THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 1, Jan 서론 PC PMIC(Power Management IC) [1]. PMIC DC-D

Similar documents
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 3, Mar (NFC: non-foster Circuit).,. (non-foster match

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1),

. 서론,, [1]., PLL.,., SiGe, CMOS SiGe CMOS [2],[3].,,. CMOS,.. 동적주파수분할기동작조건분석 3, Miller injection-locked, static. injection-locked static [4]., 1/n 그림

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

04 김영규.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

09권오설_ok.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

05 목차(페이지 1,2).hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

11 함범철.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

RRH Class-J 5G [2].,. LTE 3G [3]. RRH, W-CDMA(Wideband Code Division Multiple Access), 3G, LTE. RRH RF, RF. 1 RRH, CPRI(Common Public Radio Interface)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 29(3),

04 최진규.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Aug.; 30(8),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 9, Sep GHz 10 W Doherty. [4]. Doherty. Doherty, C

서보교육자료배포용.ppt

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

Microsoft PowerPoint - analogic_kimys_ch10.ppt

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 30(3),

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

03 장태헌.hwp

歯03-ICFamily.PDF

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Oct.; 27(10),

인문사회과학기술융합학회

박선영무선충전-내지

08 조영아.hwp

04 박영주.hwp

04_이근원_21~27.hwp

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

Small-Cell 2.6 GHz Doherty 표 1. Silicon LDMOS FET Table 1. Comparison of silicon LDMOS FET and GaN- HEMT. Silicon LDMOS FET Bandgap 1.1 ev 3.4 ev 75 V

<313920C0CCB1E2BFF82E687770>

Microsoft PowerPoint - dev6_TCAD.ppt [호환 모드]

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Oct.; 27(10),

, V2N(Vehicle to Nomadic Device) [3]., [4],[5]., V2V(Vehicle to Vehicle) V2I (Vehicle to Infrastructure) IEEE 82.11p WAVE (Wireless Access in Vehicula

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 28(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Apr.; 28(4),

08김현휘_ok.hwp

09È«¼®¿µ 5~152s

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 27, no. 1, Oct 서론,.,., IC. IC, IC. EM Immunity, Electromagneti

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 25(1), IS

°í¼®ÁÖ Ãâ·Â

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 25(11),

Slide 1

À±½Â¿í Ãâ·Â

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 26(2),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Aug.; 27(8),

디지털포렌식학회 논문양식

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 27(5),

< C6AFC1FD28B1C7C7F5C1DF292E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 26(12),

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun , [6]. E- [9],[10]. E- 3D EM(electromagnetic),,

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 29(6),

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: A Study on the Opti

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 25(11),

<333820B1E8C8AFBFEB2D5A B8A620C0CCBFEBC7D120BDC7BFDC20C0A7C4A1C3DFC1A42E687770>

10(3)-09.fm

Microsoft PowerPoint - ch25ysk.pptx

Slide 1

10신동석.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 27(1), ISSN

Microsoft PowerPoint - ch07ysk2012.ppt [호환 모드]

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1), IS

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 28(2),

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

24 GHz 1Tx 2Rx FMCW ADAS(Advanced Driver Assistance System).,,,. 24 GHz,, [1] [4]. 65-nm CMOS FMCW 24 GHz FMCW.. 송수신기설계 1 1Tx 2Rx FMCW (Local Oscillat

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 25(12),

DBPIA-NURIMEDIA

Microsoft PowerPoint - ICCAD_Analog_lec01.ppt [호환 모드]

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 25(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 27, no. 8, Aug [3]. ±90,.,,,, 5,,., 0.01, 0.016, 99 %... 선형간섭

DBPIA-NURIMEDIA

<31325FB1E8B0E6BCBA2E687770>

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

untitled

DBPIA-NURIMEDIA

¼º¿øÁø Ãâ·Â-1

Microsoft Word - 1-차우창.doc

45-51 ¹Ú¼ø¸¸

<333720C0AFC0CEC8A32D4443C1A4C7D5C8B8B7CEB8A65FB0AEB4C25FB4C9B5BF5F C FB7B9B1D6B7B9C0CCC5CD2E687770>

03-서연옥.hwp

???? 1

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 26(3),

Transcription:

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2015 Jan.; 26(1), 7180. http://dx.doi.org/10.5515/kjkiees.2015.26.1.71 ISSN 1226-3133 (Print)ISSN 2288-226X (Online) LDO PSR Stability and PSR(Power-Supply Rejection) Models for Design Optimization of Capacitor-less LDO Regulators 주소연 김진태 김소영 Soyeon JooJintae Kim*SoYoung Kim 요약 PMIC (Power Management IC) LDO(Low Drop-Out). Dongbu HiTek 0.5 μm BCDMOS (Geometric Programming: GP) LDO. (monomial) (stability) PSR(Power-Supply Rejection) LDO (Geometric Programming: GP). (phase margin) PSR 9.3 % 13.1 %. PSR,,. PSR. Abstract LDO(Low Drop-Out) regulators have become an essential building block in modern PMIC(Power Managment IC) to extend battery life of electronic devices. In this paper, we optimize capacitor-less LDO regulator via Geometric Programming(GP) designed using Dongbu HiTek 0.5 μm BCDMOS process. GP-compatible models for stability and PSR of LDO regulators are derived based on monomial formulation of transistor characteristics. Average errors between simulation and the proposed model are 9.3 % and 13.1 %, for phase margin and PSR, respectively. Based on the proposed models, the capacitor-less LDO optimization can be performed by changing the PSR constraint of the design. The GP-compatible performance models developed in this work enables the design automation of capacitor-less LDO regulator for different design target specification. Key words: LDO Regulator, Convex Optimization, Geometric Programming, Stability, Power-Supply Rejection(PSR) 2014 () (No. 2014R1A1A1035923). IDEC. (College of Information and Communication Engineering, Sungkyunkwan University) * (Department of Electronics Engineering, Konkuk University) Manuscript received September 23, 2014 ; Revised November 17, 2014 ; Accepted November 29, 2014. (ID No. 20140923-01S) Corresponding Author: SoYoung Kim (e-mail: ksyoung@skku.edu) c Copyright The Korean Institute of Electromagnetic Engineering and Science. All Rights Reserved. 71

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 1, Jan. 2015.. 서론 PC PMIC(Power Management IC) [1]. PMIC DC-DC LDO(Low Drop-Out). DC-DC, [2]. LDO,,. LDO RF(Radio Frequency). LDO (stability).. (transient response) (Equivalent Series Resistance: ESR) (left half plane), (ESR) LDO, - [3]. (ESR) LDO. PMIC IC. (power plane) LDO., LDO DC-DC, LDO PSR(Power-Supply Rejection) [4]. LDO PSR,, trade-off. LDO LDO.,, LDO. (global solution) (Geometric Programming: GP) LDO [5]. (GP) (convex optimization) (monomial) (posynomial). (monomial) (posynomial) (GP), (convex) (convex) (convex) (GP). 1 (GP)., (GP) (monimial)., PSR 72

LDO PSR 그림 1. Fig. 1. Flow chart of circuit optimization via GP. (GP) (monomial) (posynomial). (GP) LDO PSR (monomial) (posynomial), LDO PSR, trade-off.. 트랜지스터모델링 (GP) (monomial). (L). LDO (Error Amplifier, EA) (saturation),, (subthreshold) (triode). (saturation), (subthreshold), (triode). (L), (I DS ), - (V DS ). (m) - (V GS), (V OV), (V TH), - (C gs), - (C gd), (junction) (C jd ), (g m ), (g ds). (1), (2). (1) (2) a 1 a 4 b 1 b 4 (fitting).. 1 / ( f model 표 1. / % Table 1. Max/mean % modeling error in saturation region. % (/) NMOS PMOS V GS L, I DS, V DS 0.2/0.14 0.5/0.32 V OV L, I DS, V DS 13.79/7.14 0.13/0.08 V TH L, I DS, V DS 0.004/0.002 0.003/0.002 g m L, I DS, V DS 2.52/1.78 0.47/0.28 g ds L, I DS, V DS 1.84/1.21 1.57/0.91 C gs L, I DS, V DS 6.04/4.04 0.04/0.02 C gd L, I DS, V DS 0.14/0.1 0.01/0.01 C jd L, I DS, V DS 0.02/0.01 0.02/0.01 73

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 1, Jan. 2015. 그림 2. LDO Fig. 2. Schematic of capacitor-less LDO regulator. f spice )/f spice ) %. Dongbu HiTek 0.5 μm BCD- MOS., NMOS 10 %. 1 % 16 %.. 제약조건과성능모델 (GP) LDO, PSR. 2 LDO. (EA) 2, - (Miller) (C C ) PMOS. (V REF) 1.24 V. 3-1 트랜지스터의크기와바이어스제약조건. m in m ax m in m ax (3).,,. 4 μm. (EA) (saturation). (EA) (saturation). (4), LDO (quiescent current) (subthreshold), (subthreshold). (5) (EA) M p1 M n1 - -. M p1 M n1. (EA) (KVL), -. (7) V DD V OUT (6) 74

LDO PSR LDO., (EA) KVL [5]. (8) (EA) M p1, M p2, M p3 (differential pair) [7].. R 1. (9), 1.24 V, (9) R 1 R 2. (10) LDO, LDO (dropout) (triode). m ax (11), LDO - (12). 3-2 외부커패시터가없는 LDO 레귤레이터의안정 도모델 LDO. (pole) (phase margin).. (EA) (differential pair). (13) g ds,p5n2 g ds,p3n3 (g ds,p5 +g ds,n2 ) (g ds,p3 +g ds,n3 ) (monomial). (subthreshold). (14) R OUT (g ds,pass ) R 1 R 2 (monomial). (feedback factor) R 1 R 2. (15) 75

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 1, Jan. 2015. (13)(15) LDO (A). (16) (EA) (dominant pole) (non-dominant pole). LDO, (dominant pole). LDO (dominant pole) (EA). (17) (miller) -, -. (subthreshold) (Miller), (dominant pole) (monomial) 1.5. LDO,. (18) (C L) -. (C L ) LDO (metal layer). (EA),. (19) (EA),. (20) - - (feed-forward zero). (21) (non-dominant pole) (dominant pole). (phase margin) tan tan (22), (GP) (phase margin) (arctan) (monomial). (arctant) tan (23) (monomial). 3-3 외부커패시터가없는 LDO 레귤레이터의 PSR 모델 76

LDO PSR PSR LDO (superposition method). (differential) 2 (EA), (differential pair) (EA). PMOS PSR. PM- OS (common-gate), AC LDO.. 외부커패시터가없는 LDO 레귤레이터의최적화결과 (24) 4-1 PSR 제약조건변화에따른외부커패시터가 없는레귤레이터의성능최적화 PSR 54 db 46 db LDO. Linux CVX Matlab Toolbox [8], PSR 6.17. Intel (R) Xeon (R) CPU X5650 2.67 @ GHz 4 GHz. 3 PSR LDO (quiescent current). Cadence Spectre. Dongbu HiTek 그림 3. PSR LDO (I quiescent) Fig. 3. Optimization results of quiescent current of LDO regulator and area of pass transistor according to various PSR specification. 0.5 μm BCDMOS. PSR (phase margin) 45, (dropout) 0.3 V. (24), PSR (EA),., (EA) LDO PSR. PSR (EA), (EA) (dominant pole). (phase margin) 3. 3 (quiescent current) 50 % PSR 8 db, 77

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 1, Jan. 2015. 1.3. PSR 13.1 %., (phase margin), 9.3 %., PSR 40 (phase margin) (stability). 3 LDO PSR PSR, (quiescent current) LDO. 4-2 외부커패시터가없는 LDO 레귤레이터의최적설계결과 2 (GP) LDO. PSR 47.96 db, (phase margin) 45., 100 ma, 1.8 V. (dropout), DC 6.25 %,. (A) (phase margin), (monomial) (posynomial) DC., 21.1 %. PSR 12.8 %., LDO (dominant pole) (monomial) 표 2. LDO Table 2. Comparison results between model and simulation of capacitor-less LDO regulator. (%) I MAX(mA) 100 100 - V dropout(v) 0.3 0.32 6.25 V OUT(V) 1.8 1.813 0.7 I quiescent(ma) 2.22 2.21 0.73 PSR (@DC) (db) 47.96 46.77 12.82 A (db) 75.25 74.1 14.05 Phase margin( ) 45 40.33 11.58 f c(mhz) 28.99 23.93 21.14 표 3. (GP) Table 3. Result of GP optimization. Value W p1/l p1(μm/μm) 1.2/2.85 W p2/l p2(μm/μm) 79.45/2.42 W p3/l p3(μm/μm) 22.84/2.42 W p4,5/l p4,5(μm/μm) 30.62/0.5 W n1,2/l n1,2(μm/μm) 1.55/0.5 W n3/l n3(μm/μm) 1.2/0.67 W pass/l pass(μm/μm) 11885/0.5 R 1(Ω) 615.17 R 2(Ω) 277.82 C L(pF) 10 I BIAS(μA) 1.92 (Miller) 1.5,. 3 (GP), 2 (EA),, 78

LDO PSR.. 결론 Dongbu HiTek 0.5 μm BCDMOS NMOS PMOS, - (monomial). LDO (stability) PSR (monomial) (posynomial) LDO. (phase margin) PSR 9.3 % 13.1 %. (saturation) (subthreshold), (phase margin) PSR LDO (phase margin) PSR. (GP), PSR LDO, PSR.. References [1] K. N. Leung, P. K. T. Mok, "A capacitor-free CMOS low-dropout regulator with damping-factor-control frequency", IEEE J. Solid-State Circuits, vol. 37, no. 10, pp. 1691-1701, Oct. 2003. [2],,, " LDC ",, 24(8), pp. 798-804, 2013 8. [3] S. DasGupta, P. Mandal, "An automated design approach for CMOS LDO regulators", in Proc. Int. Symp. Asia South Pac. Des. Aut. Conf., pp. 510-515, Jan. 2009. [4] M. El-Nozahi, A. Amer, J. Torres, K. Entesari, and E. Sanchez-Sinencio, "High PSR low drop-out regulator with feedforward ripple cancellation technique", IEEE J. Solid- State Circuits, vol. 45, no. 3, pp. 565-577, Mar. 2010. [5],,,, "Differential amplifier design based on modeling with GP optimization",, 23(1), p. 190, 2012 12. [6] J. Kim, J. Lee, L. Vandenberghe, and C. K. K. Yang, "Techniques for improving the accuracy of geometricprogramming based analog circuit design optimization", in Proc. Int. Conf. Comput. Aided Des., pp. 863-870, Nov. 2004. [7] M. Hershenson, S. Boyd, and T. H. Lee, "Optimal design of a CMOS op-amp via geometric programming", IEEE Trans. Comput-aided Design Integr. Circuits Syst., vol. 20, no. 1, pp. 1-21, Jan. 2001. [8] M. Grant, S. Boyd, and Y. Ye, CVX: Matlab Software for Disciplined Convex Programming, [Online]. Available: http://www.stanford.edu/boyd/cvx. 79

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 1, Jan. 2015. 2011 2: () 2013 2: () 2013 3: [ 주관심분야 ] EMI/EMC, 1997: () 1999: Stanford University () 2004: Stanford University () 20042008: Intel Corporation 20082009: Cadence Design Systems 2009: [ 주관심분야 ] Device and Interconnect Modeling, Power Integrity, Signal Integrity, Computer-Aided Design, Electromagnetic Compatibility 1997: () 2004: University of California () 2008: University of California () 2012: [ 주관심분야 ],, CMOS, 80