정재훈.PDF

Similar documents
정봉수.PDF

이수진.PDF

, Yard Bottom Slamming, Slamming,, 10-8 Probability Level Bottom Slamming., Bottom Slamming,, Evaluation, Allowable Criteria, Ballast Reduction, Botto

08.hwp

Extended Calculations

25(3c)-03.fm

<353920C0B1B1E2BFEB2DB0E6B0F1C0DCB1B320BBF3BACEB1B8C1B6C0C720C8DA2E687770>

a16.PDF

논문수정본.PDF

歯전용]


14.531~539(08-037).fm

17-221~235설계01철도사장교1.ps

( )박용주97.PDF

歯 PDF

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

<30395FB1E8B4EBB8B85FBDC7C6AEC1FA20C7D4C0AFB7AE2E687770>

歯논문손규만.PDF

남북한교과서에서나타난 민족정체성

Microsoft Word - KSR2012A103.doc

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

26논문03-조재윤[1].PDF

응용A 수정.hwp

untitled

PDF

歯FFF01379.PDF

Microsoft Word - KSR2012A118.docx

PDF

Microsoft Word - KSR2013A320

02 Reihe bis 750 bar GB-9.03

Coriolis.hwp

2

歯나노용첨가제출원동향.PDF

송동우.PDF

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

歯7권2호.PDF

16-기06 환경하중237~246p

歯320.PDF

No Title


( ).fm

10(3)-12.fm

<C5F0B0E82D313132C8A328C0DBBEF7BFEB292E687770>

최종욱.PDF

<3036B3E231C7D0B1E220B0ED31B1E2B8BBB0EDBBE7B4EBBAF1C6AFB0AD20B1B9BEEE28BBF32931B0AD2D33B0AD2D5BB1E8C0AFB5BFBCB1BBFDB4D45D2E687770>

<313920C0CCB1E2BFF82E687770>

나사식볼밸브.indd

<30375F D F FC0E5BCF6C8A35FBCB1C7FCC0FDBBE8BDC3C7E8BFA120C0C7C7D120B4F5BAEDB5F0BDBAC5A9C4BFC5CDBFCD20BDCCB1DBB5F0BDBAC5A9C4BFC5CD2E687770>

Kinematic analysis of success strategy of YANG Hak Seon technique Joo-Ho Song 1, Jong-Hoon Park 2, & Jin-Sun Kim 3 * 1 Korea Institute of Sport Scienc

h99-37.PDF

<23C0B1C1A4B9E65FC6EDC1FDBFCFBCBA E687770>

WOMA Pumps - Z Line

겉표지.PDF

12하이브리드브로셔-국문

PowerPoint 프레젠테이션

KAERI/TR-2128/2002 : SMART 제어봉구동장치 기본설계 보고서

<4D F736F F F696E74202D2028B9DFC7A5BABB2920C5C2BEE7B1A420B8F0B5E220C8BFC0B220BDC7C1F520BDC3BDBAC5DB5FC7D1B1B94E4920C0B1B5BFBFF85F F726C F72756D>

歯PLSQL10.PDF

歯제7권1호(최종편집).PDF

12(4) 10.fm

Lumbar spine

334 退 溪 學 과 儒 敎 文 化 第 55 號 角 說 에서는 뿔이 난 말과 고양이라는 기형의 동물을 소재로 하여 당대 정치 상 황을 비판하였고, 白 黑 難 에서는 선과 악을 상징하는 색깔인 白 과 黑 이 서로 벌이 는 문답을 통하여 옳고 그름의 가치관이 전도된 현실세

³»Áö

<31325FB1E8B0E6BCBA2E687770>

PJTROHMPCJPS.hwp

< FC3D6C1BEBAB8B0EDBCAD E687770>

슬라이드 제목 없음

< C6AFC1FD28B1C7C7F5C1DF292E687770>

歯174구경회.PDF

DC Link Application DC Link capacitor can be universally used for the assembly of low inductance DC buffer circuits and DC filtering, smoothing. They

<BAB0C3A5BABBB9AE2E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

untitled

<C6EDC1FD2D30352D30302DB8F1C2F72E687770>

5월호.PDF

untitled


<근대이전> ⑴ 문명의 형성과 고조선의 성립 역사 학습의 목적, 선사 문화의 발전에서 국가 형성까지를 다룬다. 역사가 현재 우리의 삶과 긴밀하게 연결되었음을 인식하고, 역사적 상상력을 바탕으 로 선사 시대의 삶을 유추해 본다. 세계 여러 지역에서 국가가 형성되고 문 명

歯음란물사업자책임(방석호).PDF

82.fm

<C5EBC0CFB0FA20C6F2C8AD2E687770>

Berechenbar mehr Leistung fur thermoplastische Kunststoffverschraubungen

Microsoft Word - KSR2013A303

歯자료3-124.PDF

책임연구기관

歯99-16.PDF

사진 24 _ 종루지 전경(서북에서) 사진 25 _ 종루지 남측기단(동에서) 사진 26 _ 종루지 북측기단(서에서) 사진 27 _ 종루지 1차 건물지 초석 적심석 사진 28 _ 종루지 중심 방형적심 유 사진 29 _ 종루지 동측 계단석 <경루지> 위 치 탑지의 남북중심

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

Æ÷Àå½Ã¼³94š

< C6AFC1FD28C3E0B1B8292E687770>

<C8ADB7C220C5E4C3EBC0E52E687770>

유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

(5차 편집).hwp

untitled

제1절 조선시대 이전의 교육

歯 PDF

<3130BAB9BDC428BCF6C1A4292E687770>

2.2, Wm -2 K -1 Wm -2 K -2 m 2 () m 2 m 2 ( ) m -1 s, Wm -2 K -1 Wsm -3 K -1, Wm -2 K -1 Wm -2 K -2 Jm -3 K -1 Wm -2 K -1 Jm -2 K -1 sm -1 Jkg -1 K -1

보안과 암호화의 모든 것

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

Transcription:

T h e G ro u p E f f e c t o f L at e r a lly L o a d e d P i le s in C o h e s i v e S o i l 200 1 2

T h e G ro u p E f f e c t o f L at e r a lly L o a d e d P i le s in C o h e s i v e S o i l 200 1 2

200 1 2

LPILE P L U S, GROUP 4.0 for Windows (Reese, 1990).,,. 15mm, PC 47 50%, 46 50%, PC 38 40%, 38 39%.. 8 1. Prakash Saran (1967).

A b s tract T he group effect s b ased on allow able deflection of a pile head and pile cap in a group have been studied by the computed program, LPILE P L U S, GROUP 4.0 for Window s (Reese etc, 1990). Variou s parameters such as pile stiffness, fixity condition of pile heads, soil type and pile spacing are considered for behavioral study of piles. From the comparison of different fixity conditions (free/ fixed) of a single pile, it can be seen that the head fixity ratio(free/ fixed) for lateral load is shown to be 47 50% for PC pile, 46 50% for steel pipe pile and the head fixity ratio for the maximum moment is 38 40% for PC pile, 38 39% for steel pipe pile. T he influence of average undrained shear strength and pile rigidity on the ratio of lateral load and maximum moment are shown to be a single pile or group piles. when pile spacing is greater than 8 times (8D) of pile diameter, the group pile behaves as a single pile. From the comparison of the pile model test v alue of Prakash and Saran (1967), the group reduction factor from the model test accords to program computed within allow able deflection.

Abstract 1 1 1.1 1 1.2 2 1.3 2 2 4 2.1 4 2.1.1 4 2.1.2 p - y... 8 2.1.3...13 2.2 17 2.2.1 17 2.2.2 19 2.2.3 22 3 24 3.1 24

3.2 26 4 28 4.1 28 4.2 37 5 50 52

1 1.1,.,,,,.,....,,,,,..

1.2,,.,. Reese Matlock (1966) LPILE P L U S, GROUP 4.0 for Windows (Reese, 1990) PC. 1.3,,. Hrennikoff(1949) -, -

., Hrennikoff(1950)., Hrennikoff, Hrennikoff.(Reese, 1990) Reese Matlock (1960, 1966),. Parker Cox (1969) Reese Matlock. Reese(1970) 1977 O'neill Mindlin - -. poulos. Brown (1987). Peter (1996). Prakash Kumar (1996) k h m ax ( ).

2 2. 1 2.1.1 2,,. Hansen (1961) Broms (1964),. 2.1.3.,,. (Free head) (Fixed head), -. 2.1. Brinch Hansen (1961) 2.1 z (2.1). Q u M u 2.1 z r (2.2) (2.3).

p uz = p oz ' K p + c K c (2.1), p uz : z p oz ' : z c : K q, K c : ( 2.2) (2.2) 0 z r Q u. Q h = 0, Q u - 0 z r P uz d dz + L z r p uz d dz = 0 (2.2), Q u : d L z : : : Q u M u = Q u e 2.3. M = 0, Q u e - 0 z r P uz z d dz + L z r p uz z d dz = 0 (2.3) Broms Hansen. ( c = 0 ) ( =0)

. Fig. 2.1 Brinch han sen ' s m ethod for calculating ultimat e later al resistance Fig. 2.2 Brinch han sen ' s coefficient s of Kp and Kc 2.1

T R (2.4). T able. 2.1 Criteria for rigid pile and flexible pile Coefficient of subgr ade r eaction Criteria of pile Linearly incresing Constant Short rigid piles L / T 2 L / R <2 long flexible piles L / T 4 L / R 3.5 T = ( E I n h ) 1 5, R = ( E I k h ) 1 4 (2.4), T, R : k h = n h z : n h : E p : I : 2.2.3,,. ( H u ) ( M y ).(,, 1997)

2.4,,. 2.1.2 p - y y p. p- y, p- y. p- y, p- y. Reese (1983). Matlock (1970) p- y. 2.5 p u, 50% y 50.

deflection soil reaction bending moment (a) short rigid pile deflection soil r eaction bending m om ent (b ) long flexible piles Fig. 2.3 Soil r eaction s and bending moment s for free head piles under horizontal load in cohesiv e soil (Br om s, 1964)

deflection soil r eaction bending moment (a) short rigid pile deflection soil r eaction bending m om ent (b ) long flexible piles Fig. 2.4 Soil r eaction s and bending moment s for fix ed head piles under horizontal load in cohesiv e soil (Br om s, 1964)

50% 2.2 2.3. (2.5) (2.6) p u. p u y 50 (2.7) (2.8) y = 8 y 50 p. p- y p- y y = 8y 50 y = 16 y 50 (2.8) 1/ 3 1/ 4. p u = [3 + ' c u x + J d x ] c u d (2.5), ' : x c u d J : : x : : ( = 0.5, = 0.25) p u = 9 c u d (2.6) y 50 = 2.5 50 d (2.7)

, 50 : 50% p p u = 0.5 ( y y 50 ) 1 3 (2.8) Fig. 2.5 Criteria for load- deformation p- y curves for later ally loaded piles T able. 2.2 Values of 50 for clay s in clay Con sist ency of clay 50 soft 0.02 medium 0.01 stiff 0.005

T able 2.3 Values of 50 for stiff clay s Av erage undr ained shear strength (kpa) 50-100 0.007 100-200 0.005 300-400 0.004 50 2.1.3. (modulus of subgrade reaction approach ) (elastic approach). 2.6(a)., 2.6(a) Winkler..,.

.. Reess (1974) p- y. Reese (1974) 2.6(a ) (2.9). E p I p d 4 y dx 4 + p = 0 (2.9), E p I p : : 2 y : x p : p 2.6(b),(c) p = k h y (2.10), k h :

k h 2.4. T able. 2.4 Soil- modulus parameter k h for clay type (unit : kn / m 3 ) Clay type Avg. undrained shear strength cu (kpa) Static Cyclic soft 12 24 8140 - medium 24 48 27150 - stiff 48 96 136000 54300 k h x y (2.10). p y.,..,. Spiller Stoll(1964) Mindlin. Douglas Davis (1964) Mindlin. Poulos (1971) Spiller Stoll..(,, 1993)

F i g 2. 6 Behavior of later ally loaded pile : subgr ade r eaction approach. (a)winkler ' s idealization, (b ) Laterally loaded pile in soil, (c) Later ally loaded pile on spring s.

2.2.. Ge.. 2.7. Poulos Davis (1 980). Poulos (1971). Mindlin (1963). Poulos Davis (1980). 2.2.1. Fig 2.7 Pile- gr oup behavior

(Ov erlapping zones for individual piles). (1985) 8 (8D)... Poulos Davis (1980).

. 6D. 8. 2.2.2 Ge (2.11). Prakash Saran (1967), Oteo(1972) Ge Ge = ( Q u ) g n Q u (2.11)

, (Q u ) g : n Q u : :. Ge Spacing / diameter of pile (S/ D) Fig. 2.8 Lateral group efficiency from model tests (Prakash and saran, 1967) T able. 2.5 Gr oup efficiency Ge for cohesionless soils (Oteo, 1972) S/ D Ge 3 0.50 4 0.60 5 0.68 6 0.70

T able. 2.5 Group efficiency Ge for piles in cohesive soils (Pr akash and sar an, 1967) S/ D Ge 2 2 group 3 3 group Recommended 3 0.42 0.39 0.40 3.5 0.50 0.42 0.45 4.0 0.57 0.44 0.50 4.5 0.61 0.47 0.55 5.0 0.63 0.48 0.55 6.0 - - 0.65 8.0 - - 1.00 2.8 2.5 2.6. 2.8 Ge. Prakash Saran (1967) Ge. 2.6 S/ D 5 Ge S/ D 6 0.65 S/ D 8 Ge.

2.2.3. Prakash (1967) 6D 8D. 2.5D. Davisson (1970) n h 2.7. T able. 2.7 Group reduction factor for the coefficient of subgrade r eaction (Davisson, 1970) Pile spacing in the dir ection of loading Group reduction factor for n h 3D 0.25 4D 0.40 6D 0.70 8D 1.00 or k h n h

n h. k h Poulos (1971). Poulos.

3 3.1 PC., PC 40 60cm, 60 80cm.,, 3. 2. p- y LPILE P L U S, GROUP 4.0 for Window s (Reese, 1990)..3.1, 3.2, 3.1. 3 3. T able. 3.1 Phy sical pr operties of soil Con sistency of clay soft medium stiff cu (kpa) 18 36 72 ' ( kn / m 3 ) 15 16 17 k h ( kn / m 3 ) 8,140 27,150 136,000

T able. 3.2 Phy sical pr operties of pile Pile PC- pile Steel pipe pile L (m ) 13 20 D (m ) 0.4 0.5 0.6 0.6 0.7 0.8 A p (m 2 ) 0.0765 0.1159 0.1571 0.0149 0.0174 0.0199 I p (m 4 ) 0.00109 0.00262 0.00522 0.00065 0.00104 0.00156 E p (kn/ m 2 ) 2.65 10 7 2.06 10 8 (a) Free- head (b) Fix ed- head Fig. 3.1 Applied model of single pile 3.2

3.1 3.2 3.1., 15mm. 3.2 3D, 4D, 6D, 8D. Free head Fixed head Fig. 3.2 Applied model of group pile 3 3.

, 15mm,.

4 3, 15mm., 3 3,,. 4.1 ( 1997) 15mm 15mm 4.1 4.4., 4.1 4.4 4.1 4.2. 4.1 4.2-28 -

4.3. 4.1 4.3 PC 47 50%., 4.2, 4.3 PC 46 50%. 4.3, 4.4 4.3, PC, 38 40% 38 39%.. PC. Yan Byrne(1992) 50% 50%. Yan Byrne(1992) 50% 50% 10% 40%. - 29 -

(a ) P C pile D40 - Single (b ) P C pile D50 - Single (c ) P C pile D60 - Sin gle Fig. 4.1 Later al load with fixity condition for allow able deflection - 30 -

(a ) St eel pipe pile D60 - sin gle (b ) St eel pipe pile D70 - sin gle (c) St eel pipe pile D80 - sin gle Fig. 4.2 Later al load with fixity condition for allow able deflection - 3 1 -

(a ) P C pile D40 - Sin gle (b ) P C pile D50 - Sin gle (c) P C pile D60 - Single Fig. 4.3 Variation of bending moment with fixity condition for allowable deflection - 32 -

(a ) St eel pipe pile D60 - sin gle (b ) St eel pipe pile D70 - single (c) St eel pipe pile D80 - sin gle Fig. 4.4 Variation of bending moment with fixity condition for allowable deflection T able. 4.1 lateral load and maximum bending moment for allowable deflection of 15mm - 33 -

T ype of pile PC pile Head type Diameter (cm ) Soil Lateral load Mmax type (kn) (kn - m ) soft 35.4 47.6 D40 medium 89.6 96.5 stiff 115.6 103 Free soft 50.4 80.4 D50 medium 126.5 159.5 head stiff 163.9 174 Fixed head D60 D40 D50 D60 soft 65.7 121.3 medium 166.6 239.6 stiff 215 262.9 soft 73.3 123.9 medium 186 242.4 stiff 231.9 266.9 soft 103.2 207.7 medium 268.5 410.1 stiff 325.8 446.6 soft 136.3 315.8 medium 354.7 615.1 stiff 428.9 673.4.. T able. 4.2 Lateral load and maximum bending moment for allowable deflection of 15mm - 34 -

T ype of Head type Diameter (cm ) pile Steel pipe pile Free head Fixed head D60 D70 D80 D60 D70 D80 Soil Later al load Mmax type (kn) (kn - m ) soft 65 118.6 medium 164.4 233.4 stiff 212.8 258.6 soft 80 159.9 medium 197.9 307.6 stiff 259.1 341.5 soft 94.7 204.9 medium 232.5 391.8 stiff 308.4 440. soft 134.6 309.9 medium 349.9 602.8 stiff 424.1 659.1 soft 164 414.5 medium 428.9 809.2 stiff 516.1 880 soft 195.7 529.8 medium 506 1040.5 stiff 612.3 1128.1.. - 35 -

T able. 4.3 Lateral load and Mmax (Free/Fixed)ratio for allowable deflection of 15mm T ype of pile PC pile Steel pipe pile Diameter (cm ) D40 D50 D60 D60 D70 D80 Soil type Later al load free/ fix ed Mmax free/ fix ed soft 0.48 0.38 medium 0.48 0.4 Stiff 0.5 0.39 dsoft 0.49 0.39 medium 0.47 0.39 stiff 0.5 0.39 soft 0.48 0.38 medium 0.47 0.39 stiff 0.5 0.39 soft 0.48 0.38 medium 0.47 0.39 stiff 0.5 0.39 soft 0.49 0.39 medium 0.46 0.38 stiff 0.5 0.39 soft 0.48 0.39 medium 0.46 0.38 stiff 0.5 0.39-36 -

4.2 4.1 3D, 4D, 6D, 8D 15mm 4.4 4.5. 15mm 4.5 4.6. 4.5 4.6 3D 4.6 4.7. 4.5 4.6 46 50%, 35 40% 4. 5 4.8.,,. 4.6 4.7 (Group - 37 -

T able. 4.4 Lateral load and maximum bending moment for allowable deflection of 15mm T ype of pile PC pile Lateral load Mmax Diameter (cm ) Spacing Head type (kn) (kn - m ) 3D free 118.1 18.5 fix ed 246.5 50.3 4D free 144 22.8 fixed 311 61.2 D40 6D free 221.3 31.5 fix ed 462.3 80.5 8D free 309.5 48 fix ed 668.5 120.1 Single free 315.2 48.5 fix ed 680.8 123.8 3D free 164.4 31.6 fix ed 337.3 83.4 4D free 213.1 40.7 fix ed 441.2 108 D50 6D free 302.5 58.6 fix ed 644.5 145.4 8D free 449.1 79.8 fix ed 921.6 203.5 Single free 459.2 81.4 fix ed 942.3 207.7 3D free 219.6 46 fix ed 448.6 126.2 4D free 284.4 56.9 fix ed 573.2 160.9 D60 6D free 411.3 83.6 fix ed 847.3 220.8 8D free 606 117.5 fix ed 1221.1 309.1 Single free 618.3 121.1 fix ed 1246 315.4-38 -

T able. 4.5 Lateral load and maximum bending moment for allowable deflection of 15mm T ype of pile Steel pipe pile Lateral load Mmax Diameter (cm ) Spacing Head type (kn ) (kn - m ) 3D fr ee 232.1 48.6 fix ed 506.8 126.8 4D fr ee 281.4 60.3 fix ed 613.5 155.3 D60 6D fr ee 413.1 84.8 fix ed 933.7 222 8D fr ee 591 118.7 fix ed 1327.3 313 Single fr ee 598.7 121.1 fix ed 1333.8 317 3D fr ee 287.8 64.1 fix ed 582.5 171.2 4D fr ee 346.9 84.6 fix ed 733 236.7 D70 6D fr ee 509.2 119.3 fix ed 1062.1 325.4 8D fr ee 715.9 158.2 fix ed 1481 459.6 Single fr ee 738 162 fix ed 1495.9 464.2 3D fr ee 341.6 81 fix ed 694.3 221.5 4D fr ee 439.2 108.8 fix ed 914.7 291.2 D80 6D fr ee 663.6 156 fix ed 1362.3 425.1 8D fr ee 927.1 214.9 fix ed 1887.8 580.7 Single fr ee 975.9 231.5 fix ed 1946.2 598.7-39 -

(a) PC pile (spacing = 3D) (b) Steel pipe pile (spacing = 3D) Fig. 4.5 Comparison of lateral load for different fixity condition in pile spacing of 3D - 40 -

(a) PC pile (spacing = 3D) (b ) St eel pipe pile (spacing = 3D) Fig. 4.6 Comparison of bending moment for different fixity condition in pile spacing 3D - 4 1 -

(a) PC pile D40 (b) steel pipe pile D60 Fig. 4.7 Comparison of lateral load for different fixity condition with pile spacings - 42 -

(a) PC pile D40 (b) Steel pipe pile Fig. 4.8 Comparison of bending moment for different fixity condition with pile spacings T able. 4.6 Gr oup reduction factor and head fixity (Free/ Fix ed) ratio - 43 -

T ype of pile PC pile Diameter Spacing Head 3D 4D D40 6D 8D Single 3D 4D D50 6D 8D Single 3D 4D D60 6D 8D Single Later al load Mm ax type R F free/ fixed R F free/ fixed fr ee 0.37 0.38 0.48 fixed 0.36 0.41 0.37 fr ee 0.46 0.47 0.46 fixed 0.46 0.48 0.37 fr ee 0.70 0.65 0.48 fixed 0.68 0.65 0.39 fr ee 0.98 0.98 0.46 fixed 0.98 0.98 0.39 free fixed 0.46 0.39 fr ee 0.36 0.39 0.49 fixed 0.36 0.40 0.38 fr ee 0.46 0.50 0.48 fixed 0.47 0.52 0.38 fr ee 0.66 0.72 0.47 fixed 0.68 0.70 0.40 fr ee 0.98 0.98 0.49 fixed 0.98 0.98 0.39 free fixed 0.49 0.39 fr ee 0.36 0.38 0.49 fixed 0.36 0.40 0.36 fr ee 0.46 0.47 0.50 fixed 0.46 0.51 0.35 fr ee 0.67 0.85 0.49 fixed 0.68 0.80 0.35 fr ee 0.98 0.97 0.50 fixed 0.98 0.98 0.38 free fixed 0.50 0.38-44 -

T able. 4.7 Gr oup reduction factor and head fixity (Free/ Fix ed) ratio T ype of pile Steel pipe pile Diameter Spacing Head 3D 4D D60 6D 8D Single 3D 4D D70 6D 8D Single 3D 4D D80 6D 8D Single Lateral load Mmax type R F free/ fixed R F free/ fixed free 0.39 0.40 0.46 fixed 0.38 0.40 0.38 free 0.46 0.50 0.46 fixed 0.46 0.49 0.39 free 0.69 0.70 0.44 fixed 0.70 0.70 0.38 free 0.99 0.98 0.45 fixed 0.99 0.99 0.38 free fixed 0.45 0.38 free 0.39 0.40 0.49 fixed 0.39 0.49 0.37 free 0.47 0.52 0.47 fixed 0.49 0.51 0.36 free 0.69 0.74 0.48 fixed 0.73 0.70 0.37 free 0.97 0.98 0.48 fixed 0.99 0.99 0.34 free fixed 0.49 0.35 free 0.35 0.35 0.49 fixed 0.36 0.37 0.37 free 0.45 0.47 0.48 fixed 0.47 0.49 0.37 free 0.68 0.67 0.49 fixed 0.70 0.71 0.37 free 0.95 0.93 0.49 fixed 0.97 0.97 0.37 free fixed 0.50 0.39-45 -

4.6 4.7 (Group reduction factor ),,. 15mm,,. 2.27 Ge 15mm. 4.6 4.7 46 50% 36 40%. 2.5 Prakash Saran (1967) 4.8 4.9 4.10. 4.9 PC 4.10 (Gropu Reduction Factor ). 3D 4D Prakash Saran (1967) PC, 6D., 6D 6D 8D. - 46 -

T able 4.8 Comparison of group r eduction factor pr ogram solution w ith Prakash & Saran T ype of pile PC pile Steel pipe pile Diameter (cm ) Spacing D40 D50 D60 D60 D70 D80 Computed lateral load P rakash & S aran free F ix ed Recom en ded 3D 0.37 0.36 0.4 4D 0.46 0.46 0.5 6D 0.7 0.68 0.65 8D 0.98 0.98 1 3D 0.36 0.3.6 0.4 4D 0.46 0.47 0.5 6D 0.66 0.68 0.65 8D 0.98 0.98 1 3D 0.36 0.36 0.4 4D 0.46 0.46 0.5 6D 0.67 0.68 0.65 8D 0.98 0.98 1 3D 0.39 0.38 0.4 4D 0.46 0.46 0.5 6D 0.69 0.7 0.65 8D 0.99 0.99 1 3D 0.39 0.39 0.4 4D 0.47 0.49 0.5 6D 0.69 0.73 0.65 8D 0.97 0.99 1 3D 0.35 0.35 0.4 4D 0.45 0.47 0.5 6D 0.68 0.7 0.65 8D 0.95 0.97 1-47 -

(a ) P C pile D40 (b ) P C pile D50 (c ) P C pile D60 Fig. 4.9 Comparison of reduction factor for each PC pile - 48 -

(a ) St eel pipe pile D60 (b ) St eel pipe pile D70 (c) Steel pipe pile D80 Fig 4.10 Comparison of reduction factor for each steel pipe pile - 49 -

5.. 1. 15mm, PC 47 50%, 46 50%, PC 38 40%, 38 39%,. 2. PC 46 50%, 44 50% PC 35 39%, 34 38%. - 50 -

3.. - -. 4. Prakash Saran (1967) 4.8 4.9, 4.10 8 (8D). - 5 1 -

1.,,, (1997),,, 13, 5, pp. 59-74. 2. (1995),,, 15 pp. 1783-1794. 3. (1993), pp. 167-212. 4. (1997), pp. 171-188 5. Adam, M., and Lejay, J. E tude des p ieux sollicites horizontalem ent, Annales de Institut T echnique du Batiment et des T r av aux Publics, 280 1971, pp.125-156. 6. Brinch Han sen, J. "T he Ultimat e Resistance of Rigid Piles Against T ransver sal Forces", Danish Geotechnical I ns titute( Geoteknisk I ns titut) B ull. No. 12, Copenhagen, 1961, pp. 5-9. 7. Brom s, B., "T he Lat eral Resistance of Piles in Cohesiv e Soils", J ournal of the S oil M echanics and F oundations D ivision, ASCE, Vol. 90, No. SM2, Mar ch 1964a, pp. 27-63. 8. Br om s, B., "T he Later al Resist ance of Piles in Cohesionless Soils", J ournal of the S oil M echanics and F oundations D ivision, A SCE, Vol. 90, No. SM3, May 1964b, pp. 123-156. - 56 -

9. Brown, D. A., Reese, L. C., and O'Neill, M. W., "Behavior of a Lar ge Scale Pile Group Subject ed to Cyclic Lateral Loading", J ournal of Geotech. E ng ineering D ivis ion.,asce, 113(GT 11), 1987, pp. 1326-1343. 10. Canadian Geotechnical Society, F oundation E ng ineering M anual, 2nd ed ition, 1985, p.456. 11. Davisson, M. T.and. Gill M. L "Lat erally Loaded Piles in a Lay ered Sy stem", J ournal of the S oil M echanics and F oundations D ivision, A SCE, SM3, 1963, pp. 63-94. 12. Davisson, M. T. and Prakash, S., "A Review of Soil Pile Behavior", H ighway R es earch R ecord, No. 39, 1963, pp. 25-48. 13. Davis son, M. T., "Later al Load Capacity of Piles", H ig hway R esearch R ecord, Washington, DC, 1970, pp. 104-112. 14. Hetenyi, M., B eam s on E lastic F oundation, Univ. of Michigan Pr ess, Ann Arbor, Mich. 1946. 15. Matlock, H., and Reese, L. C., "Generalised Solutions for Laterally Loaded Piles", J ournal of the S oil M echanics and F oundations D ivision, ASCE, Vol.86, No. SM5, 1960. 16. Matlock, H. "Corr elation s for the Design of Later ally Loaded Piles in Soft Clay", P rep rint, 2d A nnual Offshore Technology Conf., Houston, T ex., Vol. 1, 1970 pp. 577-594. 17. McClelland, B. and F ocht, J. A., "Soil Modulu s for Later ally Loaded Piles", T rans. ASCE, Vol. 123, 1958, pp. 1049-1086. - 53 -

18. Mindlin, R. D. "F or ce at a Point in the Interior of a Semi- Infinite Solid", P hy sics, Vol. 7, pp. 195-202. 19. Morrison, C., and Reese, L. C., "A Lateral Load T est of a Full- Scale Pile Group in Sand", Geotechnical E ng ineering R ep ort GR 86-1, Geotech. Engrg. Center, Univ. of T exas at Austin, Austin, T ex. 1986. 20. O 'Neill, M. W., Ghazzaly, O. I., and Ha, H. B., "Analy sis of T hree- Dimensional Pile- Soil- Pile Interaction", P roc. 9th Offshore T echnology Conf. 2, 1977, pp. 245-256. 21. Oteo, C. S., "Displacement s of a Vertical Pile Gr oup Subjected to Lateral Loads", P roceeding s of 5th E urop ean Conf erence of S oil M echanics and F oundation E ng ineering, Madrid, Vol. 1, 1972, pp. 397-405. 22. Palmer, L. A. and T hompson, J. B., "T he Earth Pressure and Deflection Along the Embedded Length s of Piles Subjected to Lateral T hru st ", P roceed ing s S econd I nternational Conf erence on S oil M echanics and F oundation E ng ineering, Rotterdam, Holland, Vol. V, 1948, pp. 156-161. 23. Poulos, H. G., "Behavior of Laterally Loaded Piles : I- Single Piles", J ournal of the S oil M echanics and F oundations D ivision, A SCE, Vol. 97, No. SM5, May, 1971, pp. 711-731. 24. Poulos, H. G. "Behavior of Laterally Loaded Piles : Pile Gr oups",, J ournal of the. S oil M echanics and F oundation E ng ineering D ivision ASCE, Vol. 97, No. SM5, pp. 733-751. - 54 -

25. Poulos, H.G. and Davis, E.H. P ile F oundations A nalys is and D esig n, New York : John Wiley and Son s. 1980. 26. Pr akash, S., B ehavior of P ile Group s S ubj ected to Lateral L oads, Ph.D. T hesis, Univ er sity of Illinois, Urbana, 1962, p.397. 27. Pr akash, S. and Sar an D., "Behavior of Lat erally Loaded Piles in Cohesive Soils", P roceedings 3rd A s ian R eg ional Conf erence on S oil M echanics and F oundation E ng ineering, H aifa(israel), 1967, pp. 235-238. 28. Reese, L. C., and Matlock, H., "Non - dimensional Solutions for Laterally Loaded Piles w ith Soil Modulu s A s sumed Proportional t o Depth", P roceeding s 8th T exas Conf erence on S oil M echnics and F oundation E ng ineering, Austin, T X, 1956, pp. 1-41. 29. Reese, L. C. "Lat erally Loaded Piles : Program Documentation ", J ournal of Geotechnical E ng ineering D ivision, ASCE Vol. 103, No. GT 4, April, 1977, pp. 287-304. 30. Reese, L. C., O'Neill, M. W., and Smith, E., "Generalized Analy sis of Pile F oundation s", J ournal of the S oil M echanics and F oundations D ivision, ASCE, Vol. 96, No. SM 1, 1970, pp. 235-250. 31. Yan, L. and Byrne, P.M., "Lateral Pile Respon se to Monotonic Pile Head Loading", Canadian. Geotech., J.29, pp. 955-970. - 55 -

- 56 -