The Sea Journal of the Korean Society of Oceanography Vol. 12, No. 3, pp. 159 169, August 2007 [Note] n zt o { t q * t 1 rs rp~ v 2 nt o Š x q d p n 1d p n 2d p tvdn Impact of Fish Farming on Macrobenthic Polychaete Communities RAE-HONG JUNG, SANG-PIL YOON*, JUNG-NO KWON 1, JAE-SEONG LEE, WON-CHAN LEE, JUN-HO KOO 2, YOUN-JUNG KIM, HYUN-TAIK OH, SOK-JIN HONG AND SUNG-EUN PARK Marine Environment Research Team, National Fisheries Research & Development Institute (NFRDI), Busan 619-705, Korea 1 Research Planning Team, National Fisheries Research & Development Institute (NFRDI), Busan 619-705, Korea 2 Jeju Fisheries Research Institute, Jeju 690-192, Korea kep p p op lkp rˆ eˆ tnpp kr m. p l 2003 6o 8o v lp mlkp keq(a, B)l kep p o mm p rv, rvl m rm o kk o l. r vp ~ sl v pp sl 81%~87% n k. v l vp s,, k nrsp kp m. 10 m pl o mmv sp Capitella capitata nr mp, s q k vp ol p e p p ˆ., C. capitata keqp v rp v rp p keq Al 18,410 ind. m 2 p kp mp, keqp l ~m k Ž p r~rp p sn m. C. capitatap ~ 10 m vr p 15 mv l s v m. p s p p p e o mm ˆ(highly polluted) l k o mm ˆ(slightly polluted) r pr(ecotone point)pp t. 15~60 m l s m p rp vm ov k o mm ˆp rpl(transitional zone)p lp vp t op Lumbrineris longifolia, Aphelochaeta monilaris p qqr o mmves pl. K-nr o }p kp v m p m. p ll rvl o mmp m p lv, o lp v r keqp vl p snl. Excessive input of organic matters from fish cage farms to the coastal waters has been considered as one of the major factors disturbing their benthic ecosystem. Sediment samples were taken from around the two fish cage zones (A and B) in Tongyeong coast in June and August 2003, to evaluate the ecological impacts of fish cage farming activity on the macrobenthic polychaete communities. Polychaete accounted for 81~87% of the total macrofauna individuals from each of the sampling stations. The number of species, abundance, diversity and dominant species of polychaete were rapidly changed with the distance from the fish cages. Within 10 m from the fish cages, Capitella capitata, which is a bio-indicator for the highly enriched sediments, was a dominant species and the lowest diversity was recorded. In particular, the maximum density (~18,410 ind. m 2 ) of C. capitata was found at Farm A where fish cages were more densely established within a semi-enclosed bay system. The sampling zone between 10 m and 15 m showed a rapid decrease of C. capitata with a rapid increase of the numbers of species, implying that this zone may be an ecotone point from a highly to a slightly enriched area. In the sampling zone between 15 m and 60 m, a transitional zone, which represents slightly enriched condition before normal one, was observed with additional increase and maintenance of the number of species and density of polychaete. In addition, the potential bio-indicators of organic enrichment, such as Lumbrineris longifolia and Aphelochaeta monilaris were the predominant species in the sampling zone. Multidimensional scaling *Corresponding author: spyoon@nfrdi.re.kr 159
160 r Ëo ËrËpqËpo Ët ËlrËm ˆË vëp (MDS) ordination plots and k-dominance curves confirmed the above results on the gradual changes in the macrobenthic polychaete communities. Our findings suggest that the magnitude of impact of fish cage farming activity on polychaete communities is probably governed by a distance from fish cage, density of fish cage and geomorphological characteristics around fish cage farm. Keywords: Aquaculture, Organic enrichment, Macrofauna, Polychaete, Tongyeong pn lkep r rp q q l tp p p l tnlp q p(fao, 2002). p n, 1975 m l l pn l lp kp p p 1980v l e MTp m q ov m. 1990l l kep ql špl lp 1997l 13,000 MTp, 2003l 37,000 MTp rp v m( k, 2004). kelp qp ˆ l v t l r r o. lp qp o l v r p l p 10l pp kp n(tsutumi et al., 1991). ke p v k p pp p ll p v k ns pq o p ˆ r p oe(hall et al., 1990, 1992; Tsutumi et al., 1991; Holby and Hall, 1991, 1994). dop vl keql ll keql ˆp 75-78%(Hall et al., 1990), vp 67-71%(Hall et al., 1992), pp 78-82%(Holby and Hall, 1991) t p oe p m., pq p v lp l p lp rp lkl 2-10(Brown et al., 1987, Hall et al., 1990; Holby and Hall, 1991; Ye et al., 1991), rp o p 10v p p kr p(ross, 1989; Hall et al., 1990; Holmer and Kristensen, 1992). rl o p n, l p p t ll eˆ k l p o o dp, kk, ˆ p p (Gowen and Bradbury, 1987; Holmer and Kristensen, 1992; Christensen et al., 2000a,b; Pearson and Black 2001). pm p o dp ke lp l vrrp o ppˆ p kr p(reynolds and Haines, 1980; Braaten et al., 1983; Gowen et al., 1990)., p p lp p, rl q p mkmp o rs p ep v pf ke l p eˆ (e.g. Cho, 1991; Lee et al., 1991; Song et al., 2004). rvl s k tp por l v r ˆ o p kl n p(bilyard, 1987; Carmargo, 1994)., o vl rvp pr p v, (1) s p s l p v, (2) r ~ p, (3) v pp, (4) vp r sp p p p kr p (Pearson and Rosenberg, 1978; Gray, 1979; Weston, 1990). rvp r o p rp mml l pp p p kr p(weston, 1990; Crawford, 2003). pm p po p l 1980 t p kep o, kek tep kep p rvp Ž }p m o r p p lp v lm(e.g. Brown et al., 1987; Tsutsumi et al., 1991; Wu et al., 1994; Pearson and Black, 2001; Brook et al., 2002; Yokoyama, 2002; Carroll et al., 2003). p p lp Pearson and Rosenberg(1978) re o mmll rvp r }p p l p mp, op o p 30 m vrvp rvl vrrp m p t p m(brown et al., 1987; Gowen and Bradbury, 1987; Ritz et al., 1989; Tsutsumi et al., 1991; Karakassis et al., 2000). l keqp k l m l l 1970 p t Žkeq m rp l p plr mp(sm, 1978; Cho et al., 1982; sm, 1983), 1990 p l ke qp p op op l rr l(e, 1997; p, 2004a), mp o pl l (p 2004b) ~rp lp l., p (2004a)p o mm l p r vp p el pf o mm m l rp e m., rv otp l p (1992) l p Žkeq v lp v l r s pl rp, keq l l mk (2000) r (2002)l p plrp, keq sp r v l rl l l m o s rp pl. ll keep vrm v r l p p m p p keql vl r, p m v p pf kep p l o mmp m rm o q m. m mys m r }vp me rm l o p
kep r vl m 161 Fig. 1. Schematic representation showing the configuration of sampling stations on each transect at site A and B around Tongyeong. keq(keq Am B)l l. keq A p r l 8 t p ke q B y m p l o pp t l keqp ll(fig. 1). keq Al 2003 6 ol l lvp 1p sp r l l 8 rr(0, 2, 5, 10, 15, 20, 30, 60 m)l s ee m p, keq Bl 8ol tep y y p p s( TS, TE)p r l p s l l 5 rr(0, 5, 15, 30, 50 m)l s ee m. r }v el n } r 0.05 m 2 p van Veen grabp rrl 2 j }v m. rp l 1.0 mmp ~ n l qsp mp, qsp 10% t nkl r l e e n m. e el qlp tn mp rl s tv r l m. lv l vp s Žk o s, ~ p p n mp ˆ r v sk(h')(shannon and Weaver, 1963) m. rrp vp krp o k-dominance curves(lambshead et al., 1983) rn m. o mm l vp kp nk vp o o}(non-metric multidimensional scaling, MDS)(Clarke and Green, 1988) p ee mp o p Bray-Curtis similarityl p l. p p ~ q r n m. h Š keq Al r 539.8 ml 2 l,, 227,800 (23.1 MT) ke plp keq Bp l r 1,092 ml 2,, n 450,000 (154.3 MT)p l ke tpl. o nr (m 3 ) ke k eq A 422.6 (42.9 kg), keq B 412.3 (141.3 kg) ~ o mp lpp rp p keq Bl o nr p tp l pel pl. keq Am Bp pp p 711.1 kg, 2,386 kgp p plv l r p r p pp keq Al 34,485 g m 2 yr 1, keq B l 40,034 g m 2 yr rp rp p ˆpf 1 vl p r sp pp ke m. rp p sp keq o l p 6.83~7.23 φ, e p 73%~76%p o evp rp t plp 1.22~1.52 φ ˆ(, 2004). o keq Al p ~ sp 86.6% q nr plp, pp 6.9%, l~p 4.1% v m. l s 10 mm 15 m vrl 70% rp rop p mp v rrl 90% pp p ropp m. 10 mm 15 m vrl 19.8%m 12.1% p ropp mp, np rrl ropp k. l
162 r Ëo ËrËpqËpo Ët ËlrËm ˆË vëp Fig. 2. Numerical composition(%) of the main zoological taxa sampled along the distance from the cages at each of the study sites. ~p m v 10 mm 15 m vr p rrl p ropp m(fig. 2a). keq Bl r TSl 85.3%, r TE l 80.8% q nr pl. r TSl 6.4%, r TEl 9.3%, l~p r TSl 7.6%, r TEl 8.0% ro l rp sl pl ke q Am o m. l s keql p pl. keq Am l pr 0 mm 5 m vrl rp r mp v rrl 95%pp p ropp m. ke q Bp r l r rp p 0 m vrl (r TS-16.0%, TE-34.6%), 5 m vr l l~p(r TS-34.4%, TE-30.1%) rp p p m(fig. 2b, c). sm p, h keq Al 68sp mp, s 25spl. keq Bl 44sp mp, s 14sp keq Al s, s k. l s p ke q Ap n 10 m v 10~16sp mp, 15 m 32~39sp l 10~15 m pl s v m(fig. 3a). keq Bl s TSm TE 0 m vrl 6s 9sp l r s mp, v l 15 m vrl s l(fig. 3b). keq Al p 8,499 ind. m 2 plp, 0 m vrl 18,910 ind. m 2 p p l. 2 mm 5 m vrl 10,000 ind. m 2 rp p mp, l 10 m m 15 m vrl 2,040 ind. m 2 m 3,204 ind. m 2 p m. 20 m vrl 10,000 ind. m 2 Fig. 3. Number of species, abundance (10 3 *ind. m -2 ) and diversity (H') of polychaete community along the distance from the cages at farm A (a) and farm B (b). pp v m e kp m(fig. 3c). k eq Bl p 2,700 ind. m 2 keq Al r k. l s TSp n 0 mm 5 m vrl p p mp, 15 m v rl v l 5,990 ind. m 2 p p e kp m(fig. 3d). s TEl s TSm v 0 mm 5 m vrl 1,000 ind. m 2 p p p mp, r v l 30 m vrl 4,780 ind. m 2 p m(fig. 3d). keq pl p l pp topp k eq Ap 0 ml 5 m vr pl Capitella capitatal p p sp r mp n keq Ap l kp keq Bm n o p ˆ (Fig. 3c). k(h') keq Ap n 10 m vrv 0.19~0.74p n p p mp, 15 m vrl 2.72 p, 2.00~2.33p o m(fig. 3e). keq Bl s 5m vrl p mp q~ rp k s rrp p k p m(fig. 3f). knpm h keq A tl q nr sp rp o mm v sp Capitella capitata 4,916 ind. m 2 p p m. C. capitata 0 m vrl 18,410 ind. m 2 p p mp, 2 mm 5 m vrl mp 10,000 ~ r p p m. p sp 10 m vrv r rp kp m(fig. 4a). C. capitata k eq Al n p pv keq Bl 0 m vrl rp p (515 ind. m 2 ) m
kep r vl m 163 Fig. 4. Spatial distribution of dominant species along the distance from the fish cages at farm A (a) and farm B (b). p, 5 mvrv kp m(fig. 4b)., Lumbrineris longifoliap keq Al 564 ind. m 2, keq Bl 499 ind. m 2 vl o mp l C. capitatap 15 m p p m. Aphelochaeta monilaris k eq Bl 1,613 ind. m 2 q nr splp, k eq Al 444 ind. m 2 p r p m. p sp l L. longifoliam o m. Dorvillea rudolphi keq Ap rrl mv, 2 m vrl 650 ind. m 2 p p m. keq Bl l n rrl rp p ~ m. Mediomastus californiensis keq l C. capitatap p l p m. Cirratulidae sp. keq Al 20 m vrl 1,850 ind. m 2 p p m(fig. 4a). Sigambra tentaculata keq Bp s TSp 0 m vrl C. capitatam p (630 ind. m 2 ) mp, p vrp rn m(fig. 4b). Fig. 5. k-dominance curves for polychaetes sampled along the distance from the cages at farm A (a), TS line (b) and TE line (c) at farm B. k-dominance curve mk s vp krp kk o k-dominance curve rn m. keq Ap n 10 m vrvp vp p sp nr kr ˆp p ˆ (Fig. 5a). 15 m vr rp k mp, k rrp v p m. keq Bp s TSl keqp 15~50 m pp vp 0 mm 5 m vl kr s p p ˆ(Fig. 5b). pm o kp s TEl l(fig. 5c). p sp 0 mm 5 m vrp vp nr sp r p l 15 m vr p p vp L. longifoliam A. montilaris p p l m p k p p Ž.
164 r Ëo ËrËpqËpo Ët ËlrËm ˆË vëp Fig. 6. Non-metric multidimensional scaling (MDS) plots based on the fourth square root transformed polychaete abundance data at farm A (a) and farm B (b). MDS l on MDS keq A tp rvp p 2 p p l. ~ w p 0~10 m vp vp, w 15~60 m vp vp plr p. keq Al rvp keqp l rvrp }p kp pv k 10 mm 15 m pl p ˆ(Fig. 6a)., keq Bp n sp 0 m vrp v 15 ml 50 m vp v p p o p p p m. keq Am sp 5 m vp p pl o l vp }prp lt p(fig. 6b). hm qm h klp vkrp kep plm p ˆ p op ke t vrp t ll. kep p l op oˆm ov p p, pp l p y l pr l r. prp ke e pp 10% r lp ov r 90% v op ˆ t l op, er kep o n pp 5%~10% rp op keq k rl pqop ˆ r p kr p(tanaka, 1977; Tsutsumi et al., 1991). p s l qp keq A m pr l keq kp pq ˆm oˆ opp 100 m lv sl 2 r kp, rp oˆ 3.0%~3.5% l(e, 1997). tlp pm p p oˆp Kang et al.(1993)p lkp oˆ(1.08%) 3 r p p, lkl q mmp e o tp. p lm el sl p (2004a)p rp pn p(glud et al., 2003)p r n l keq Bp o mm m p r m. pp pqvp d, oˆ p p r p 50 m lv vrl 0 m v rl 2 p k. p p r ep l op op 10 m p l vt rp p kn 10 m p 50 mvp p le o opp p, lq, k p p(p, 2003) p tl p r mp pl l o mmp m p 50 m pp ov p ep re m. nsm m p r e p p rp ro p p rl ss, ~ p r p p p k tm p l p ˆ Ž r plv ˆ rp p pnlm(dauer and Conner, 1980; Ranan and Ganapati, 1983; Samuelson, 2001; Guerra-García and García- Gómez, 2004; Cardoso et al., 2007). o vl r vl tn n v v op mksp p. v, eq oe q n v l rep ot qp p p nr vp (Pearson and Rosenberg, 1978; Samuelson, 2001; Cardoso et al., 2004; Verdelhos et al., 2005). o p p p l ~ pžm p p p kr p(rosenberg et al., 1991; Nilsson and Rosenberg, 1994; Gray et al., 2002). p p p l tn l p rp ~ pp p opp. p ep lp s rp o kp p lkl sp l r p p. tl qe, kee, p v vl p r rpp p lp p rp k p kv, m l, l p ~ pp 19.3%(, 1995), l
kep r vl m 165 ql 49.6%(p, 1991)p p tp rp kp nl 64.3%(p, 1999) 70% v k p l., o mmp v tp p kv l, m l, n lk 71%(e, 2001), 72%(Hong and Lee, 1983), k 73.2%(, 2003) p 70% p ropp lm. lvlp n p sl v r pp 81%~87% nlk l 10%p p plp, e o mml p l trp r p p v (78.6%, p, 1993)l k. v sp keq tl s (2000) r (2002)p l lm o p ropp l. pm p keq t r vl nr p p k kep np l ll l(brown et al., 1987; Weston, 1990; Tsutsumi et al., 1991; Ye et al., 1991; Karakassis et al., 2000). p ep s l rm pp keq t p op l p m p pp, rp o mm lp v p ropp o mm p r le e tpp rrp ke. p s keq Al 68s, Bl 44sp rp qp }vrl keq Al p sp m. keq Ap s keq Bl 1.6 p v lv sp v kp o Ž p mp v rl p p l(fig. 3a, b). keq Ap n 10 m vrv lp pr tp p 10~15 m pl 2 p m. s 20 m vrl ˆ 60 m vrv o tp ov m. v ke q Bl 0 m vrl r s r v l 15 m vrl mp 50 m v rv p v kk. pm p r (2002)p p keqp 0~15 m pl m m p. d p ll ke ql s Brown et al.(1987)p l p s 3 m vrl 8sp r 15 m v rl 36sp v mp p lvl pv kk. keqp l sp kp keql o m p p p(fig. 3c, d). p p 0~5 m vr l ˆ. keq Al 0~5 m vrl p mp, p p 10~15 m vrv e v l 20 m vrl e p ke q Bl 0 mm 5 m vrp s rrl kp 15 mm 30 m vrl ˆ. keqp l p 0~5 m vrl mp, p p Ž p p m. 5 m vrvp keq p Capitella capitatap pl p p keql C. capitatap r, l kp n o m (Fig. 3c). keq Ap 20 m vr keq Bp 15 m 30 m vrl ˆ C. capitata k sp (Fig. 4)p vl p p e keq p rp p r (2002)p m p p. pm p s p keqp 15 m rp vp p k pp, p op ol p m p Ž. knp Š keq tl vp nrs vp o mmv s qqr o mmv sp p. k l(brown et al., 1987; Tsutsumi et al., 1991; Karakassis et al., 2000;, 2000; r, 2002) v k rl C. capitata nr p ˆ. C. capitata o vl q ep d p kr pp p p kr pp (Dauer and Conner, 1980; Tsutsumi, 1987; Weston, 1990; Bridges, 1992), r ˆlp rp p vp p o mmp e vllp rp roq lm(warren, 1977; Brown et al., 1987; Samuelson, 2001; Wildish et al., 2001; Brooks and Mahnken, 2003). l p por l p l e (, 1997;, 1997), v p Ž keq v l (p, 1992), vtp s ke v l(, 2002) l per rr kp p., t ll sl (2000)p r~ r vp ~l 72%p C. capitata ropp, o r (2002)p k 53%p ropp l k ep v ll p sp r nr pp p. p ll C. capitata keq Ap l 18,400 ind. m 2 p mp, ropp 97%l m. o 10 m p rl pp p vrl 86% p v ropp p p v k p ˆ. p p m ropp (2000) r (2002) l p p p(yokoyma, 2002)p o(brown et al., 1987)l p p. l keq Bl l 500 ind. m 2 rp p ltlp, rop 36%~64% rp k. r o l vp keq Am p l 5 m pp vrv m. o mmp r e l rp p C. capitatap vp keq Alp o mm l v r sl s keq qp ke q Bl e p Ž. keq t l vl nrs p vp C. capitata np nrsp o mm ll sp qqr omm v
166 r Ëo ËrËpqËpo Ët ËlrËm ˆË vëp sp rp., Lumbrineris longifolia, Aphelochaeta monilaris(sl Tharyx multifilis s), Dorvillea rudolphi Mediomastus californiensis p p op l ll qt lm nrsp(m, p, 1992; e, 2001;, 2003;, 2005). p s n C. capitata m o Ž p m D. rudolphi rn v s p keq Am B l C. capitatap, 15 m vr p mp v s r rp 50 mm 60 m vrv nrrp l p vrv o mmp m p p p Žl. ns mi m l jii }o pl keqp l s, ~ nrsp Ž p r Pearson and Rosenberg(1978)p r v }p v p ep o p. ~ w, l keq p 0 ml 50~60 m o l }pp k rl mm l rrp v v kk. w, rl keq Al sp nr mm lp lp, p lp r sp C. capitata m. keq Bl p sp nr v kkp 10 m p l r rp p p lp d mm p ke p Ž. w, s l p vp r~rp e m sp vl k p per drp pr(ecotone point)p sqp. keq Al n p vrp 10~15 m pl sq p r. keq Bp n p l s p v prp rp p ˆ vp s q v kk. w, pr p 60 m vrv vrp vp sqp. C. capitatap pr p k sp p pp, p s le p o mmp veq kv sp. p sp C. capitata r dd rp rp p ro p. p ll s o l rrp vp v kp p Ž l 15 ml 60 m pp vp kep m p vp l r Žrp., p l l o l vp lrp p kp ˆl 15~60 m p kep p k mm ˆ(slightly polluted)l } p p Ž. hmm l ji keqp rvl ˆ s,, k nrsp keqp v l p ppp l tl. pm p k-dominance curve MDSl p m. k-dominance curve (Fig. 5), keq A v p n 0~10 m vp vp e ˆ p, p o pp p, keq Bl l vp kp v kkp, r Fig. 7. Spatial changes in polychaete community structure along the gradient of organic enrichment, represented by non-metric multidimensional scaling (MDS) plot based on the fourth square root transformed polychaete abundance data at all the study sites. keq Ap vl e v kp p ˆ. p p MDS l ˆ. keq Ap vp 0~10 m vp vp o vpp l t keq B 0 m, 5 m, 15~50 m p vp lp, 5 m vp 0 mm 15~50 m vp pl o pl vp }prp ltl(fig. 7). keq Bp 0 mm 5 m vp keq Ap 0~10 m v 15~60 m v pl o pl keq Ap 0~10m v op o p m p r r p p Žl. p} keqp rv l p eˆ np v r p. ~ w sep pp, w keqp t r op o k p pp. ~ wp sep r keq s e l p pp. l vlp nr p sp o mmv sp qqrp o m mv sp, pp srp p wp e l v s rp o pp p Ž. keq Am pr o l s (2000)p kp n 3op s e pl e plp, p C. capitatal p pl. p sp pl 100 pp ~ p sp kr pp(chareonpaich et al, 1994), p sl pr rrl keql C. capitatap 30 p p p m. keqp o rp p v nrsp sp o p k nr p sp el e p lp v l p oeˆ v opp p. w opp p o op p l npp r qnl p o p. r, o p o(frid and Mercer, 1989; Holmer, 1991), e(gowen and Bradbury, 1987; Hevia et al., 1996), pr(yokoyma, 2003)m p r, v r l p m, ke lp
kep r vl m 167 pe, p, lp, p sm p l n(gowen and Bradbury, 1987; Hall et al., 1990; Brook et al., 2002; Yokoyama, 2002) p. er v l keq Am B sp v p. r, ke qp v r l p p. keq A p l o keq B m p l o p. ql r op p s t l r p k vrrp ln sl r keq Ap o sl r keq Bp op rrp 10 cm sec - 1 r o m e l keq Bp op r p p ep o p(, 2004). p ep ke lp pe p keq Al k eq Bl kpl l r p p o m el p p. o kp o opl rp v p p keq Alp mm r e e p p Ž. np k l m p keq A o l p p keq 8 vl pl l pl p t~ l op p ll t mm tl p p Ž. pm p p s kep o p 15 m vrv rvl m p t, 60 m vrv m p p ˆ. l p m p p vr, o q p r, v r ke r p p Ž. l op lklq n r l(rp- 2007-ME-027) p p p lp, p v Š te sp pp te klop vn e. y },, r, p n, 2002. vtl rp e. v, 35(1): 35 45. r, 2004. l keqp., o ~, 130pp. s, vn,, ~,, 1997. e sr p e p ss e. k v-, 2(2): 101 109. }n, o, p e, 1995. p r. v, 28(5): 503 516. e, vn, p, 2000. m p keq vlp rv s. v, 33(1): 1 8. e, o, ~, 2001. n m rvp. k v-, 6(3): 180 189. er, m~, vn, 1997. k mvl keq r lp chemical fluxes. k v-, 2(2): 151 159. pq,, ot, r, ˆd, 2003. rp pn lk r/ l p oˆ p r., 8(4): 392 400. pq, r,, r, po, p n, t, nr, 2004a. lkeqp m : I. r p rp pn o mmm r oˆ. k v-, 9(1): 30 39. pq,, ot, p n, r, po, r, pn, 2004b. lkeqp m : II. k eq rp - l p p r l m op r. k v-, 9(2): 64 72. p e, 1993. v p rl ˆ r l. o~, 311 pp. p e, rs, vn, pq, 1991. lqlp l~ r p. kl, 13(2): 31 46. p e, vn, rs, pq, 1992. v keq v lp r. v, 25(2): 115 132. p e, e, vn, rs, 1999. k s l rv r v. k v-, 4(1): 80 92. r, p e,, s, rk, pme, pq, m, nv, 2002. k keq v lp r vl l. k v-, 7(4): 235 246. s}, n, 1978. keqp l l- keqp rvl l. v, 11(4): 243 247. s}, k, 1983. q Žkeq rp mk. v, 16(3): 260 264. vn, om, pnv, 2003. kl e rp k. k v-, 8(1): 14 28. vn, vm, p}, ˆ,,,, 2005. lp l l rvp k. Ocean and Polar Res., 27(4): 381 395. k, 2004. 2003 ktn. q, r, p, oˆ,, oqo, 1997. e s rp p rvp e l l m p ~? v, 30(3): 882 895. Bilyard, G.R., 1987. The value of benthic infauna in marine pollution monitoring studies. Mar. Pollut. Bull., 18: 581 585. Braaten, B., J. Aure, A. Ervik and E. Boge, 1983. Pollution problems in Norwegian fish farming. ICES C.M., 1983/F: 26: 1 11. Bridges, T.S., 1992. Effects of development mode, contaminated sediments, and maternal characteristics on growth and reproduction in the polychaetes Streblospio benedicti (Spionidae) and Capitella sp. I (Capitellidae). Ph.D. thesis, North Carolina State University. Brook, K.M., C. Mahnken and C. Nash, 2002. Environmental effects associated with marine netpen waste with emphasis on salmon farming in pacific northwest. In: Responsible marine aquaculture, edited by Skickney, R.R and J.P. MacVey, CABI Publishing, Oxon, pp. 159 203. Brooks, K.M. and C.V.W. Mahnken, 2003. Interactions of Atlantic
168 r Ëo ËrËpqËpo Ët ËlrËm ˆË vëp salmon in the Pacific northwest environment: II. Organic wastes. Fish. Res. 62: 255 293. Brown, J.R., R.J. Gowen and D.S. McLusky, 1987. The effect of salmon farming on the benthos of a Scottish sea loch. J. Mar. Biol. Ecol., 109: 39 51. Camargo, J.A., 1994. The importance of biological monitoring for the ecological risk assessment of freshwater pollution: A case study. Environ. Int., 20: 229 238. Cardoso, P.G., M.A. Pardal, A.I. Lillebø, S.M. Ferreira, J.C. Marques and D. Raffaelli, 2004. Dynamic changes of seagrass assemblages under eutrophication and implications for recovery. J. Exp. Mar. Biol. Ecol., 302: 233 248. Cardoso P.G., M. Bankovic, D. Raffaelli and M.A. Pardal, 2007. Polychaete assemblages as indicators of habitat recovery in a temperate estuary under eutrophication. Est. Coast. Shelf. Sci., 71: 301 308. Carroll, M.L., S. Cochrane, R. Fieler, R. Velvin and P. White, 2003. Organic enrichment of sediments from salmon farming in Norway: environmental factors, management practices, and monitoring techniques. Aquaculture, 226: 165 180. Chareonpaich, C., H. Tsutsumi and S. Montani, 1994. Efficiency of the decomposition of organic matter, loaded on the sediment, as a result of the biological activity of Capitella sp.1. Mar. Bull., 28(5): 314 318. Cho, C.H., 1991. Mariculture and eutrophication in Jinhae Bay, Korea. Mar. Pollut. Bull., 23: 275 279. Cho, H.C., K.Y. Park, H.S. Yang and J.S. Hong, 1982. Eutrophication of shellfish farms in Deukryang and Gamagyang Bays. Bull. Korean Fish. Soc., 15(3): 233 240. Christensen, P.B., A. Vedel and E. Kristensen, 2000a. Carbon and nitrogen fluxes in sediment inhabited by suspension-feeding (Nereis diversicolor) and non-suspension-feeding (N. virens) polychaetes. Mar. Ecol. Prog. Ser., 192: 203 217. Christensen, P.B., S. Rysgaard, N.P. Sloth, T. Dalsgaard and S. Schwærter, 2000b. Sediment mineralization, nutrient fluxes, denitrification and dissimilatory reduction to ammonium in an estuarine fjord with sea cage trout farms. Aquat. Microb. Ecol., 21: 73 84. Clarke, K.R. and R.H. Green, 1988. Statistical design and analysis for a biological effects study. Mar. Ecol. Prog. Ser., 46: 213 226. Crawford, C., 2003. Environmental management of marine aquaculture in Tasmania, Australia. Aquaculture, 226: 129 138. Dauer D.M. and W.G. Conner, 1980. Effects of moderate sewage input on benthic polychaete populations. Estuar. Mar. Sci., 10: 335 346. FAO, 2002. The state of world aquacultures 2002. ISBN 92-5-104842-8. Frid, C.L.J. and T.S. Mercer, 1989. Environmental monitoring of caged fish farming in macrotidal environments. Mar. Pollut. Bull., 20(8): 379 383. Glud, R.N., J.K. Gundersen, H. Röy and B.B. Jörgensen, 2003. Seasonal dynamics of benthic O2 uptake in a semienclosed bay: Importance of diffusion and faunal activity. Limnol. Oceanogr., 48(3): 1265 1276. Gowen, R.J. and N.B. Bradbury, 1987. The ecological impact of salmonid farming in coastal waters: a review. Oceanogra. Mar. Biol. Annu. Rev., 25: 563 533. Gowen, R.J., H. Rosenthal, T. Makinen and I. Ezzi, 1990. Environmental impact of aquaculture. In: Aquaculture Europe 89: Business joins Sciences, edited by de Pauw N. and R. Billard, European Aquaculture Society, Special Publication No. 12, Bredene, Belgium. Gray, J.S., 1979. Pollution-induced changes in populations. Phil. Trans. R. Soc. (Ser. B), 286: 545 561. Gray, J.S., R.S. Wu and Y.Y. Or, 2002. Effects of hypoxia and organic enrichment on the coastal marine environment. Mar. Ecol. Prog. Ser., 238: 249 279. Guerra-García, J.M. and J.C. García-Gómez, 2004. Polychaete assemblages and sediment pollution in a harbour with two opposing entrances. Helgol. Mar. Res., 58: 183 191. Hall, P.O.J., L.G. Anderson, O. Holby, S. Kollberg and M.O. Samuelson, 1990. Chemical fluxes and mass balances in a marine fish cage farm. I. Carbon. Mar. Ecol. Prog. Ser., 61: 61 73. Hall, P.O.J., O. Holby, S. Kollberg and M.O. Samuelson, 1992. Chemical fluxes and mass balances in a marine fish cage farm. IV. Nitrogen. Mar. Ecol. Prog. Ser., 89: 81 91. Hevia, M., H. Rosenthal and R.J. Gowen, 1996. Modelling benthic deposition under fish cages. J. Appl. Ichthyol., 12: 71 74. Holby, O. and P.O.J. Hall, 1991. Chemical fluxes and mass balances in a marine fish cage farm. II. Phosphorus. Mar. Ecol. Prog. Ser., 70: 263 272. Holby, O. and P.O.J. Hall, 1994. Chemical fluxes and mass balances in a marine fish cage farm. III. Silicon. Aquaculture, 120: 305 318. Holmer, M. 1991. Impacts of aquaculture on surrounding sediments: generation of organic-rich sediments. In: Aquaculture and the environment, edited by De Pauw N. and J. Joyce, European Aquaculture Society Special No. 16, Gent, Belgium, pp. 155 175. Holmer, M. and E. Kristensen, 1992. Impact of marine fish cage farming on metabolism and sulfate reduction of underlying sediments. Mar. Ecol. Prog. Ser., 80: 191 201. Hong, J.S. and J.H. Lee, 1983. Effects of the pollution on the benthic macrofauna in Masan Bay, Korea. J. Oceanol. Soc. Korea, 18(2): 169 179. Kang, C.K., P.Y. Lee, J.S. Park and P.J. Kim, 1993. On the distribution of organic matter in the nearshore surface sediment of Korea. Bull. Korean Fish. Soc., 26(6): 557 566. Karakassis, I., M. Tsapakis, E. Hatziyanni, K.N. Papadopoulou and W. Plaiti, 2000. Impact of cage farming of fish on the seabed in three Mediterranean coastal areas. ICES J. Mar. Sci., 57: 1462 1471. Lambshead, P.J.D., H.M. Platt and K.M. Shaw, 1983. The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity. J. Nat. Hist., 17: 859 874. Lee, J.H.W., R.S.S. Wu and Y.K. Cheung, 1991. Forecasting of dissolved oxygen in marine fish culture zone. J. Environ. Eng. ASCE, 117(12): 816 833. Nilsson H.C. and R. Rosenberg, 1994. Hypoxic response of two marine benthic communities. Mar. Ecol. Prog. Ser., 115: 209 217. Pearson, T.H. and K.D. Black, 2001. The environmental impacts of
kep r vl m 169 marine fish cage culture. In: Environmental Impacts of Aquaculture, edited by Black, K.D., Sheffield Academic Press, Sheffield, pp. 1 31. Pearson, T.H. and R. Rosenberg, 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Annu. Rev., 16: 229 311. Ranan, A.V. and P.N. Ganapati, 1983. Pollution effects on ecology of benthic polychaetes in Visakhapatham Harbour (Bay of Bengale). Mar. Pollut. Bull., 14: 46 52. Reynolds, F.A. and T.A. Haines, 1980. Effects of chronic exposure to hydrogen sulphide on newly hatched brown trout Salmo trutta L.. Environ. Pollut., 22: 11 17. Ritz, D.A., M.E. Lewis and M. Shen, 1989. Response to organic enrichment of infaunal macrobenthic communities under salmonid seacages. Mar. Biol., 103: 211 214. Rosenberg, R., B. Hellman and B. Johansson, 1991. Hypoxic tolerance of marine benthic fauna. Mar. Ecol. Prog. Ser., 79: 127 131. Ross, A., 1989. Marine fish farming - Scotland's pride or problem? Ecos, 10(3): 8 12. Samuelson, G.M., 2001. Polychaetes as indicators of environmental disturbance subarctic tidla flat, Iqaluit, Baffin Island, Nunavut Territory. Mar. Pollut. Bull., 42: 733 741. Shannon C.E. and W. Weaver, 1963. The mathematical theory of communications. University of Illinois Press, Urbana, 125pp. Song, X., L. Huang, J. Zhang, X. Huang, J. Zhang, J. Yin, Y. Tan and S. Liu, 2004. Variation of phytoplankton biomass and primary production in Daya Bay during spring and summer. Mar. Pollut. Bull., 49: 1036 1044. Tanaka, Y., 1977. Deposition process of pollutants. In: Coastal fish farms and shelf pollution, edited by Gakkai, N.S., Kouseisha Kouseikaku, Tokyo, pp. 9 18. Tsutsumi, H., 1987. Population dynamics of Capitella capitata (Polychaeta: Capitellidae) in an organically polluted cove. Mar. Ecol. Prog. Ser., 36: 139 149. Tsutsumi, H., T. Kikuchi, M. Tanaka, T. Higashi, K. Imasaka and M. Miyazaki, 1991. Benthic faunal succession in a cove organically polluted by fish farming. Mar. Pollut. Bull., 23: 233 238. Verdelhos, T., J.M. Neto, J.C. Marques and M.A. Pardal, 2005. The effect of eutrophication abatement on the bivalve Scrobicularia plana. Est. Coast. Shelf. Sci., 63: 261 268. Warren, T.M., 1977. The ecology of Capitella capitata in British waters. J. Mar. Biol. Assoc. U.K., 57: 151 159. Weston, D.P., 1990. Quantitative examination of macrobenthic community changes along an organic enrichments gradient. Mar. Ecol. Prog. Ser., 61: 233 244. Wildish, D.J., B.T. Hargrave and G. Pohle, 2001. Cost-effective monitoring of organic enrichment resulting from salmon mariculture. ICES J. Mar. Sci., 58: 469 476. Wu, R.S.S., K.S. Lam, D.W. MacKay, T.C. Lau and V. Yam, 1994. Impact of marine fish farming on water quality and bottom sediment: A case study in the sub-tropical environment. Mar. Environ. Res., 38: 115 145. Ye, L.X., D.A. ritz, G.E. Fenton and M.E. Lewis, 1991. Tracing the influence on sediments of organic waste from a salmonid farm using stable isotope analysis. J. Exp. Mar. Biol. Ecol., 145: 161 174. Yokoyama, H., 2002. Impact of fish and pear farming on the benthic environments in Gokasho Bay: Evaluation from seasonal fluctuations of the macrobenthos. Fish. Sci., 68: 258 268. Yokoyama, H. 2003. Environmental quality criteria for fish farms in Japan. Aquaculture, 226: 45 56. 2007 4o 9p or 2007 7o 23p r }ˆ voo: e