27 1(2006 3) J Korean Oriental Med 2006;27(1):36-46 Effect of Oral Sport Beverages with Medicinal Herbs Added on Short-term Recovery from Exercise-induced Fatigue Hyun-Jong Na, Kyu-Lark Lee, Ho-Youl Kang 1) Graduate School, Kyungpook National University Department of Physical Education, Kyungpook National University 1) Objectives : Ginseng Research Group in Korea Food Research Institute developed Saeng Mac San (KFRI-2)and Je Ho Tang (KFRI-3) with their sensory factors more acceptable. And we examined their effects on the short-term recovery capacity for cycling exercise (EX) maintained to all-out. Methods : Seven healthy young subjects (aged 24.0 2.1 yr) were volunteered at this double blind test. Each of KFRI-2,3, a commercial sport beverage and control (CON) was offered randomly on a series of EX protocol including 65% VO2max- 90min EX (D-ride), 1h-recovery and 85% VO2max EX to all-out (P-ride) under the control of their heart rate (HR) and rating perception of exertion (RPE). Blood samples were collected before D-ride, 30, 60 and 90min in D-ride, 30 and 60min in the recovery period and each 10min in P-ride. Plasma analysis items were glucose, insulin, cortisol (CORT), testosterone (TEST), free fatty acid (FFA), Na +, Cl- and K +. The collected data (MeansSE) were analysed by two-way ANOVA and statistically significant differences between treatments (p0.05) by LSD.; the significant level in FFA, Na +, Cl- and K + was p0.01. Results : At 30min during recovery, plasma glucose level in KFRI-3 was significantly higher than CON, and also insulin in KFRI-3 was than CON and KFRI-2. FFA in KFRI-3 was significantly lower than CON during recovery. Na + in KFRI-3 significantly higher than CON at 90min in D-ride, and also KFRI-2 was at 60min during recovery. However CORT, TEST, Cl- and K + in treated beverages were not significant. KFRI-2,3 elevated the time for P-ride more than CON did. Conclusions : KFRI-2,3 elevated the time for P-ride about 12% more than CON did. It is based on rapid recovery of plasma glucose level and inhibition of lipolysis during recovery. Key Words: Sport beverage, Saeng Mac San, Je Ho Tang, Exercise, Recovery, Fatigue : 2005 7 28 : 2005 10 23 : 2005 11 24 :. 19-2. (Tel: 053-853-7501, E-mail : kodna@naver.com) (KFRI) (sport beverage: SB) (CHO) (E) CHO-E. CHO, 1), 36
(37) 2) 3) -. E 4). 4 ~15 5), 6). SB (D-ride) (all-out) (P-ride) 7-9)., SB. 10). (KFRI) KFRI-2,3 2, KFRI-2,3. KFRI-2,3. (heart rate: HR) (rating of perceived exertion: RPE) (glucose), (insulin), (cortisol: CORT), (testosterone: TEST), (free fatty acid: FFA), Na +, K +, Cl - (control: CON). 10 <Table 1>., 15.. 10. 5 (base line: BL) 4 1. (Figure 1),,,. 1) Astrand protocol () VO2max. VO2max 1. 12,. 06:00 HR 3- (BL: 0). 3 65% VO2max 90 (D-ride), D-ride 30 200. D-ride 500 5 60 Table1. Physical Characteristics of Subjects Age(yr) 24.0 2.1 Weight(kg) 70.1 8.2 Height(cm) 173.6 4.3 VO2max(//min)* 44.8 3.55 ; (N=10) (meanse) [(Q1-1.5IQR, Q3-1.5 IQR), (71.5, 119.5)].,, VO2max (maximal oxygen consumption: ). 37
(38) 27 1(2006 3) Fig. 1. Experimental Design.. 75% VO2max all-out (P-ride), all-out. All-out RPE 19, HR 180 bpm. all-out 30 HR. 211, 75%. 2) 5 water-control [, (): CON], 6%-CHO-E[Gatorade thirst quencher lemon, (): gato], KFRI-2,3 4. 1 D-ride 30 200 D-ride 500. 4 7. 3) (0), D-ride 30 (30, 60, 90), 500 30 (120, 150), P-ride 10 all-out 15, 5. 30 [ ()], (3000 rpm 15 min) -70. 4) RPE D-ride Borg Scale 10, HR (Polar, Port Washington NY 11050, Polar Electro Inc, USA).. 1) : Glucose & lactate analyser (YSI 2300 STAT plus, Japan). 2), CORT TEST: Coat-A-Count Kit (Diagnostic products corporation, USA) -counter (1470 Wizard, Wallac, automatic count, Finland). 3) FFA: modified Noma (1973). 4) Na +, K + Cl - : Cobas INTEGRA. (meanse), SPSS for Windows for Version 10.0. 38
(39) Figure 2. Plasma Glucose Response. a; Significantly different from CON. b; Significantly different from KFRI-2. Figure 3. Plasma Insulin Response. a; Significantly different from CON. b; Significantly different from KFRI-2. (two-way ANOVA) t-test, (LSD). FFA (p<.01) p<.05. D-ride 30, (Figure 2). gato (126.03.51 /), KFRI-2 (109.06.44 /), KFRI-3 (125.86 4.86 /) CON (84.292.74 /) (t-test; p<0.05). gato CON KFRI-2 (t-test; p<0.05). KFRI-2 KFRI-3 CON (t-test; p<0.05). KFRI-3 KFRI-2, gato. D-ride 30, (Figure 3). gato (2.26 0.63 ulu/), KFRI-2 (2.030.48 ulu/) CON (2.06 0.23 ulu/). KFRI-3 (2.340.47 39
(40) 27 1(2006 3) Figure 4. Plasma Cortisol Response. Figure 5. Plasma Testosterone Response. Figure 6. Plasma Free Fatty Acid Response. ulu/) CON KFRI-2 (t-test; p<0.05). CORT, 4 (Figure 4)., D-ride 30 KFRI-3 gato CORT CON KFRI-2. 40
(41) Figure 7. Plasma Na+ Response. a; Significantly different from CON. Figure 8. Plasma K+ Response. Figure 9. Plasma Cl- Response. TEST, 4 (Figure 5)., D-ride KFRI-3 gato TEST CON KFRI-2. KFRI-2,3 gato FFA CON (Figure 6)., D-ride 60 KFRI- 3 (0.730.07 mm) gato (0.640.07 mm) FFA CON (0.820.06 mm) 41
(42) 27 1(2006 3) Figure 10. Heart Rate Response during 65% VO 2max D-ride. Figure 11. Rating of Perceived Exertion. during 75% VO 2max R-ride. Figure 12. Sustained Time during 75% VO 2max R-ride.. D-ride KFRI-3 Na + (141.00.7 m) CON (139.30.5 m) (ttest; p<0.05), P-ride KFRI-2 Na + (139.40.8 m) CON (136.9 0.6 m) (Figure 7). D- ride K + Cl - (Figure 8 & 9). 4 D-ride 1333.5 bpm 1524.2 bpm (Figure 10). 42
(43) R-ride RPE, R-ride 10 (Figure 11). R-ride CON 11.1 gato 16, KFRI-2 13.1 KFRI-3 13.3. KFRI-2 KFRI-3 (Figure 12). 10 SB KFRI-2,3 CON gato,65%vo2max 90 60 75%VO2max all-out. D-ride CON. CHO,.,, 11)., 30 KFRI- 2 (109.06.44 /) KFRI-3 (125.864.86 /) CON (84.292.74 /), KFRI-3 gato. KFRI-2,3 CON. CHO- E 5, 11, 12, 13). CON D-ride, gato KFRI-2,3., KFRI-3 30. 30 CON KFRI-2,3, KFRI- 3 (2.340.47 ulu/) CON KFRI-2. KFRI-3 CON KFRI-2. 30 KFRI-3 gato D-ride 30 KFRI-3 gato. D-ride 30, R-ride. CHO-E CORT 11, 14). 150 CORT CHO-E CORT 15), 2 CORT 15, 16) 70% VO2max 127 CORT 17). CORT 43
(44) 27 1(2006 3), gato CORT., 30 KFRI-3 CORT CON KFRI-2, KFRI-3. TEST,. TEST, D-ride 60. KFRI-2,3, TEST/CORT. D-ride CON FFA KFRI-2,3 gato. FFA / CORT. CORT KFRI-3 gato. KFRI-3 gato CON FFA KFRI-3 gato CON. (tryptophan) (serotonin), 18). KFRI-3 FFA, gato FFA KFRI-3. KFRI-2,3, KFRI-3 Na + (141.00.7 m) CON, 60 KFRI-2 Na + (139.4 0.8 m) CON. KFRI-2,3 145m. K + Cl-.. RPE, 0 ( ) 20 ( ). 19. KFRI-2,3 R-ride 13.1 13.3 CON (11.1) 12%. KFRI-2,3 CON RPE, 19). CORT (epinephrine), (glucagon) (growth hormone), all-out. CHO-E (CHO-E-PRO) CHO-E CHO-E-PRO CHO-E 8)., KFRI-2,3 CHO-E-PRO. 44
(45), KFRI-2,3 CON RPE., KFRI-3 KFRI-2, KFR-2,3 (gastric emptying). KFRI-2,3 90 65% VO2max 60 75% VO2max. 1. D-ride 30, KFRI-3 CON KFRI-2,3, KFRI- 3 CON KFRI-2. 2. KFRI-3FFA CON. 3. Na + D-ride KFRI-3 CON, R-ride KFRI-2 CON. 4. CORT, TEST, K +, Cl -, HR RPE. 5. KFRI-2,3 R-ride (13.1 13.3 ) CON (11.1)., CON KFRI-3 12% CON KFRI-2, FFA. SB, CHO. 1. Coggan AR, & Coyle EF. Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. J Appl Physiol. 1987;63: 2388-2395. 2. Hickner RC. Muscle glycogen accumulation after endurance exercise in trained and untrained individuals. J Appl Physiol. 1997;83: 897-903. 3. Hargreaves M. Carbohydrate replacement during exercise. In: J. L. Roitman(ed.) ACSM's Resource Manual for Guideline for Exercise Testing and Prescription. Baltimore: Williams & Wilkins. 2000;182-186. 4. Convertino VA, Armstrong LE, Coyle EF, Mack GW, Sawka MN, Senay LCJr, et al. American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 1996;8:i-vii. 5. Coyle EF. Ergogenic aids. Clin Sports Med. 1984;1:742. 6. Davis JM. & Fitts R. Mechanisms of muscular fatigue. In: J. L. Roitman(ed.) ACSM's Resource Manual for Guideline for Exercise Testing and Prescription. Baltimore: Williams & Wilkins. 1998;182-188. 7. Brouns F. Gastric emptying as a regulatory factor in fluid uptake. Int J Sports Med. 1998;19:S125- S128. 8. Ivy JL, Res PT, Sprague RC & Widzer MO. Effect of a carbohydrate-protein supplement on endurance performance during exercise of varying intensity. Int J Sport Nutr Exerc Metab. 2003;13:382-395. 9. Williams MB, Raven PB, Fogt DL & Ivy JL. Effects of recovery beverages on glycogen restoration and endurance exercise performance. J Strength Cond Res. 2003;17:12-19. 45
(46) 27 1(2006 3) 10.,,,,. ;.. 2005; 26:187-194. 11. Davis JM & Brown MA. Carbohydrates, Hormones, And Endurance Performance. Gatorade Sports Science Institude. 2001;14:80-84. 12. Ahlborg G & Felig P. Influence of glucose ingestion on fuel-hormone response during prolonged exercise. J Appl Physiol. 41(5 Pt. 1). 1976:683-688. 13. Burgess ML, Robertson RJ, Davis JM. & Norris JM. RPE, blood glucose, and carbohydrate oxidation during exercise: effects of glucose feedings. Med Sci Sports Exerc. 1991;23:353-359. 14. Nieman DC, Nehlsen-Cannarella SL, Fagoaga OR, Henson DA, Utter A, Davis JM, et al. Influence of mode and carbohydrate on the cytokine response to heavy exertion. Med Sci Sports Exerc. 1998;30:671-678. 15. Murray R, Bartoli WP, Eddy DE & Horn MK. Physiological and performance responses to nicotinic-acid ingestion during exercise. Med Sci Sports Exerc. 1995;27:1057-1062. 16. Murray R, Paul GL, Seifert JG & Eddy DE. Responses to varying rates of carbohydrate ingestion during exercise. Med Sci Sports Exerc. 1991;23:713-718. 17. Mitchell JB, Costill DL, Houmard JA, Flynn MG, Fink WJ & Beltz JD. Influence of carbohydrate ingestion on counterregulatory hormones during prolonged exercise. Int J Sports Med. 1990;11:33-36. 18. Davis JM, Bailey SP, Woods JA, Galiano FJ, Hamilton MT & Bartoli WP. Effects of carbohydrate feedings on plasma free tryptophan and branched-chain amino acids during prolonged cycling. Eur J Appl Physiol Occup Physiol. 1992; 65:513-519. 19. Utter AC, Kang J, Nieman DC, Williams F, Robertson RJ, Henson DA, et al. Effect of carbohydrate ingestion and hormonal responses on ratings of perceived exertion during prolonged cycling and running. Eur J Appl Physiol Occup Physiol. 1999;80:92-99. 46