g rš f. y eh r 6fml rf, ~ f Š v Œ e ilf hh Š f rš f. ~ r 10fml f vf v, f l g Š. r xe h r ve, r xee r Œef l Š f f f f f rf hf eff (p < 0.05). ilšh r 6fml Œ w v Š f l xef l g h r. r 6fm lf hdš l Œf r. r xe h Algisite M e e g xhf f f, g f h eš. š 1883 Standford fš ut lfƒ 20Á fšf h l Š i 20~40% h Še ff, Š el (mannuronic acid) (gluronic acid)f ef(polyuronide) i f ff f. 4) h, Œ, Œ, Ca f ff 2+ f, Š Œ f ƒf Biomaterials Research 2010
s xe/lfƒ 35 fdš l, ˆ fd f. 80 t Š hgf s f f flf t t xœhf l Œ Œ lœ f il rf fd fš. Otterlei f lfƒ e Œ elš d Š f xff Š ešf Šf, 5) Seo f l Œ~f lfƒ e ihf ƒ f ~ f ešf Š. 6,7) Choi f Œ Œ~f lfƒ e hg hf d Š t Š l Š hgf df. 8) il Š f f rf fš e i fff fdš rf xe Š eš ff Šhf f, rf Š 1) l ef fš Š d fl Šhf ef f Š Š d f. f Š l r hgf r xe f Š hšf ff f, fhf Œdh Œf l f hš f hw ŠŠ hw r, lf Šl r, ht Œ fš d l r f hš hhf hgf l lfƒ hg d f, fˆf hf df Œff f f j alginate M f tš eš l fƒ hgf r xe f f lšš. lfƒ hg fš hif, lfƒ ef hf fie hi eš g Š jf Šf, ƒ lfƒf dš j ph Š Š Œf elš f ghf f. r r t f vf v f, f l g Š, lfƒ h g Algisite M. hw r lfƒ hg Algisite M l Š h f r ve r Œ ef. ilšhf r 6f m lfƒ Algisite M ŒŠ Œ lf rš ff, r 14f m Algisite M d l xhf e ef Œf rš f. r xe h lfƒ hg Algisite M g rš f. r fš f vf v f, f r xee r Œef hf eff. ilšhf lfƒ h g Algisite M l xef r Š f. r xe h Algisite M e e g xhf f f, lf ƒ hg Algisite M Š g rš f. Œ r 6fm ~ f vf v. l Š hg f r ve, r xee r Œef f, f hf eff. ilšhf lfƒ hg Algisite M f eš f f, r xe h Algisite M e e g xhf f. f r t lfƒ hg Algisite M lfƒ vf Šf f Š Œf ŒŠ rf e Œf elš df j ff, Œ jf 9) Ca fš df Œ 2+, lœ fš Œi f fš fr 10) f Š f. ilšhf ŒŠ Œ lf r f v l ~ fš e i fff fdf tlz l f i if eš f. r xe h ˆŠ xhf f f e e d g wf rš f, hf l Šl Šf, f u ŒŠ f l if Š ff f. Œ eš r xe hf, hgf def Š. lfƒ f Œ Œl g h r ƒf fdš d v lœ hg Š lš f, Œf ŒŠ hf fdš 11) gff(epidermal growth factor, EGF) f Œlf Šh fz r controlled release manner vš x lhf elš f r fd e Œ ff f. fd egf Š d Œ d ff ƒ gf f Š x rvš e Š f lš f. j lfƒ Ši eœ~ f f fš dfš hf Œ f, it j Ca 2+ Mg f d 2+ ŠŠ igšl, x s ƒ x f xœš df Œ. f f lfƒf d ƒ Œf h, Œ, Œ f ƒf l f lœ r gf j g d ff, f d eg(medical textile) if ~ g rœ ftf, g xe tš f g f f f. Vol. 14, No. 1
36 fháfhdáf jául Á ÁfÁhjÁ~hÁhŒe lfƒ hgf d hw r, r, Œ f xe h if lfƒ hgf Algisite M Š r ve, r xee, r Œe th f Š j ff, ilšh Œ l ŒŠ e ef Œ xhf, g r. f i f f lfƒ hg rf xe f eš f, f tš edš xh fd ff f. lh jh (heœ: 10030020)f lef fhf f. šx 1. George Broughton II, Jeffrey E. Janis, Christopher E. Attinger, "wound healing: An overview," Plast Reconstr Surg., 117, 1e-S, (2006). 2. Ender Ali Ofluoglu, Mehmet Zileli, Derya Aydin, Yakup Sancar Baris, Omer Kucukbasmaci, Nevriye Gonullu, Onder Ofluoglu, Halil Toplamaoglu, "Implant-related infection model in rat spine," Arch Orthop Trauma Surg. 127, 391 (2007). 3. Maximiano P. Ribeiro, MD Iídio J. Correia, PhD, "Development of a new Chitosan hydrogel for wound dressing," Wound Rep Reg., 17, 817-24 (2009). 4. Piacquadio D, Nelson DB.Alginates, "A "new" dressing alternative," J Dermatol Surg Oncol., Nov; 18(11), 992-5 (1992). 5. Otterlei MA, Sundan A, Skjak-Braek G, Ryan L, Smidsrod O,Espevik T., "Similar mechanisms of action of defined polysaccharides lipopolysaccharides characterization of binding and tumor necrosis factor alpha induction," Infect Immun., 61, 1917 (1993). 6. S. J. Seo, Y. J. Choi, T. Akaike, A. Higuchi, C. S. Cho, "Alginate / Galactosylated Chitosan / Heparin Scaffold As a New Synthetic Extracellular Matrix for Hepatocytes," Tissue Eng., 12, 33 (2006). 7. S. J. Seo, I. Y. Kim, Y. J. Choi, T. Akaike, C. S. Cho, "Enhanced liver functions of hepatocytes cocultured with NIH 3T3 in the alginate/ galactosylated chitosan scaffold," Biomaterials., 27, 1487 (2006). 8. Y. S. Choi, S. R. Hong, Y. M. Lee, K. W. Song, M. H. Park, Y. S. Nam, "Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge," Biomaterials., 20, 409 (1999). 9. Winter GD, "Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig," Nature, 193, 293 (1962). 10. G. T. Grant, E. R. Morris, D. A. Rees, P. J. C. Smith, D. Thom, "Biological interactions between polysaccharides and divalent cations: The egg-box model," FEBS Lett., 32, 195 (1973). 11. Yomota, C., Miyazaki, T., Okada. S., "Sustained release effect of direct compressed tablet based on chitosan and Na-alginate," Yakugaku Zasshi., 114, 257 (1994). Biomaterials Research 2010