04김이현(31~44)ok

Similar documents
09È«¼®¿µ 5~152s

05 목차(페이지 1,2).hwp

09이훈열ok(163-

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

03¹Ú³ë¿í7~272s

<31372EC0CCC8C6BFAD28B1E8C0CCC7F6292E687770>

06장소영(f2.4)(115~122)ok

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

<313920C0CCB1E2BFF82E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

, V2N(Vehicle to Nomadic Device) [3]., [4],[5]., V2V(Vehicle to Vehicle) V2I (Vehicle to Infrastructure) IEEE 82.11p WAVE (Wireless Access in Vehicula

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

07이재희(3p)(123~131)ok

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Aug.; 30(8),

04홍석영(509~520)(f.5)ok

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 30(3),

Preliminary spec(K93,K62_Chip_081118).xls

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 28(2),

08원재호( )

05서찬양(521~529)ok

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

07ÀÌÈÆ¿Ł 3-174š

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

03 장태헌.hwp

Development of culture technic for practical cultivation under structure in Gastrodia elate Blume

8(3)-01.fm

인문사회과학기술융합학회

Microsoft Word - KSR2016S168

44-4대지.07이영희532~

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 28, no. 4, Apr (planar resonator) (radiator) [2] [4].., (cond

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 26(3),

1 Nov-03 CST MICROWAVE STUDIO Microstrip Parameter sweeping Tutorial Computer Simulation Technology

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 30(2),

03-서연옥.hwp

°í¼®ÁÖ Ãâ·Â

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Aug.; 27(8),

09구자용(489~500)

02¿ÀÇö¹Ì(5~493s

광덕산 레이더 자료를 이용한 강원중북부 내륙지방의 강수특성 연구

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

DBPIA-NURIMEDIA

Journal of Korean Society on Water Environment, Vol. 28, No. 2, pp (2012) ISSN ᆞ ᆞ ᆞ Evaluation of Forward Osmosis (FO) Membrane Per

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 28, no. 9, Sep [1]. RFID.,,,,,,, /,,, (,,,, ) [2] [4].., ( 99

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 30(7),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Oct.; 27(10),

DBPIA-NURIMEDIA

< C6AFC1FD28B1C7C7F5C1DF292E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1),

학술원논문집 ( 자연과학편 ) 제 50 집 2 호 (2011) 콩의식품적의의및생산수급과식용콩의자급향상 李弘䄷 * 李英豪 ** 李錫河 *** * Significance of Soybean as Food and Strategies for Self Suffici

<C3D6C1BEBFCFBCBA2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D31C8A3292E687770>


THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

012임수진

서론 34 2

<30382E20B1C7BCF8C0E720C6EDC1FD5FC3D6C1BEBABB2E687770>

<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 29(5),

09권오설_ok.hwp

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun; 26(6),


THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 27(9),

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

14.531~539(08-037).fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct , EBG. [4],[5],. double split ring resonator (D

27 2, 17-31, , * ** ***,. K 1 2 2,.,,,.,.,.,,.,. :,,, : 2009/08/19 : 2009/09/09 : 2009/09/30 * 2007 ** *** ( :

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

Slide 1

<3034B1E2B9DD32302DBAB8B0EDBCAD2D DC0FCC6C4C0DABFF BAB0C3A53420C8A8B3D7C6AEBFF6C5A9292E687770>

DBPIA-NURIMEDIA

1..


Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

歯1.PDF

I


???? 1

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Oct.; 27(10),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 27, no. 8, Aug [3]. ±90,.,,,, 5,,., 0.01, 0.016, 99 %... 선형간섭

Microsoft Word - P02.doc

04 최진규.hwp

2

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

02À±¼ø¿Á

박선영무선충전-내지

05 목차(페이지 1,2).hwp

<3136C1FD31C8A35FC3D6BCBAC8A3BFDC5F706466BAAFC8AFBFE4C3BB2E687770>

<C7D1B1B9B1A4B0EDC8ABBAB8C7D0BAB85F31302D31C8A35F32C2F75F E687770>

Lumbar spine

10(3)-02.fm

韓國電磁波學會論文誌第 21 卷第 9 號 2010 年 9 月. PCS(Personal Communication Service), WCDMA(Wideband Code Division Multiple Access), WiBro(Wireless Broadband),, (dua

Transcription:

Korean Journal of Remote Sensing, Vol.25, No.1, 2009, pp.31~44 Estimation of Paddy Rice Growth Parameters Using L, C, X-bands Polarimetric Scatterometer Yi-Hyun Kim*, Suk-Young Hong*, and Hoonyol Lee** *National Academy of Agricultural Science, Rural Development Administration **Department of Geophysics, Kangwon National University Abstract : The objective of this study was to measure backscattering coefficients of paddy rice using a L-, C-, and X-band scatterometer system with full polarization and various angles during the rice growth period and to relate backscattering coefficients to rice growth parameters. Radar backscattering measurements of paddy rice field using multifrequency (L, C, and X) and full polarization were conducted at an experimental field located in National Academy of Agricultural Science (NAAS), Suwon, Korea. The scatterometer system consists of dual-polarimetric square horn antennas, HP8720D vector network analyzer (20 MHz ~ 20 GHz), RF cables, and a personal computer that controls frequency, polarization and data storage. The backscattering coefficients were calculated by applying radar equation for the measured at incidence angles between 20 and 60 with 5 interval for four polarization (HH, VV, HV, VH), respectively. We measured the temporal variations of backscattering coefficients of the rice crop at L-, C-, X-band during a rice growth period. In three bands, VV-polarized backscattering coefficients were higher than hh-polarized backscattering coefficients during rooting stage (mid-june) and HH-polarized backscattering coefficients were higher than VV-, HV/VH-polarized backscattering coefficients after panicle initiation stage (mid-july). Cross polarized backscattering coefficients in X-band increased towards the heading stage (mid-aug) and thereafter saturated, again increased near the harvesting season. Backscattering coefficients of range at X-band were lower than that of L-, C-band. HH-, VV-polarized s steadily increased toward panicle initiation stage and thereafter decreased, and again increased near the harvesting season. We plotted the relationship between backscattering coefficients with L-, C-, X-band and rice growth parameters. Biomass was correlated with L-band hh-polarization at a large incident angle. LAI (Leaf Area Index) was highly correlated with C-band HH- and cross-polarizations. Grain weight was correlated with backscattering coefficients of X-band VV-polarization at a large incidence angle. X-band was sensitive to grain maturity during the post heading stage. Key Words : Backscattering coefficients, Full polarization, L-band, C-band, X-band, Rice growth, Biomass, LAI. hoonyol@kangwon.ac.kr 31

Korean Journal of Remote Sensing, Vol.25, No.1, 2009 s 32

Estimation of Paddy Rice Growth Parameters Using L, C, X-bands Polarimetric Scatterometer Fig. 1. Consist of polarimetric scatterometer system. 33

Korean Journal of Remote Sensing, Vol.25, No.1, 2009 Table 1. Specification of the scatterometer system Specification L-Band C-Band X-Band Center frequency 1.27 GHz 5.3 GHz 9.65 GHz Bandwidth 0.12 GHz 0.6 GHz 1 GHz Number of frequency points 201 801 1601 Antenna type Dual polarimetric horn Dual polarimetric horn Dual polarimetric horn Antenna gain 12.4 db 20.1 db 22.4 db Polarization HH, VV, HV, VH HH, VV, HV, VH HH, VV, HV, VH Incident angle 20 ~ 60 20 ~ 60 20 ~ 60 Platform height 4.16 m 4.16 m 4.16 m P r P t G t G r l 2 P r = s (1) (4p) 3 R 4 P t G t G r l s R s A s 0 s = (2) A Z i = a i e jfi (3) 34

Estimation of Paddy Rice Growth Parameters Using L, C, X-bands Polarimetric Scatterometer a f 8 1 Z = S (a i cosf i + ja i sinf i ) (4) 8 i=1 U P t P r 2 U 2 V = ( r ) V t = (5) s P 10 log( ) [ ] = 20 log U = 10 log G t G r l 2 r s (6) P (4p) 3 R 4 t \s(db) = 10 log s = 20 log U _ G t (db) _ G r (db) _ 20 log l + 30 log 4p + 40 log R G t G r A DR A = l (7) cosq i DR DR = c/2b q i l R q R q L _ band : s (db) = 20logU+21.35(dB)+30logR+10log cosq i C _ band : s (db) = 20logU+30.27(dB)+30logR+10log cosq i X _ band : s (db) = 20logU+32.21(dB)+30logR+10log cosq i P r P t 35

Korean Journal of Remote Sensing, Vol.25, No.1, 2009 (a) Incident angle : 30 (b) Incident angle : 40 (c) Incident angle : 50 (d) Incident angle : 60 Fig. 2. Temporal variations of backscattering coefficients at polarization and incident angle 30 ~ 60 for the L-band. (a) Incident angle : 30 (b) Incident angle : 40 (c) Incident angle : 50 (d) Incident angle : 60 Fig. 3. Temporal variations of backscattering coefficients at polarization and incident angle 30 ~ 60 for the C-band. 36

Estimation of Paddy Rice Growth Parameters Using L, C, X-bands Polarimetric Scatterometer (a) Incident angle : 30 (b) Incident angle : 40 (c) Incident angle : 50 (d) Incident angle : 60 Fig. 4. Temporal variations of backscattering coefficients at polarization and incident angle 30 ~ 60 for the X-band. Fig. 5. Temporal variation in rice plant height. Fig. 6. Temporal variation in rice Leaf Area Index. 37

Korean Journal of Remote Sensing, Vol.25, No.1, 2009 Fig. 7. Temporal variation in rice fresh weight. Fig. 8. Temporal variation in rice grain dry weight. Table 2. Correlation coefficients between backscattering coefficients and rice growth parameters at L-band VV HH VV HV HH HV Incident Plant LAI Tfw Tdw Plant LAI Tfw Tdw Plant LAI Tfw Tdw Incident angle height LAI (g/m Tfw 2 ) (g/m Tdw 2 ) (g/m Tfw 2 ) (g/m Tdw 2 ) (g/m Tfw 2 ) (g/m Tdw 2 ) angle (g/m 2 ) (g/m 2 height LAI ) (g/m 2 ) (g/m 2 height LAI (cm) (cm) ) (cm) (g/m 2 ) (g/m 2 ) 20-0.93*** -0.81** -0.90*** -0.87*** -0.56* -0.20 ns -0.37 ns -0.32 ns 0.21 ns 0.38 ns 0.29 ns 0.32 ns 25-0.53* -0.20 ns -0.37 ns -0.32 ns 0.24 ns 0.44* 0.38 ns 0.38 ns 0.76** 0.85** 0.81** 0.81** 30-0.01 ns 0.28 ns 0.15 ns 0.18 ns -0.39 ns -0.38 ns -0.42* -0.40 ns 0.91*** 0.77** 0.85** 0.82** 35-0.49* -0.63* -0.58* -0.62* 0.40 ns 0.25 ns 0.31 ns 0.28 ns 0.89*** 0.71** 0.80** 0.78** 40 0.81** 0.58* 0.70* 0.68* 0.74** 0.73** 0.76** 0.72** 0.89*** 0.81** 0.86*** 0.85** 45 0.92*** 0.78** 0.87*** 0.85** 0.94*** 0.89*** 0.92*** 0.91*** 0.90*** 0.91*** 0.90*** 0.86*** 50 0.87*** 0.63* 0.75** 0.73** 0.94*** 0.91*** 0.97*** 0.98*** 0.92*** 0.86*** 0.90*** 0.89*** 55 0.85** 0.62* 0.75** 0.73** 0.93*** 0.90*** 0.93*** 0.91*** 0.90*** 0.88*** 0.92*** 0.92*** 60 0.87*** 0.74** 0.81** 0.79** 0.86*** 0.88*** 0.89*** 0.87*** 0.84** 0.90*** 0.91*** 0.91*** Tfw : Total fresh weight, Tdw : Total dry weight ns : Non significance * : level of significance p<0.05 ** : level of significance p<0.01 *** : level of significance p<0.001 38

Estimation of Paddy Rice Growth Parameters Using L, C, X-bands Polarimetric Scatterometer Table 3. Correlation coefficients between backscattering coefficients and rice growth parameters at C-band VV HH VV HV HH HV Incident Plant LAI Tfw Tdw Plant LAI Tfw Tdw Plant LAI Tfw Tdw Incident angle height LAI (g/m Tfw 2 ) (g/m Tdw 2 ) (g/m Tfw 2 ) (g/m Tdw 2 ) (g/m Tfw 2 ) (g/m Tdw 2 ) angle (g/m 2 ) (g/m 2 height LAI ) (g/m 2 ) (g/m 2 height LAI (cm) (cm) ) (cm) (g/m 2 ) (g/m 2 ) 20-0.94*** -0.74** -0.84** -0.83** -0.84** -0.67* -0.76** -0.75** 0.81** 0.67* 0.74** 0.71** 25 0.74** 0.72** 0.75** 0.74** 0.48* 0.48* 0.46* 0.48* 0.85** 0.92*** 0.90*** 0.90*** 30 0.82** 0.78** 0.82** 0.81** 0.86*** 0.83** 0.84** 0.85** 0.83** 0.92*** 0.91*** 0.92*** 35 0.67* 0.70* 0.67* 0.68* 0.93*** 0.84** 0.90*** 0.89*** 0.88*** 0.91*** 0.89*** 0.88*** 40 0.38 ns 0.55* 0.50* 0.50* 0.95*** 0.87*** 0.92*** 0.91*** 0.91*** 0.92*** 0.88*** 0.87*** 45 0.38 ns 0.64* 0.56* 0.58* 0.90*** 0.91*** 0.93*** 0.93*** 0.95*** 0.88*** 0.90*** 0.87*** 50 0.64* 0.76** 0.74** 0.73** 0.94*** 0.95*** 0.93*** 0.93*** 0.90*** 0.85** 0.88*** 0.87*** 55 0.56* 0.70* 0.68* 0.67* 0.93*** 0.90*** 0.92*** 0.92*** 0.88*** 0.83** 0.86*** 0.84** 60 0.38 ns 0.46* 0.44* 0.43* 0.92*** 0.92*** 0.91*** 0.92*** 0.91*** 0.83** 0.88*** 0.86*** * Tfw : Total fresh weight, Tdw : Total dry weight ns : Non significance * : level of significance p<0.05 ** : level of significance p<0.01 *** : level of significance p<0.001 Table 4. Correlation coefficients between backscattering coefficients and rice growth parameters at X-band VV HH VV HV HH HV Incident Plant LAI Tfw Tdw Plant LAI Tfw Tdw Plant LAI Tfw Tdw Incident angle height LAI (g/m Tfw 2 ) (g/m Tdw 2 ) (g/m Tfw 2 ) (g/m Tdw 2 ) (g/m Tfw 2 ) (g/m Tdw 2 ) angle (g/m 2 ) (g/m 2 height LAI ) (g/m 2 ) (g/m 2 height LAI (cm) (cm) ) (cm) (g/m 2 ) (g/m 2 ) 20 0.26 ns 0.41* 0.32 ns 0.32 ns 0.68* 0.63* 0.64* 0.63* 0.80** 0.83** 0.82** 0.82** 25 0.62* 0.70* 0.68* 0.67* 0.72** 0.66* 0.68* 0.67* 0.73** 0.74** 0.74** 0.72** 30 0.46* 0.57* 0.54* 0.52* 0.82** 0.82** 0.84** 0.82** 0.65* 0.75** 0.70** 0.69** 35 0.50* 0.67* 0.62* 0.61* 0.81** 0.83** 0.80** 0.83** 0.71** 0.79** 0.74** 0.74** 40 0.43* 0.61* 0.55* 0.56* 0.72** 0.83** 0.79** 0.81** 0.67* 0.81** 0.74** 0.74** 45 0.33 ns 0.45* 0.42* 0.40* 0.74** 0.80** 0.81** 0.82** 0.76** 0.81** 0.81** 0.79** 50 0.23 ns 0.29 ns 0.28 ns 0.24 ns 0.71** 0.77** 0.75** 0.76** 0.74** 0.74** 0.76** 0.73** 55-0.10 ns -0.20 ns -0.13 ns -0.18 ns 0.75** 0.81** 0.80** 0.80** 0.82** 0.79** 0.83** 0.81** 60-0.25 ns -0.44* -0.36 ns -0.41* 0.75** 0.79** 0.79** 0.78** 0.81** 0.71** 0.77** 0.75** * Tfw : Total fresh weight, Tdw : Total dry weight ns : Non significance * : level of significance p<0.05 ** : level of significance p<0.01 *** : level of significance p<0.001 39

Korean Journal of Remote Sensing, Vol.25, No.1, 2009 Table 5. Correlation coefficients between L-, C-, X-band backscattering coefficients and grain dry weight L-band C-band X-band L-band C-band X-band Incident angle VV HH HV VV VV HH HH HV HV VV VV HH HHHV HV 20-0.96*** -0.85** -0.64* -0.50* -0.19 ns 0.26 ns -0.54* -0.05 ns 0.10 ns 25-0.97*** -0.74** 0.06 ns -0.19 ns -0.39 ns -0.70* -0.33 ns 0.35 ns 0.56* 30-0.78** -0.64* 0.53* -0.55* -0.38 ns -0.55* 0.51* 0.31 ns -0.45* 35 0.43* 0.72* 0.72* -0.81** -0.32 ns 0.27 ns 0.70* -0.30 ns -0.40* 40 0.61* 0.40* 0.66* -0.22 ns -0.80** -0.32 ns 0.78** -0.36 ns -0.45* 45 0.75** 0.23 ns 0.63* -0.39 ns -0.78** -0.13 ns 0.87*** 0.39 ns 0.58* 50 0.71* -0.67* 0.29 ns -0.16 ns -0.52* 0.23 ns 0.83** 0.55* 0.65* 55 0.58* -0.29 ns 0.07 ns 0.17 ns -0.77** 0.43* 0.80** 0.70* 0.71* 60 0.30 ns 0.18 ns -0.10 ns 0.67* -0.70* 0.51* 0.81** 0.74** 0.69* ns : Non significance * : level of significance p<0.05 ** : level of significance p<0.01 *** : level of significance p<0.001 Table 6. Optimum condition between backscattering coefficients at and rice growth parameters Band Polarization Incident angle Correlation coefficient (r) Plant height(cm) C-band HV 45 r=0.95*** LAI C-band HH 50 r=0.95*** Biomass(g/m 2 ) L-band HH 50 r=0.96*** Grain dry weight(g/m 2 ) X-band VV 45 r=0.87** ** : level of significance p<0.01 *** : level of significance p<0.001 y=0.01790x 2 +16.7038x+406.4284 R 2 =0.92*** (n=20) R 2 =0.92*** RMSE=3.17884 (a) (b) Fig. 9. (a) Relationship between backscattering coefficient in C-band(VH, 45 ) and plant height during rice growth stage. (b) Relationship between Measured and estimated plant height during rice growth stage. 40

Estimation of Paddy Rice Growth Parameters Using L, C, X-bands Polarimetric Scatterometer y=0.0035x 2 +0.3633x+8.4322 R 2 =0.92*** (n=20) R 2 =0.91*** RMSE=0.46917 (a) (b) Fig. 10. (a) Relationship between backscattering coefficient in C-band(HH, 50 ) and LAI during rice growth stage. (b) Relationship between Measured and estimated LAI during rice growth stage. y=0.5475x 2 +44.6724x+893.1666 R 2 =0.95*** (n=19) R 2 =0.94*** RMSE=5.75061 (a) (b) Fig. 11. (a) Relationship between backscattering coefficient in L-band(HH, 50 ) and fresh weight during rice growth stage. (b) Relationship between Measured and estimated fresh weight during rice growth stage. 41

Korean Journal of Remote Sensing, Vol.25, No.1, 2009 y=-0.0402x 2-1.5940x+9.0138 R 2 =0.82** (n=8) R 2 =0.82*** RMSE=1.37052 (a) Fig. 12. (a) Relationship between backscattering coefficient in X-band(VV, 45 ) and grain dry weight during rice growth stage. (b) Relationship between Measured and estimated grain dry weight during rice growth stage. (b) 42

Estimation of Paddy Rice Growth Parameters Using L, C, X-bands Polarimetric Scatterometer Anthony, F. and Stephen, L. Durden. 1998. A threecomponent scattering model for polarimetric SAR data, Remote Sens. Environ, 36(3): 963-973. Attema, E. P. and F. T. Ulaby, 1978. Vegetation modeled as a water cloud, Radio Science, 13: 357-364. Bouman. B. A. M., 1991. Crop Parameter Estimation from Ground-Based X-Band (3-cm Wave) Radar backscattering Data, Remote Sens. Environ, 37: 193-205. Brisco. B., R. J. Brown, J. A. Koehler., G. J. Sofko., and M. J. McKibben, 1990. The Diurnal Pattern of Microwave Backscattering by Wheat, Remote Sens. Environ, 34: 37-47. Brisco, B. and R. J. Brown, 1998. Agricultural applications with radar, Chapter 7 in Principles & Applications of Imaging Radar, edited by F.M. Henderson and A.J. Lewis, Manual of Remote Sensing Vol.2, Wiley, Danvers, MA. pp.381-406. Inoue, Y., T. Kurosu., H. Maeno, S. Uratsuka., T. Kowu., K. Dabrowska-Zielinska, and J. Qi, 2002. Season-long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables, Remote Sensing of Environment, 81: 194-204. Hong, S. Y., S. H. Hong, and S. K. Rim, 2000. Relationship between Radarsat backscattering coefficient and rice growth, Korean J. Remote Sensing, 16(2): 109-116. Kim, S. B., Y. Kong, and Y. S. Kim, 2000. Radar backscattering measurements of rice crop using X-band scatterometer, IEEE Transactions on Geoscience and Remote Sensing, 38(3): 1467-1471. Le, Toan, T. Ribbes. F. Wang, L. Floury, N. K. Ding, J. A. Kong, M. Fujita, and T. Kurosu, 1997. Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results, IEEE Transactions on Geoscience and Remote Sensing, 35: 41-56. Macelloni, G., P. Palosica, R. Pampalori, F. Marliani, and M. Gai, 2001. The relationship between the backscattering coefficient and biomass of narrow and broad leaf crops, IEEE Transactions on Geoscience and Remote Sensing, 39(4): 873-884. Macelloni, G., S. Palosica, P., and R. Pampalori, 2002. Modelling radar backscatter from crops during the growth cycle, Agronomie, 22: 575-579. Moran, M. S., A. Vidal., D. Troufleau., Y. Inoue, and T. A. Mitchell, 1998. Ku- and C-band SAR for discriminating agricultural crop and soil conditions, IEEE Transactions on Geoscience and 43

Korean Journal of Remote Sensing, Vol.25, No.1, 2009 Remote Sensing, 36: 265-272. Paloscica, S., 1998. An empirical approach to estimating leaf index from multifrequency SAR data, International Journal of Remote Sensing, 19(2): 359-364. Paris, J. F., 1986. The effect of leaf size on the microwave backscattering by corn, Remote Sensing of Environment, 19: 81-95. Prevot, L., I. Champion, and G. Guyot, 1993. Estimating surface soil moisture and leaf area index of a wheat canopy using a dualfrequency (C and X bands) scatterometer, Remote Sensing of Environment, 46: 331-339. Ulaby, F. T., C. T., Allen, G. Eger, and E. T. Kanemasu, 1984. Relating the microwave backscattering coefficient to leaf area index, Remote Sensing of Environment, 14: 113-133. Ulaby, F. T. and C. Elachi, 1990. Radar Polarimetry for Geoscience Applications, Artech House Inc. Wigneron, J. P., P. Ferrazzoli., A. Olioso., P. Bertuzzi, and A. Chanzy, 1999. A simple approach to monitor crop biomass from C-band radar data, Remote Sensing of Environment, 69: 179-188. Yamaguchi, Y., T. Moriyama, M. Ishido, and H. Yamada, 2005. Four-component scattering model for polarimetric SAR image decomposition, IEEE Transactions on Geoscience and Remote Sensing, 43(8): 1699-1706. 44