韓國電磁波學會論文誌第 21 卷第 11 號 2010 年 11 月論文 2010-21-11-09 A Filter Synthesis Method for Multi-Band Filter Design 이혜선 이자현 임영석 Hyesun LeeJahyeon LeeYeongseog Lim 요약 LC.,,., LC. LC GSM(880960 MHz), ISM(2,4002,500 MHz) GSM(880960 MHz), ISM(2,4002,500, 5,7255,850 MHz). Abstract In this paper, we presented a new LC prototype synthesis method for the multi-band filter. For synthesis a multi-band filter with the required frequency response, we proposed the diagram of poles and zeros, also, we proposed the optimization process for finding the combination of optimized poles and zeros. From the transfer and reflection functions calculated from poles and zeros, we performed the quasi-elliptic LC prototype synthesis of multi-band filter. Using the proposed LC prototype synthesis method of multi-band filter, dual-band filter operating at GSM(880960 MHz) and ISM(2,4002,500 MHz) and triple-band filter operating at GSM(880960 MHz) and ISM(2,4002,500, 5,7255,850 MHz) were designed and fabricated. Key words : Filter Synthesis, Multi-Band, Quasi-Elliptic Filter. 서론 GSM, PCS, Wi-Fi, WLAN RF. RF front-end [1][9]. [1][4].,., cavity waveguide [5][7].,, Q factor, (Department of Electronic and Computer Engineering, Chonnam National University) : 20100723-096 : (e-mail : limys@chonnam.ac.kr) : 2010 9 24 1259
韓國電磁波學會論文誌第 21 卷第 11 號 2010 年 11 月 (a) (a) Frequency response (b) (b) Corresponding pole-zero diagram 그림 1. Fig. 1. Characteristic of multi-band filter. LC [10],[11].. LC [1][4]. LC, thru-line. [8], [9], coupled-line, Q factor. GSM(880960 MHz) ISM(2,4002,500 MHz) GSM(880960 MHz) ISM(2,400 2,500, 5,7255,850 MHz),.. 다중대역필터합성방법 그림 2. LC Fig. 2. The proposed quasi-elliptic LC prototype for a multi-band filter. [8],[9]. LC. 1, 2., 1(a) 1(b),.,, (Hurwitz) (driving-point)., 2 LC..,.,,. 1260
표 1. Table 1. Initial values and variable ranges for multiband filter parameters. s p1,p9 ± ± ± 그림 3. Fig. 3. Flow-chart of algorithm for determining optimized poles and zeros. 1 (ω p1ω p1) 3 (s p1, s p5, s p9), (±ω p2 ±ω p3 ) 2(s p2, s p3, s p7, s p8 ). (±ω z1) 2(s z1, s z2, s z3, s z4), 2(s z5, s z6, s z7, s z8 ). (s p4, s p6)., N 3, 2, 4 [5+4(N1)], [1]. 3..,, (± ω p1, ±ω p2, ±ω p3), (s p4, s p6). (±ω z1, ±ω z2).. (step). 1.. s p2,p8 ± ± ± s p3,p7 ± ± ± s p4,p6 0 0±10 s p5 0 0 s z1,z2,(z3,z4) ± ± ± s z5,z6,(z7,z8) ± ± ±, (full search) cost( error). cost U (1) [13]. (1), A+B. cost, gradient. minimum cost [12],.. (2) [7].,, K(s), (3) [7]. (2) 1261
韓國電磁波學會論文誌第 21 卷第 11 號 2010 年 11 月 (a) (a) Odd mode (b) (b) Even mode 그림 4. 2/ Fig. 4. Odd/even mode circuit network of Fig. 2. (3) (4), (5) E(s) 2 LC [10],[11]., 2 4(a), (b) ()., Y o( Y e) E(s). E(s) Y o, Y e. D(s) (6). (6) D O(s) D(s), D E(s) D(s). Y o (s) LC,. (2), s- [7]. (4) (5), P(s), F(s), E(s) N-. D O(s) D E (s). or (7) [10],[11]., (residue theorem),..,., ω 1 ω 2, ω 1 <ω 2., N, N N1. 1262
. 다중대역필터설계응용 3-1 이중대역필터. : 880960 MHz(GSM), 2,4002,500 MHz(ISM) : 1,7101,785, 1,8051,880 MHz (DCS) 20 db 30 db( 2 ) 3.,. (ω p1 ω p1 ) 3, (±ω p2 ±ω p3 ) 2,. 2., 9, 8., cost. 0.0001, 2.6 GHz dual-core process PC 3. 2. 2 (3), (4), (5)., P(s)( F(s)) (), E(s) s q1,q9 =0.1856±2.6703i s q2,q8 =0.1528±2.2221i s q3,q7 =0.2553±1.3531i s q4,q6 =1.9072±1.3172i s q5 =3.9363 표 2. Table 2. Initial and optimized values of dual-band filter parameters. s p1,p9 ±0.98i ±0.9329i s p2,p8 ±2.35i ±2.3643i s p3,p7 ±2.55i ±2.522i s p4,p6 0 ±2.8832 s p5 0 0 s z1,z2,(z3,z4) ±1.8i ±1.8014i s z5,z6,(z7,z8) ±3.8i ±3.7998i 표 3. LC Table 3. LC prototype of dual-band filter. : r 1=r 2=1 g 1' g 1 g 2 g 3' g 3 g 4 0.72 0.428 0.152 0.212 0.3267 0.8504 그림 5. Fig. 5. Transfer and reflection response of the synthesized dual-band filter.., s q1,q9, s q3,q7, s q5 Y o s q2,q8, s q4,q6 Y e. s q1,q9, s q3,q7, s q5 D(s) Y o. 1263
韓國電磁波學會論文誌第 21 卷第 11 號 2010 年 11 月 (a). w Ls=0.2, l Ls1=1.04, l Ls2=5.875, w Lp1=0.15, l Lp1=8, w Lp2=0.2, l Lp2=3, w Cp1= l Cp1=3.9, w Cp2= l Cp2=3.4(: mm) (a) Structure and geometry values of the filter(unit: mm) 그림 7. Fig. 7. Comparison on the frequency response of the dual-band filter.. [12],[14]. (b) (b) Photograph of the fabricated filter 그림 6. Fig. 6. The proposed planar-type dual-band filter. 3 Y o, 5. (4) (5). f c =1 GHz, Z 0 =50 Ohm. L p1 =5.7296 nh, C p1 =1.3624 pf, L s1 =1.2096 nh, L p2 =1.6870 nh, C p2 =1.0399 pf, L s2 = 6.7673 nh. 6(a).,.,,,, (8) Z l, l, c 0, C fringing. 6(b). Taconic 3.5, 0.76 mm RF-35A 32 mm 20 mm 0.76 mm. 7 EM. 880 960 MHz 0.1 db 20.6 db, 2,4002,500 MHz 0.55 db 16.4 db.,. 3-2 삼중대역필터. 1264
: 880960 MHz(GSM), 2,4002,500 MHz(ISM), 5,7255,850 MHz(ISM) : 1,7101,785, 1,8051,880 MHz (DCS) 20 db 30 db( 2 ). 13 12. 4. 8 LC.. LC 표 4. Table 4. Initial and optimized values of triple-band filter parameters. s p1,p13 ±0.90i ±0.8298i s p2,p12 ±2.35i ±2.419i s p3,p11 ±2.55i ±2.5381i s p4,p10 ±5.70i ±5.7355i s p5,p9 ±5.85i ±5.8395i s p6,p8 0 ±4.1853 s p7 0 0 s z1,z2,(z3,z4) ±1.8i ±1.8i s z5,z6,(z7,z8) ±4.0i ±4.2i s z9,z10,(z11,z12) ±8.0i ±8.0i 그림 8. LC Fig. 8. The quasi-elliptic LC prototype for the tripleband filter. 그림 9. Fig. 9. Transfer and reflection response of the synthesized triple-band filter. g 1'=0.61, g 1=0.506, g 2=0.148, g 3'=0.215, g 3=0.2637, g 4 =0.0435, g 5 '=0.1169, g 5 =0.1337, g 6 =0.915. 9. f c=1 GHz, Z 0=50 ohm L p1 =4.8542 nh, C p1 = 1.6106 pf, L s1 =1.1777 nh, L p2 = 1.7109 nh, C p2=0.83938 pf, L s2=0.34616 nh, L p3= 0.93026 nh, C p3=0.42558 pf, L s3=7.2813 nh. 10. 30 mm 18 mm 0.76 mm.,,., thru-line [8],[9]. 11. (880960 MHz) 0.55 db 16.34 db, (2,4002,500, 5,7255,850 MHz) 0.928, 1.45 db 13.7, 9.8 db. thru-line coupled-line 1265
韓國電磁波學會論文誌第 21 卷第 11 號 2010 年 11 月, Q factor.. 결론 (a). w Ls=w Lp1=w Lp2=w Lp3=0.1, l Ls1=1, l Ls2=0.42, l Ls3=4.45, l Lp1=5.5, l Lp2=2.6, l Lp3=1.2, w Cp1=l Cp1=5, w Cp2=l Cp2=3, w Cp3=l Cp3=2(: mm) (a) Structure and geometry values of the filter(unit: mm) (b) (b) Photograph of the fabricated filter 그림 10. Fig. 10. The proposed planar-type triple-band filter. LC.,, LC.. GSM(880960 MHz) ISM (2,4002,500 MHz) GSM(880960 MHz), ISM(2,4002,500, 5,725 5,850 MHz). Thru-line coupled-line., LC L C,,. 참고문헌 그림 11. Fig. 11. Comparison on the frequency response of the triple-band filter. Q factor., 11 [1] H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada, and Y. Nagatomi, "A miniaturized monolithic dual band filter using ceramic lamination technique for dual mode portable telephones", IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, pp. 789-792, Jun. 1997. [2] L. C. Tsai, C. W. Hsue, "Dual-band bandpass filters using equal-length coupled-serial-shunted lines and Z- 1266
transform technique", IEEE Trans. Microw. Theory and Tech., vol. 52, no. 4, pp. 1111-1117, Apr. 2004. [3] C. Quendo, E. Rius, and C. Person, "An original topology of dual-band filter with transmission zeros", IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, pp. 1093-1096, Jun. 2003. [4] C. Chen, C. Hsu, "A simple and effective method for microstrip dual-band filters design", IEEE Microw. Wireless Compn. Lett., vol. 16, no. 5, pp. 246-248, May 2006. [5] G. Macchiarella, S. Tamiazzo, "Design techniques for dual-passband filters", IEEE Trans. Microw. Theory Tech., vol. 53, no. 11, pp. 3265-3271, Nov. 2005. [6] P. Lenoir, S. Bila, F. Seyfert, D. Baillargeat, and S. Verdeyme, "Synthesis and design of asymmetrical dual-band bandpass filters based on equivalent network simplification", IEEE Microw. Theory Tech., vol. 54, no. 7, pp. 3090-3097, Jul. 2006. [7] J. Lee, M. S. Uhm, and I. B. Yom, "A dual-passband filter of canonical structure for satellite applications", IEEE Microw. Wireless Compon. Lett., vol. 14, no. 6, pp. 271-273, Jun. 2004. [8] J. Lee, K. Sarabandi, "Design of triple-passband microwave filters using frequency transformations", IEEE Trans. Microw. Theory Tech., vol. 56, no. 1, pp. 187-193, Jan. 2008. [9] H. Di, B. Wu, X. Lai, and C. Liang, "Synthesis and realization of novel triple-passband filter based on frequency", Microw. Conference, APMC 2009 Asia Pacific, pp. 1356-1359, Dec. 2009. [10] S. A. Alseyab, "A novel class of generalized Chebyshev low-pass prototype for suspended substrate stripline filter", IEEE Microwave Theory Tech., vol. 30, no. 9, pp. 1341-1347, Sep. 1982. [11] O. Wing, Classical Circuit Theory, Springer, 2008. [12] J. S. Hong, M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, New York: Willey, 2001. [13] P. Kozakowski, M. Mrozowski, "New approach to fast full wave optimization of microwave filters", Microw. Conference, 32nd European, Sep. 2002. [14],,,,,, " ",, 18(8), pp. 887-894, 2007 8. 2009 2: () 2009 3: [ 주관심분야 ], RF RF 2007 2: () 2009 2: () 2009 3: [ 주관심분야 ], 1267
韓國電磁波學會論文誌第 21 卷第 11 號 2010 年 11 月 1980 2: () 1982 2: () 1989 2: () 1984 9: [ 주관심분야 ],, RF, 1268