PowerPoint 프레젠테이션
|
|
- 다윤 화
- 5 years ago
- Views:
Transcription
1 Independence tests using coin package in R Jinheum Kim(Univ. Suwon), Jungdong Lee(Univ. Suwon, Master student)
2 OUTLINE Permutation test: review Introduce 15 built-in functions in coin package Explain how to use independent test function Illustrative examples Concluding remarks
3 Preliminary 검정통계량의영가설 (null hypothesis) 분포는모집단분포에의존하는데, 모집단의분포를모르면결국검정통계량의분포도알수없는데, 이때모집단의분포를가정하여영가설분포를직접유도하거나혹은자료가주어졌을때검정통계량의조건부분포를영가설분포로대체하여검정할수있음 전자의방법을무조건검정이라고하고, 후자의방법을조건부검정혹은순열검정 (permutation test) 이라고함 (Fisher, 1935) Strasser & Weber (1999) 는 permutation test 를통합할수있는이론적근거를마련함
4 Preliminary Hothorn et al. (2006, 2008) 은 Strasser & Weber (1999) 의 permutation test 이론을 coin 패키지로구현 coin 이란이름은 conditional inference 의줄임말 조건부독립성검정은총괄적인형태의함수인 independence_test() 를통해서할수있음 잘알려진몇가지독립성검정에대해서는사용자가편리하도록간편한함수가패키지에포함되어있음 본논문에서는이런간편함수에대응하는 independece_test() 함수를정의하고자함 관측변수의적절한변환과관측값의 weight 와 block 값에대한정의가필요
5 Permutation test: review Data: Y i, X i, w i, b i, i = 1,, n, X i, Y i : 표본공간 X, Y 로부터얻어진 i 번째괸측값이고, data type 은 numeric 또는 factor w i : i 번째관측값의 weight, default=1 b i : i 번째관측값의 block 값, default=1 j 번째 block 에대한영가설 : H 0 : D(Y X, j) = D(Y j), j = 1,, k
6 Permutation test: review 영가설을검정하기위한통계량 : n T j = vec I i=1 T= k j=1 T j R pq, (b i = j)w i g(x i )h(y i ) g: X R p : 관측값 X 를변환하는함수 h: Y R q : 관측값 Y 를변환하는함수 R pq, j = 1,, k h(y i ) = h(y i, (Y 1,, Y n )): influence function 이라고도하는데, Y i 들의관측값에는의존하지만 Y i 들의배열에는의존하지않음
7 Permutation test: review S j : j 번째 block 에속한관측값들의모든순열들의집합 j 번째 block 에대해, h 의조건부평균벡터와공분산행렬은, n 1 E h S j = w j I b i = j w i h Y i, j = 1,, k, i=1 w j 1 n I Cov h S j = (b i = j)w i (h(y i ) E(h S j ))(h(y i ) E(h S j )), i=1 j = 1,, k n w j = i=1 I (b i = j)w i : j 번째 block 에속한 weight 의합
8 Permutation test: review j 번째 block 에대해, T j 의조건부평균벡터와공분산행렬은, n E(T j S j ) = vec i=1 I (b i = j)w i g(x i ) E(h S j ), j = 1,, k, Cov(T j S j ) = 1 n w j 1 Cov h S j I :Kroneker product w n j w j 1 Cov(h S j) I i=1 i=1 b i = j w i g X i I j = 1,, k (b i = j)w i (g(x i ) g(x i ) ) n i=1 b i = j w i g X i,
9 Permutation test: review 모든순열들의집합 S가주어졌을때, 영가설하에서, 통계량 T의조건부평균벡터와공분산행렬은 k개 block의결과를합쳐 (Strasser & Weber, 1999), k μ = E T S = E Σ = Cov(T S) = j=1 k T j S j, j=1 C ov(t j S j )
10 Permutation test: review 통계량 T R pq 를 R 로보내는단변량통계량중에서, pq = 1 이면, 검정통계량 c scalar (T, μ, Σ) = diag(σ) 1/2 (T μ) 을사용하고, pq > 1 이면, 검정통계량 c max T, μ, Σ = max diag(σ) 1 2(T μ) 또는 c quad (T, μ, Σ) = (T μ) Σ + (T μ) 을사용 Σ + : Σ 의 Moore-Penrose inverse
11 Permutation test: review 영가설하에서, 검정통계량 c의조건부분포는 Pr c T, μ, Σ z S z 를초과하지않는순열의개수를전체순열의개수로나눈값으로근사 z: 검정통계량의 c 의관측값
12 X:factor, Y: numeric 인경우 Test p q Comments W-M-W 1 1 Independent data Location Normal quantile 1 1 Median 1 1 Kruskal-Wallis #(G) 1 #(B)=1, weight=1 #(G)= 독립모집단수 Dispersion Ansari-Bradley 1 1 Fligner-Killeen #(G) 1 Censored data Log-rank #(G) 1 Censoring 정보필요 #(B)=1, weight=1 #(G)= 독립모집단수 Dependent data Signed-rank 1 1 n =#(B) #(G) [2 #(B)] weight=1 Friedman #(G) 1 #(G)= 독립모집단수
13 X:numeric, Y: numeric 인경우 Test p q Comments Spearman 1 1 #(B)=1, weight=1 Maximally selected statistic #(G)-1 1 #(G)= 서로다른 X i 들의개수 #(B)=1, weight=1
14 X:factor, Y: factor 인경우 Test p q Comments Chi-square #(R) #(C) #(R)=2 차원분할표의행수 #(C)=2 차원분할표의열수 n =#(R) #(C) #(B)=1, weight= 셀빈도 Independent pair data CMH #(R) #(C) #(R)=2 차원부분분할표의행수 #(C)=2 차원부분분할표의열수 #(B)= 제어변수의수준수 n =#(B) #(R) #(C), weight= 셀빈도 Linear-by-linear 1 1 #(B)= 제어변수의수준수 n =#(B) #(R) #(C), weight= 셀빈도 Matchedpair data Marginal homogeneity 1 #(I) #(B)=I I 2 차원분할표의총셀빈도 #(I)=I I 2 차원분할표의행수 ( 열수 ) n =2 #(B), weight=1
15 X:factor, Y: numeric 인경우 Test p q Comments W-M-W 1 1 Independent data Location Normal quantile 1 1 Median 1 1 Kruskal-Wallis #(G) 1 #(B)=1, weight=1 #(G)= 독립모집단수 Dispersion Ansari-Bradley 1 1 Fligner-Killeen #(G) 1 Censored data Log-rank #(G) 1 Censoring 정보필요 #(B)=1, weight=1 #(G)= 독립모집단수 Dependent data Signed-rank 1 1 n =#(B) #(G) [2 #(B)] weight=1 Friedman #(G) 1 #(G)= 독립모집단수
16 surv_test() 함수 : censored data 두개이상의모집단 (p 2) 의생존함수가서로동일한지를검정하기위한 log-rank test (Kalbfleisch & Prentice, 2002) Data: { X i, Y i, δ i, w i = 1, b i = 1, i = 1,, n} X i : i 번째개체가속한그룹 (X i = 1,, p) Y i : i 번째개체의생존시간 δ i : i 번째개체의우중도절단여부를나타내는값 (δ i = 0,1)
17 surv_test() 함수 : censored data Y (1) < < Y (c) : 관측된서로다른생존시간 Y l1,, Y lml : 구간 [Y l, Y l+1 ) 에서중도절단된시간, l = 0,, c Y (0) = 0, Y (c+1) = l d h s l = 1 h=1 : Y n (l) 에서이벤트가발생한개 h 체들의스코어, l = 1,, c l d h S l = h=1 : 구간 [Y n l, Y l+1 ) 에서중도절단 h 된개체들의스코어, l = 1,, c S 0 = 0
18 surv_test () 함수 : censored data Transformations g X i = I X i = 1,, I X i = p, i = 1, n h Y i = c l=1 R-code s l I(Y i = Y l, δ i = 1) + S l I(Y i = Y lj, δ i = 0) i = 1,, n m l j=1, > independence_test(surv(time, event) ~ stadium, data = ocarcinoma, ytrafo = function(data) trafo(data, numeric_trafo = logrank_trafo))
19 X:factor, Y: numeric 인경우 Test p q Comments W-M-W 1 1 Independent data Location Normal quantile 1 1 Median 1 1 Kruskal-Wallis #(G) 1 #(B)=1, weight=1 #(G)= 독립모집단수 Dispersion Ansari-Bradley 1 1 Fligner-Killeen #(G) 1 Censored data Log-rank #(G) 1 Censoring 정보필요 #(B)=1, weight=1 #(G)= 독립모집단수 Dependent data Signed-rank 1 1 n =#(B) #(G) [2 #(B)] weight=1 Friedman #(G) 1 #(G)= 독립모집단수
20 wilcoxsign_test () 함수 : dependent data 서로다른 k 개의 block 내에있는두모집단의모평균이서로동일한지를검정 (Wilcoxon, 1945) Data: { X i, Y i, w i = 1, b i, i = 1,, n(= 2k)} X i : i 번째개체가속한그룹 (X i = 1,2) Y i : i 번째개체의관측값 b i : i 번째개체가속한 block 값 (b i = 1,, k)
21 wilcoxsign_test () 함수 : dependent data Transformations g X i = I X i = 2, i = 1, n n h Y i = R i I b l = b i I Y i < Y l, i = 1,, n n 1 l i n D j = i 1 =1 i 2 =i 1 +1 I b i1 = j = b i2 Y i1 Y i2 : j번째 block 내에있는두관측값의절대편차, j = 1,, k k j 1 =1 k j 2 =1 R i = I(b i = j 1 ) I(D j2 D j1 ), i = 1,, n
22 wilcoxsign_test () 함수 : dependent data R-code > x = c(1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30) > y = c(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29) > xydat = data.frame(y = c(y, x), x = gl(2, length(x)), block = factor(rep(1:length(x), 2))) > a = as.numeric(rep(x > y, rep(2, length(x)))) > b = rep(c(0, 1), length(x)) > arank = as.numeric(a == b) * rep(rank(abs(x - y)), rep(2, length(x))) > d = data.frame(d.x = rep(0:1, length(x)), d.y=c(x, y), block = factor(rep(1 : length(x), rep(2, length(x))))) > independence_test(d.y ~ d.x block, data = d, ytrafo = function(data) numeric_trafo = arank)
23 X:numeric, Y: numeric 인경우 Test p q Comments Spearman 1 1 #(B)=1, weight=1 Maximally selected statistic #(G)-1 1 #(G)= 서로다른 X i 들의개수 #(B)=1, weight=1
24 max_stat() 함수 : maximally selected statistic X 의가능한모든값을기준으로두그룹으로나눈후, 통계량의최대값으로두그룹의모평균이서로동일한지를검정하기위한최대선택통계량검정 (Müller & Hothorn, 2004) Data: { X i, Y i, w i = 1, b i = 1, i = 1,, n} X i, Y i : i 번째개체의관측값 X (1) < < X (p) < X p+1 : 서로다른 X 의값
25 max_stat() 함수 : maximally selected statistic Transformations g X i = I X i X 1,, I X i X p, i = 1, n h Y i = Y i, i = 1,, n R-code > independence_test(counts ~ coverstorey, data = treepipit, xtrafo = function(data) trafo(data, numeric_trafo = maxstat_trafo), teststat = "max")
26 X:factor, Y: factor 인경우 Test p q Comments Chi-square #(R) #(C) #(R)=2 차원분할표의행수 #(C)=2 차원분할표의열수 n =#(R) #(C) #(B)=1, weight= 셀빈도 Independent pair data CMH #(R) #(C) #(R)=2 차원부분분할표의행수 #(C)=2 차원부분분할표의열수 #(B)= 제어변수의수준수 n =#(B) #(R) #(C), weight= 셀빈도 Linear-by-linear 1 1 #(B)= 제어변수의수준수 n =#(B) #(R) #(C), weight= 셀빈도 Matchedpair data Marginal homogeneity 1 #(I) #(B)=I I 2 차원분할표의총셀빈도 #(I)=I I 2 차원분할표의행수 ( 열수 ) n =2 #(B), weight=1
27 cmh_test() 함수 : independent pair data 3 차원분할표에서두범주형변수의조건부독립성을검정하기위한 Cochran-Mantel- Haenszel 검정 (Cochran, 1954; Mantel & Haenszel, 1959) X, Y 의범주수가각각 p, q 개이고, 제어변수 (block 변수 ) 의범주수는 k 개라고가정 Data: { X i, Y i, w i, b i, i = 1,, n(= p q k)} X i, Y i : i 번째 X, Y 범주쌍의값 (X i = 1,, p; Y i = 1,, q) w i : i 번째 X, Y 범주쌍의관측개체수 b i :i 번째 X, Y 범주쌍의속한 block 값 (b i = 1,, k)
28 cmh_test() 함수 : independent pair data Transformatrion g X i = I X i = 1,, I X i = p, i = 1,, n h Y i = I Y i = 1,, I Y i = q, i = 1,, n R-code > independence_test(job.satisfaction ~ Income Gender, data = jobsatisfaction, weights = ~ as.vector(jobsatisfaction), teststat = "quad")
29 X:factor, Y: factor 인경우 Test p q Comments Chi-square #(R) #(C) #(R)=2 차원분할표에서행수 #(C)=2 차원분할표에서열수 n =#(R) #(C) #(B)=1, weight= 셀빈도 Independent pair data CMH #(R) #(C) #(R)=2 차원부분분할표에서행수 #(C)=2 차원부분분할표에서열수 #(B)= 제어변수의수준수 n =#(B) #(R) #(C), weight= 셀빈도 Linear-by-linear 1 1 #(B)= 제어변수의수준수 n =#(B) #(R) #(C), weight= 셀빈도 Matchedpair data Marginal homogeneity 1 #(I) #(B)=I I 2 차원분할표의총셀빈도 #(I)=I I 2 차원분할표행수 ( 열수 ) n =2 #(B), weight=1
30 mh_test () 함수 : matched-pair data 대응비교처럼한쌍 ( 예, 대조군대시험군 ) 으로부터얻어진관측값을행과열의범주값으로하는 q q 2 차원분할표에서, Original data: { X i, Y i, w i, b i = 1, i = 1,, n (= q 2 )} X i, Y i : i 번째 X, Y 범주쌍의값 (X i, Y i = 1,, q) w i : i 번째 X, Y 범주쌍의관측개체수
31 mh_test () 함수 : matched-pair data 두범주형변수의주변합독립성 ( 혹은주변동질성 ) 을검정을위해 q q 2차원분할표를 k 2 2차원분할표로변형 (Stuart, 1955; Maxwell, 1970) n 변형된분할표에서행은 block을나타내고 ( k = w i i =1 ), 열은서로다른두처리를나타냄 Transformed data: { X i, Y i, w i = 1, b i, i = 1,, n (= 2k)} X i : i번째개체가속한그룹 (X 2j 1 = 1, X 2j = 2, j = 1,, k) Y i : i번째개체의관측값 (Y i = 1,, q) b i : i번째개체가속한 block 값 (b 2j 1 = j = b 2j, j = 1,, k)
32 mh_test () 함수 : matched-pair data Transformation g X i = I X i = 1, i = 1, n h Y i = I Y i = 1,, I Y i = q, i = 1,, n
33 mh_test () 함수 : matched-pair data R-code > opinions = c("always wrong", "almost always wrong","wrong only sometimes", "not wrong at all") > PreExSex = as.table(matrix(c(144, 33, 84, 126, 2, 4, 14, 29,0, 2, 6, 25, 0, 0, 1, 5), nrow = 4, dimnames = list(premaritalsex = opinions, ExtramaritalSex = opinions))) > cw = rep(names(margin.table(preexsex, 2)), as.vector(margin.table(preexsex, 2))) > rw = rep(rep(rownames(preexsex), times = dim(preexsex)[2]), as.vector(preexsex)) > y = factor(c(rw, cw), levels = rownames(preexsex)) > x = c(rep(1, sum(preexsex)), rep(0, sum(preexsex))) > block = factor(rep(1:sum(preexsex), 2)) > mh.preexsex = data.frame(x = x, y = y, block = block) > independence_test(y ~ x block, data = mh.preexsex, teststat = "quad")
34 Illustrative examples Test Dataset No. obs X/Y Log-rank ocacinoma 35 Wilcoxon signed-rank Maximally selected statistic xydat 18 f/n treepipit 86 n/n f/n CMH jobsatisfaction 104 Marginal homogeneity preexsex 475 f/f P 값비교 점근분포에의한 P 값 Permutation test 에기초한 P 값 1,000 번 10,000 번 100,000 번 Exact test 에의한 P 값
35 Illustrative examples
36 Concluding remarks coin 패키지에내장된독립성검정을위한간편함수를 independence_test() 함수로표현두변수 X, Y를적절히변환하였으며, 관측값의 weight와 block 값에대해정의정의한 independence_test() 함수를써서실제자료의점근분포와 permutation test, exact test에기초한 P값을구하고그결과를서로비교 Permutation test 방법은검정통계량의분포를모를때유용한데, 독립성검정에대한실제자료분석에서살펴본것처럼 permutation의횟수가증가함에따라 exact test의결과에가까워질뿐만아니라자료의크기가크면점근분포에의한결과와도유사함을알수있었음본논문에서살펴본 15 개의독립성검정이외다른독립성검정문제에대해서도, 본논문에서한것처럼, 두변수에대해적절한변환을정의하고, weight와 block 값을정의한후에, permutation test 방법에의해영가설분포를모르는검정통계량의 P값을구할수있을것으로기대됨
37 THANK YOU!!!
생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포
생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................
More informationR t-..
R 과데이터분석 집단의차이비교 t- 검정 양창모 청주교육대학교컴퓨터교육과 2015 년겨울 t- 검정 변수의값이연속적이고정규분포를따른다고할때사용 t.test() 는모평균과모평균의 95% 신뢰구간을추청함과동시에가설검증을수행한다. 모평균의구간추정 - 일표본 t- 검정 이가설검정의귀무가설은 모평균이 0 이다 라는귀무가설이다. > x t.test(x)
More informationnonpara1.PDF
Chapter 1 Introduction 1 Introduction (parameter) (assumption) (rank), (median) p-value distribution free, assumption free, statistical inference based on ranks 11 Nonparametric? John Arbuthnot (1710)
More informationChapter 분포와 도수분석
2 χ Chapter 10 분포와도수분석 Chi-square dist n & the analysis of frequencies 2014/5/22 2 χ 10.2 분포의수리적특징 2 χ 의정의 (definition) Z,, Z ~ independent N(0,1) 1 n n i = 1 Z ~ χ 2 2 i n Y µ 2 eg.. Z = i Y ~ N( µσ,
More informationY 1 Y β α β Independence p qp pq q if X and Y are independent then E(XY)=E(X)*E(Y) so Cov(X,Y) = 0 Covariance can be a measure of departure from independence q Conditional Probability if A and B are
More informationG Power
G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2
More informationstatistics
수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지
More information<B0A3C3DFB0E828C0DBBEF7292E687770>
초청연자특강 대구가톨릭의대의학통계학교실 Meta analysis ( 메타분석 ) 예1) The effect of interferon on development of hepatocellular carcinoma in patients with chronic hepatitis B virus infection?? -:> 1998.1 ~2007.12.31 / RCT(2),
More informationMicrosoft PowerPoint - MDA 2008Fall Ch2 Matrix.pptx
Mti Matrix 정의 A collection of numbers arranged into a fixed number of rows and columns 측정변수 (p) 개체 x x... x 차수 (nxp) 인행렬matrix (n) p 원소 {x ij } x x... x p X = 열벡터column vector 행벡터row vector xn xn... xnp
More information<4D F736F F F696E74202D20C0D3BBF3BFACB1B8BFA120C7CABFE4C7D120C5EBB0E820BAD0BCAE F >
임상연구에필요한통계분석 () - 범주형자료에대한분석 - 순천향대중앙의료원의학통계상담실이지성 totoro96@schmc.ac.kr Introduction Categorical data: 그변수가가질수있는값이명목형 (nomial) 척도또는순위형 (ordinal) 척도인경우 명목형척도 : 혈액형 (A,B,AB,O), 성별 ( 남, 여 ) 처럼그값들이서로다르다는것을표현함.
More information자료의 이해 및 분석
어떤실험이나치료의효과를측정할때독립이아닌표본으로부터관찰치를얻었을때처리하는방법 - 동일한개체에어떤처리를하기전과후의자료를얻을때 - 가능한동일한특성을갖는두개의개체에서로다른처리를하여그처리의효과를비교하는방법 (matching) 1 예제 : 혈청 cholesterol 치를줄이기위해서 12 명을대상으로운동과함께식이요법의효과를 측정하기위한실험실시 2 식이요법 - 운동실험전과후의
More informationPowerPoint 프레젠테이션
Lec. 2 : Introduction to R Part 2 Big Data Analytics Short Course 17. 07. 04 R 의데이터구조 : Factor factor() : factor 생성하기 > region = c("a","a","b","c","d") > region [1] "A" "A" "B" "C" "D" > class(region)
More information의학연구자료의 생존분석
의학연구자료의생존분석 김호 서울대학교보건대학원 모집단과표본 모집단 모수 표본 추정치 Y,, 1 Yn 2 N(, ) 1 n Y Y i n i 1 n 2 1 2 ( i ) n 1 i 1 S Y Y 모수 : 가정한모형의통계적성질을완전히결정하는상수 ( 들 ) Y=a+b x 2 N(, ) 1 ( x ) exp 2 2 2 2 Y1, Y2, Yn 2 Yn, Sn 관심모수
More informationMicrosoft PowerPoint - IPYYUIHNPGFU
분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준
More informationMicrosoft Word - SAS_Data Manipulate.docx
수학계산관련 함수 함수 형태 내용 SIN(argument) TAN(argument) EXP( 변수명 ) SIN 값을계산 -1 argument 1 TAN 값을계산, -1 argument 1 지수함수로지수값을계산한다 SQRT( 변수명 ) 제곱근값을계산한다 제곱은 x**(1/3) = 3 x x 1/ 3 x**2, 세제곱근 LOG( 변수명 ) LOGN( 변수명 )
More informationVector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표
Vector Differential: 벡터 미분 Yonhee Lee October 7, 08 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표기법을 정의하는 방법이다 보통 스칼라(scalar)에 대한 미분은 일분수 함수 f : < < 또는 다변수 함수(function
More information자료의 이해 및 분석
7. 평균치비교 1 두집단간평균차이검정 2 연속형변수 Interval scale( 간격척도 ) : 20 C, 30 C,, 변수간의가감가능 Ratio scale( 비척도 ) : 12, 13세, 변수간의가감승제모두가능 범주형자료로변환하여다양한분석가능 ( 연령 10 대, 20 대, 30 대.) 3 범주형자료의기술 분할표 (Contingency table) : 범주형자료를각변수별값의
More information歯안주엽홍서연원고.PDF
: *1 ), **2 ) 15~20%.,. -. 3 (2000 ) 15 29.,..... 1996 2.0%, 426.,,. 19805.2%(748 )1987 3~4%. 1990 1993 2.8%, 1988 2%., 1997. 19981999 6.8%, 6.3%... 1990 2.0%, 15~19 8~11%, 20~246~8%, 25~29 * ** 3~5%.,,.
More information제장 2 비모수 검정(NONPARAMETRIC ANALYSIS) ③ 연구자는 SPSS 출력결과에서 유의확률을 확인하여 귀무가설(H0 )의 기각, 채택 여부를 결정한다. 예를 들어 연구자가 연구자료의 정규성을 검정하기 위하여 유 의수준을 α = 0.05로 설정하고 SPS
제장 비모수 검정(nonparametric analysis) 모집단의 분포를 알 수 없거나 모집단이 정규분포를 따른다고 가정할 수 없는 경우에는 모수적 검정을 사용할 수 없다. 이 경우에 자료의 부호나 순위로 가설 검정을 실시하며 이러한 검정 방법을 비모수 검정이라고 한다. 제절 적합도 검정(goodness of fit test) 주어진 자료가 어떠한 통계적
More information-주의- 본 교재는 최 상위권을 위한 고난이도 모의고사로 임산부 및 노약자의 건강에 해로울 수 있습니다.
Intensive Math 극악 모의고사 - 인문계 등급 6점, 등급 점으로 난이도를 조절하여 상위권 학생들도 불필요한 문제에 대한 시간 낭비 없이 보다 많은 문제에서 배움을 얻을 수 있도록 구성하였습니다. 단순히 어렵기만 한 문제들의 나열이 아니라 수능에 필요한 대표 유형을 분류 하고 일반적인 수험환경에서 흔하게 배울 수 있는 내용들은 과감하게 삭제 수능시험장
More information<FEFF11121162110211611106116E002D1107116911B71112116900330036002E0069006E0064006400000000000093782FC816B427590034001CBDFC1B558B202E6559E830EB00000000937C28D9>
02 04 06 14 16 19 24 26 27 28 31 3 4 5 세상과 (소통)하다!! 세상과 (소통)하다!! 세상과 (소통)하다!! 6 7 건강지원 프로그램으로 굳어져가는 몸과 마음을 풀어보아요~ 8 9 새해 복 많이 받으세요~ 10 11 12 13 14 15 14 14 14 14 15 15 16 17 18 19 20 21 방과 후 교실(해나무 주간보호센터
More informationuntitled
Math. Statistics: Statistics? 1 What is Statistics? 1. (collection), (summarization), (analyzing), (presentation) (information) (statistics).., Survey, :, : : QC, 6-sigma, Data Mining(CRM) (Econometrics)
More information모수검정과비모수검정 제 6 강 지리통계학
모수검정과비모수검정 제 6 강 지리통계학 통계적추정의목적 연구자가주장하는연구가설을입증하기위한것 1 연구목적에맞는연구가설을설정 2 연구목적과수집된자료에부합되는적절한통계적검정방법을선택 3 귀무가설과연구가설 ( 대립가설 ) 을진술 4 유의수준을결정한후각분포유형에따라분포표를이용하여임계치를구하고기각역을설정 5 통계적검정유형에필요한통계량을각검정유형의공식을이용하여계산 6
More information(001~006)개념RPM3-2(부속)
www.imth.tv - (~9)개념RPM-(본문).. : PM RPM - 대푯값 페이지 다민 PI LPI 알피엠 대푯값과산포도 유형 ⑴ 대푯값 자료 전체의 중심적인 경향이나 특징을 하나의 수로 나타낸 값 ⑵ 평균 (평균)= Ⅰ 통계 (변량)의 총합 (변량의 개수) 개념플러스 대푯값에는 평균, 중앙값, 최 빈값 등이 있다. ⑶ 중앙값 자료를 작은 값부터 크기순으로
More information쿠폰형_상품소개서
브랜드이모티콘 쿠폰형 상품 소개서 카카오톡 브랜드이모티콘 잘 만든 브랜드이모티콘 하나, 열 마케팅 부럽지 않다! 카카오톡 브랜드이모티콘은 2012년 출시 이후 강력한 마케팅 도구로 꾸준히 사랑 받고 있습니다. 브랜드 아이덴티티를 잘 반영하여 카카오톡 사용자의 적극적인 호응과 브랜딩 지표 향상을 얻고 있는 강력한 브랜드 아이템입니다. Open
More information슬라이드 1
대한의료관련감염관리학회학술대회 2016년 5월 26일 ( 목 ) 15:40-17:40 서울아산병원동관 6층대강당서울성심병원김지형 기능, 가격, 모든것을종합 1 Excel 자료정리 2 SPSS 학교에서준다면설치 3 통계시작 : dbstat 4 Web-R : 표만들기, 메타분석 5 R SPSS www.cbgstat.com dbstat 직접 dbstat 길들이기
More information설계란 무엇인가?
금오공과대학교 C++ 프로그래밍 jhhwang@kumoh.ac.kr 컴퓨터공학과 황준하 6 강. 함수와배열, 포인터, 참조목차 함수와포인터 주소값의매개변수전달 주소의반환 함수와배열 배열의매개변수전달 함수와참조 참조에의한매개변수전달 참조의반환 프로그래밍연습 1 /15 6 강. 함수와배열, 포인터, 참조함수와포인터 C++ 매개변수전달방법 값에의한전달 : 변수값,
More informationANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행
Ch4 one-way ANOVA ANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행 One-way ANOVA 란? Group Sex pvas NSAID
More informationMicrosoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt
수명분포및신뢰도의 통계적추정 포항공과대학교산업공학과전치혁.. 수명및수명분포 수명 - 고장 까지의시간 - 확률변수로간주 - 통상잘알려진분포를따른다고가정 수명분포 - 확률밀도함수또는 누적 분포함수로표현 - 신뢰도, 고장률, MTTF 등신뢰성지표는수명분포로부터도출 - 수명분포추정은분포함수관련모수의추정 누적분포함수및확률밀도함수 누적분포함수 cumulav dsbuo
More informationMulti-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구
Siamese Neural Network 박천음 강원대학교 Intelligent Software Lab. Intelligent Software Lab. Intro. S2Net Siamese Neural Network(S2Net) 입력 text 들을 concept vector 로표현하기위함에기반 즉, similarity 를위해가중치가부여된 vector 로표현
More information11장 포인터
누구나즐기는 C 언어콘서트 제 9 장포인터 이번장에서학습할내용 포인터이란? 변수의주소 포인터의선언 간접참조연산자 포인터연산 포인터와배열 포인터와함수 이번장에서는포인터의기초적인지식을학습한다. 포인터란? 포인터 (pointer): 주소를가지고있는변수 메모리의구조 변수는메모리에저장된다. 메모리는바이트단위로액세스된다. 첫번째바이트의주소는 0, 두번째바이트는 1, 변수와메모리
More informationcat_data3.PDF
( ) IxJ ( 5 0% ) Pearson Fsher s exact test χ, LR Ch-square( G ) x, Odds Rato θ, Ch-square Ch-square (Goodness of ft) Pearson cross moment ( Mantel-Haenszel ), Ph-coeffcent, Gamma (γ ), Kendall τ (bnary)
More informationR
R 과데이터분석 상관관계 양창모 청주교육대학교컴퓨터교육과 2015 년여름 양창모 ( 청주교육대학교컴퓨터교육과 ) Data Analysis using R 2015 년여름 1 / 20 상관관계 양적변수quantitative variables 사이의관계relationships를나타내기위하여상관계수correlation coefficients를사용한다. ± 기호를사용하여관계의방향을나타낸다.
More information1 1 Department of Statistics University of Seoul August 28, 2017 확률분포 누적분포함수 확률공간이정의되었다고가정하자. 즉, 어떤사건 A 에대해서 P(A) 를항상생각할수있다고가정하자. 어떤확률변수 X 주어졌을때 Pr(X x) = P(X (, x]) 로정의하면 Pr(X x) 의값을모든 x 에대해생각할수있다. F
More informationPowerPoint 프레젠테이션
응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 15 장공분산분석 1. 공분산분석의통계적모형 2. 공분산분석에의한처리효과검정 3. 공분산분석과정 - 실습 - 회귀분석 두확률변수간에관계가있는지검정
More information3.2 함수의정의 Theorem 6 함수 f : X Y 와 Y W 인집합 W 에대하여 f : X W 는함수이다. Proof. f : X Y 가함수이므로 f X Y 이고, Y W 이므로 f X W 이므로 F0이만족된다. 함수의정의 F1, F2은 f : X Y 가함수이므로
3.2 함수의정의 Theorem 6 함수 f : X Y 와 Y W 인집합 W 에대하여 f : X W 는함수이다. Proof. f : X Y 가함수이므로 f X Y 이고, Y W 이므로 f X W 이므로 F0이만족된다. 함수의정의 F1, F2은 f : X Y 가함수이므로성립한다. Theorem 7 두함수 f : X Y 와 g : X Y 에대하여, f = g f(x)
More information고차원에서의 유의성 검정
고차원에서의유의성검정 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 1 / 15 학습내용 FDR(false discovery rate) SAM(significance analysis of microarray) FDR 에대한베이지안해석 박창이 ( 서울시립대학교통계학과 ) 고차원에서의유의성검정 2 / 15 서론 I 고차원데이터에서변수들에대한유의성검정
More informationMicrosoft PowerPoint - 26.pptx
이산수학 () 관계와그특성 (Relations and Its Properties) 2011년봄학기 강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계
More informationUI TASK & KEY EVENT
2007. 2. 5 PLATFORM TEAM 정용학 차례 CONTAINER & WIDGET SPECIAL WIDGET 질의응답및토의 2 Container LCD에보여지는화면한개 1개이상의 Widget을가짐 3 Container 초기화과정 ui_init UMP_F_CONTAINERMGR_Initialize UMP_H_CONTAINERMGR_Initialize
More informationPowerPoint 프레젠테이션
응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 - 1. 분산분석 2. 회귀분석 준비 R과 R studio 설치 https://cran.r-project.org/bin/windows/base/ R 다운로드후설치 https://www.rstudio.com/products/rstudio/download/#download
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationnonpara6.PDF
6 One-way layout 3 (oneway layout) k k y y y y n n y y K yn y y n n y y K yn k y k y k yknk n k yk yk K y nk (grand mean) (SST) (SStr: ) (SSE= SST-SStr), ( 39 ) ( )(rato) F- (normalty assumpton), Medan,
More informationMicrosoft PowerPoint - ch07 - 포인터 pm0415
2015-1 프로그래밍언어 7. 포인터 (Pointer), 동적메모리할당 2015 년 4 월 4 일 교수김영탁 영남대학교공과대학정보통신공학과 (Tel : +82-53-810-2497; Fax : +82-53-810-4742 http://antl.yu.ac.kr/; E-mail : ytkim@yu.ac.kr) Outline 포인터 (pointer) 란? 간접참조연산자
More informationProbabilistic graphical models: Assignment 3 Seung-Hoon Na June 7, Gibbs sampler for Beta-Binomial Binomial및 beta분포는 다음과 같이 정의된다. k Bin(n, θ):
Probabilistic graphical models: Assignment 3 Seung-Hoon Na June 7, 207 Gibbs sampler for Beta-Binomial Binomial및 beta분포는 다음과 같이 정의된다. k Bin(n, θ): binomial distribution은 성공확률이 θ인 시도에서, n번 시행 중 k번 성공할 확률
More informationPowerPoint 프레젠테이션
응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 13 장상관분석 1. 상관계수 2. 상관분석의가정과특성 3. 모상관계수의검정과신뢰한계 4. 순위상관 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 - 실습 - 상관분석 지금까지한가지확률변수에의한현상을검정하였다.
More informationMicrosoft PowerPoint - chap_2_rep.ppt [호환 모드]
제 강.1 통계적기초 확률변수 (Radom Variable). 확률변수 (r.v.): 관측되기전까지는그값이알려지지않은변수. 확률변수의값은확률적실험으로부터결과된다. 확률적실험은실제수행할수있는실험뿐아니라가상적실험도포함함 (ex. 주사위던지기, [0,1] 실선에점던지기 ) 확률변수는그변수의모든가능한값들의집합에대해정의된알려지거나알려지지않은어떤확률분포의존재가연계됨 반면에,
More information3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료
3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료 분포형태, 상대적위치, 극단값 분포형태 z-값 체비셰프의원리 경험법칙 극단값찾기 분포형태 : 왜도 (skewness) 분포형태를측정하는중요한척도중하나를 왜도 라고한다. 자료집합의왜도를구하는계산식은조금복잡하다. 통계프로그램을사용하여왜도를쉽게계산할수있다.
More information확률과통계 강의자료-1.hwp
1. 통계학이란? 1.1 수학적 모형 실험 또는 증명을 통하여 자연현상을 분석하기 위한 수학적인 모형 1 결정모형 (deterministic model) - 뉴톤의 운동방정식 : - 보일-샤를의 법칙 : 일정량의 기체의 부피( )는 절대 온도()에 정비례하고, 압력( )에 반비례한다. 2 확률모형 (probabilistic model) - 주사위를 던질 때
More informationOCW_C언어 기초
초보프로그래머를위한 C 언어기초 4 장 : 연산자 2012 년 이은주 학습목표 수식의개념과연산자및피연산자에대한학습 C 의알아보기 연산자의우선순위와결합방향에대하여알아보기 2 목차 연산자의기본개념 수식 연산자와피연산자 산술연산자 / 증감연산자 관계연산자 / 논리연산자 비트연산자 / 대입연산자연산자의우선순위와결합방향 조건연산자 / 형변환연산자 연산자의우선순위 연산자의결합방향
More information?
한국감정원부동산연구원이만드는 부동산정책및시장분석전문저널 부동산포커스에수록된내용은필자개인의의견이며, 한국감정원부동산연구원의공식적인견해가아님을밝힙니다. 한국감정원부동산연구원홈페이지 (www.kab.re.kr) 를통해부동산포커스에실린기사및논문을제공하고있습니다. Tel:053)663-8135 Fax:053)663-8149 Tel:053)663-8705 Fax:053)663-8709
More informationMicrosoft PowerPoint Relations.pptx
이산수학 () 관계와그특성 (Relations and Its Properties) 2010년봄학기강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계
More informationmethods.hwp
1. 교과목 개요 심리학 연구에 기저하는 기본 원리들을 이해하고, 다양한 심리학 연구설계(실험 및 비실험 설계)를 학습하여, 독립된 연구자로서의 기본적인 연구 설계 및 통계 분석능력을 함양한다. 2. 강의 목표 심리학 연구자로서 갖추어야 할 기본적인 지식들을 익힘을 목적으로 한다. 3. 강의 방법 강의, 토론, 조별 발표 4. 평가방법 중간고사 35%, 기말고사
More information제 1 부 연구 개요
출 문 귀하 보고서를 2011년도 한돈자조금성과분석 및 향후 사업방향 수립에 관한 연구 용역의 최종보고서로 제출합니다. 2012년 7월 수 탁 기 관 : (주) 뉴 프 로 뎁 연 구 책 임 자 : 책 임 연 구 원 김 종 철 참 여 연 구 원 : 연 구 원 연 구 원 연 구 원 김 상 훈 노 혜 자 이 은 정 차 1 부 과업의 개요 23 1 장 과업의 배경
More information제 1 부 연구 개요
2 출 문 차 1 부 과업의 개요 25 귀하 1 장 과업의 목적 27 1. 과업의 목적 및 목표 27 보고서를 2012년도 한돈자조금 성과분석 및 향후 사업방향 수립에 관한 연구 용역의 최종보고서로 제출합니다. 2013년 2월 제 2 장 주요 과업 내용 29 1. 과업 진행 과정 29 2. 과정별 수행 방법 30 가. 한돈자조금사업의 경제적 성과분석 30 나.
More informationch3.hwp
미디어정보처리 (c) -4 한남대 정보통신멀티미디어학부 MCCLab. - -...... (linear filtering). Z k = n i = Σn m Σ j = m M ij I ji 컨볼루션 영역창 I I I I 3 I 4 I 5 I 6 I 7 I 8 x 컨볼루션 마스크 M M M M 3 M 4 M 5 M 6 M 7 M 8 I 입력 영상 Z 4 = 8 k
More informationPowerPoint 프레젠테이션
03 모델변환과시점변환 01 기하변환 02 계층구조 Modeling 03 Camera 시점변환 기하변환 (Geometric Transformation) 1. 이동 (Translation) 2. 회전 (Rotation) 3. 크기조절 (Scale) 4. 전단 (Shear) 5. 복합변환 6. 반사변환 7. 구조변형변환 2 기하변환 (Geometric Transformation)
More informationμ σ σ μ σ μ σ σ 시체결가 정산가 정산가 > 유지증거금률 σ ~ ~ ~ ~ ~ σ ~ ~ ~ ~ σ ~ ~ 기간 1 : 2010.1.4.~2010.10.8. 기간 2 : 2010.10.11.~2011.10.7. 기간 3 : 2011.10.10.~2012.12.28. 기간 4 : 2013.1.2.~2013.3.29. 기간 5 : 2013.4.1.~2014.4.4.
More information<C7A5C1F620BEE7BDC4>
연세대학교 상경대학 경제연구소 Economic Research Institute Yonsei Universit 서울시 서대문구 연세로 50 50 Yonsei-ro, Seodaemun-gS gu, Seoul, Korea TEL: (+82-2) 2123-4065 FAX: (+82- -2) 364-9149 E-mail: yeri4065@yonsei.ac. kr http://yeri.yonsei.ac.kr/new
More information의학연구자료의 생존분석
의학연구자료의생존분석 김호 서울대학교보건대학원 생존분석이란? Time to an event 예 : 사망, 질병발생혹은재발, 기업도산, 재범시간, 등다양함 2 가지특성 : 시간은대부분정규분포가아님 중도절단 (censoring) 을고려해야함 연구의종료 추적의실패 Withdraw from the study (drop out) Death from unrelated
More information에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -
에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 - . - 2 - . 1. - 3 - [ 그림 1] 도시가스수요와실질 GDP 추이 - 4 - - 5 - - 6 - < 표 1>
More informationGray level 변환 및 Arithmetic 연산을 사용한 영상 개선
Point Operation Histogram Modification 김성영교수 금오공과대학교 컴퓨터공학과 학습내용 HISTOGRAM HISTOGRAM MODIFICATION DETERMINING THRESHOLD IN THRESHOLDING 2 HISTOGRAM A simple datum that gives the number of pixels that a
More informationLaTeX. [width=1em]Rlogo.jpg Sublime Text. ..
L A TEX 과 을결합한문서작성 Sublime Text 의활용 2015. 01. 31. 차례 1 L A TEX 과활용에유용한 Sublime text 2 LaTeXing 과 Extend 3 LaTeXing 의 Snippet 을활용한 L A TEX 편집 4 L A TEX 과을결합한문서작성 5 Reproducible Research 의응용 활용에 유용한 Sublime
More informationR R ...
R과 데이터분석 R 데이터 양창모 청주교육대학교 컴퓨터교육과 2015년 겨울 R에서 지원하는 데이터 타입 I R에서는 일반적인 프로그래밍 언어에서 흔히 사용되는 정수, 부동소수, 문자열이 기본적으로 지원된다. I 그외에도 자료처리에 적합한 자료구조인 벡터vector, 행렬matrix, 데이터 프레임data frame, 리스트list 등이 있다. R에서 지원하는
More informationMicrosoft PowerPoint - chap_11_rep.ppt [호환 모드]
제 11 강 111 자기상관 Autocorrelation 자기상관의본질 11 유효성 (efficiency, accurate estimation/prediction) 을위해서는모든체계적인정보가회귀모형에체화되어있어야함 표본의무작위성 (randomness) 은서로다른관측치들에대한오차항들이상관되어있지말아야함을의미함 자기상관 (Autocorrelation) 은이러한표본의무작위성을위반하게만드는오차항에있는체계적패턴임
More information01
2019 학년도대학수학능력시험 9 월모의평가문제및정답 2019 학년도대학수학능력시험 9 월모의평가문제지 1 제 2 교시 5 지선다형 1. 두벡터, 모든성분의합은? [2 점 ] 에대하여벡터 의 3. 좌표공간의두점 A, B 에대하여선분 AB 를 로외분하는점의좌표가 일때, 의값은? [2점] 1 2 3 4 5 1 2 3 4 5 2. lim 의값은? [2점] 4. 두사건,
More information기본자료형만으로이루어진인자를받아서함수를결과값으로반환하는고차함수 기본자료형과함수를인자와결과값에모두이용하는고차함수 다음절에서는여러가지예를통해서고차함수가어떤경우에유용한지를설명한다. 2 고차함수의 예??장에서대상체만바뀌고중간과정은동일한계산이반복될때함수를이용하면전체연산식을간 단
EECS-101 전자계산입문 고차함수 박성우 2008년5월 29일 지금까지정수나부동소수와같은기본적인자료형의조합을인자로받고결과값으로반환하는 함수에대해서배웠다. 이번강의에서는함수자체를다른함수의인자로이용하거나결과값으로 이용하는 방법을 배운다. 1 고차함수의 의미 계산은무엇을어떻게처리하여결과값을얻는지설명하는것으로이루어진다. 여기서 무엇 과 결 과값 은계산의대상체로서정수나부동소수와같은기본자료형의조합으로표현하며,
More informationuntitled
int i = 10; char c = 69; float f = 12.3; int i = 10; char c = 69; float f = 12.3; printf("i : %u\n", &i); // i printf("c : %u\n", &c); // c printf("f : %u\n", &f); // f return 0; i : 1245024 c : 1245015
More informationMicrosoft PowerPoint - SBE univariate5.pptx
이상치 (outlier) 진단및해결 Homework 데이터 ( Option.XLS) 결과해석 치우침? 평균이중앙값에비해다소크다. 그러나이상치때문이지치우친것같지않음. Toys us 스톡옵션비율이이상치 해결방법 : Log 변환? 아니다치우쳐있지않기때문에제거 제거후 : 평균 :.74, 중위수 :.7 31 치우침과이상치 데이터 : 노트북평가점수 우로치우침과이상치가존재
More information<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>
제 3 강계량경제학 Review Par I. 단순회귀모형 I. 계량경제학 A. 계량경제학 (Economerics 이란? i. 경제적이론이설명하는경제변수들간의관계를경제자료를바탕으로통 계적으로추정 (esimaion 고검정 (es 하는학문 거시소비함수 (Keynse. C=f(Y, 0
More informationPowerPoint 프레젠테이션
11 곡선과곡면 01 Spline 곡선 02 Spline 곡면 03 Subdivision 곡면 C n 연속성 C 0 연속성 C 1 연속성 2 C 2 연속성 01 Spline 곡선 1. Cardinal Spline Curve 2. Hermite Spline Curve 3. Bezier Spline Curve 4. Catmull-Rom Spline Curve 5.
More information(3) 추론에서계산이모수적방법보다훨씬단순. (4) 사용자가이의논리를스스로발견하게하며이해하기쉬움. (5) 표본이정규분포를따를때에도검정력에큰손실이없으며, 정규분포와상이한경우에이의검정력은정규분포에의한방법보다크다. 3. 부호검정 (Sg test) 모집단의중앙값에대한검정으로관찰
제 3 장. 비모수적방법 (Dstrbuto-free Method) 모수적방법 (parametrc method): 관측값이어느특정한확률분포, 예를들면정규분포, 이항분 포등을따른다고전제한후그분포의모수 (parameter) 에대한검정을실시하는방법이다. 비모수적방법 (oparametrc method): 관측값이어느특정한확률분포를따른다고전제할수 없거나또는모집단에대한아무런정보가없는경우에실시하는검정방법으로모수에대한언급이없으며분포무관방법이라고도한다.
More informationPowerPoint Presentation
09 th Week Correlation Analysis 상관관계분석 Jongseok Lee Business Administration Hallym University 변수형태와통계적분석방법 H 0 : X ㅗ Y H 1 : X ~ Y X Categorical Y Categorical Chi-square Test X Categorical Y Numerical
More information완벽한개념정립 _ 행렬의참, 거짓 수학전문가 NAMU 선생 1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에
1. 행렬의참, 거짓개념정리 1. 교환법칙과관련한내용, 는항상성립하지만 는항상성립하지는않는다. < 참인명제 > (1),, (2) ( ) 인경우에는 가성립한다.,,, (3) 다음과같은관계식을만족하는두행렬 A,B에대하여 AB=BA 1 가성립한다 2 3 (4) 이면 1 곱셈공식및변형공식성립 ± ± ( 복호동순 ), 2 지수법칙성립 (은자연수 ) < 거짓인명제 >
More informationMicrosoft Word - skku_TS2.docx
Statistical Package & Statistics Univariate : Time Series Data () ARMA 개념 ARIMA(Auto-Regressive Integrated Moving-Average) 모형은시계열데이터 { Y t } 의과거치 (previous observation Y t 1,,... ) 들이설명변수인 AR 과과거의오차항 (
More information모수검정을위한가정 1 종속변수가양적변수이어야함 2 모집단분포가정규분포 3 등분산가정 (equal variance assumption) 이충족되어야함 error term or residual = 이들가정은약자로 NID (0, σ 2 ) 로표현 : Normally, Ind
강의 5 추리통계를위한가설검정 : 모수, 비모수통계선택 6. 모수 - 비모수통계선택과정 표본평균차이검정방법 - 1 - 모수검정을위한가정 1 종속변수가양적변수이어야함 2 모집단분포가정규분포 3 등분산가정 (equal variance assumption) 이충족되어야함 error term or residual = 이들가정은약자로 NID (0, σ 2 ) 로표현
More information11.8.HUHkoreanrock.hwp
한국 록의 철학적 조건들 - 음악을 듣는 귀, 음악을 보는 눈 1) 허경 프랑스 스트라스부르 마르크 블로흐대학 0. 나는 너다(I is You). 이 글의 나 는 보편적 나, 즉 너 이다. 따라서 이 글의 나 는 이 글을 읽는 바로 당신, 즉 너 이다. 1. 동대문구 이문동의 어느 국민학생이... 1974년 8월의 어느 늦여름 저녁. 국민학교 4학년생인 나는
More informationChapter 11 비모수 및 무분포통계학
Chapter 12 비모수통계학 (nonparametric analysis) 2017/6/5 9.1 머리말 (introduction) 모수적방법 모집단의분포를가정 그분포는모수의함수 모수를알면분포를완전히안다. 모수의추정과검정이주요문제 모집단의분포가정이틀리면전체논리가다틀리게된다. Parametric approach * assumes dist n of the pop
More informationuntitled
기본연구 2008-05 문화산업 지원정책 평가모형 연구 - 사회회계행렬(SAM) 승수분석 2008.11 옥성수 (한국문화관광연구원) 연구책임 : 옥성수(한국문화관광연구원 책임연구원) 공동연구 : 노용환 (서울여자대학교 경제학과 교수) 연구보조 : 박강민(고려대학교 대학원 영상문화학 석사) 서 문 본 연구에서는 문화산업에 대한 지원정책이 다른 산업 및 다른
More informationPowerPoint Template
JavaScript 회원정보 입력양식만들기 HTML & JavaScript Contents 1. Form 객체 2. 일반적인입력양식 3. 선택입력양식 4. 회원정보입력양식만들기 2 Form 객체 Form 객체 입력양식의틀이되는 태그에접근할수있도록지원 Document 객체의하위에위치 속성들은모두 태그의속성들의정보에관련된것
More informationMicrosoft PowerPoint - additional01.ppt [호환 모드]
1.C 기반의 C++ part 1 함수 오버로딩 (overloading) 디폴트매개변수 (default parameter) 인-라인함수 (in-line function) 이름공간 (namespace) Jong Hyuk Park 함수 Jong Hyuk Park 함수오버로딩 (overloading) 함수오버로딩 (function overloading) C++ 언어에서는같은이름을가진여러개의함수를정의가능
More information(Microsoft PowerPoint - Ch19_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345])
수치해석 6009 Ch9. Numerical Itegratio Formulas Part 5. 소개 / 미적분 미분 : 독립변수에대한종속변수의변화율 d vt yt dt yt 임의의물체의시간에따른위치, vt 속도 함수의구배 적분 : 미분의역, 어떤구간내에서시간 / 공간에따라변화하는정보를합하여전체결과를구함. t yt vt dt 0 에서 t 까지의구간에서곡선 vt
More informationR Cookbook
일반통계 with R 귀무가설아무것도일어나지않은경우. 해당변수들이서로독립적이다. 대립가설귀무가설과반대되는가설. 무엇인가일어난경우. 해당변수들이서로독립적이지않다. 가설검정과정 1. 귀무가설이참이라고가정. 2. 검정통계량을계산. 표본의평균처럼단순한것일수도있고, 복잡한것일수도있다. 해당통계의분포는알아야함. 표본평균의분포는중심극한정리를사용하면된다. 3. 통계량과그것의분포로부터
More informationPowerPoint 프레젠테이션
제 5 장 다변량확률변수 제 5 장다변량확률변수 5. 다변량확률변수. 분포함수 < 예 > 품질에따라제품을,, 3 등급으로분류 전체생산량중각등급의비율에관심 = n개중 등급의수 n Y = Y = n개중 등급의수 3 등급의수 ( Y) (, ) 와 Y를함께묶어서 Y 로나타내고함께분석, 는 변량확률변수 일반적으로서로관련있는개의확률변수 을함께묶어 n변량 ( 또는 n차원
More information이 장에서 사용되는 MATLAB 명령어들은 비교적 복잡하므로 MATLAB 창에서 명령어를 직접 입력하지 않고 확장자가 m 인 text 파일을 작성하여 실행을 한다
이장에서사용되는 MATLAB 명령어들은비교적복잡하므로 MATLAB 창에서명령어를직접입력하지않고확장자가 m 인 text 파일을작성하여실행을한다. 즉, test.m 과같은 text 파일을만들어서 MATLAB 프로그램을작성한후실행을한다. 이와같이하면길고복잡한 MATLAB 프로그램을작성하여실행할수있고, 오류가발생하거나수정이필요한경우손쉽게수정하여실행할수있는장점이있으며,
More informationVector Space Vector space : 모든 n 차원컬럼벡터의집합 : {, :, } (, 2), (2, 5), (-2.4, 3), (2.7, -3.77), (,), 이차원공간을모두채움 : {,, :,, } (2,3,4), (3,2,-5), Vector spa
Seoul National University Vector Space & Subspace Date Name: 김종권 Vector Space Vector space : 모든 n 차원컬럼벡터의집합 : {, :, } (, 2), (2, 5), (-2.4, 3), (2.7, -3.77), (,), 이차원공간을모두채움 : {,, :,, } (2,3,4), (3,2,-5),
More information제 11 장포인터 유준범 (JUNBEOM YOO) Ver 본강의자료는생능출판사의 PPT 강의자료 를기반으로제작되었습니다.
제 11 장포인터 유준범 (JUNBEOM YOO) Ver. 2.0 jbyoo@konkuk.ac.kr http://dslab.konkuk.ac.kr 본강의자료는생능출판사의 PPT 강의자료 를기반으로제작되었습니다. 이번장에서학습할내용 포인터이란? 변수의주소 포인터의선언 간접참조연산자 포인터연산 포인터와배열 포인터와함수 이번장에서는포인터의기초적인지식을학습합니다.
More informationMicrosoft Word - Software_Ch2_FUNCTION.docx
Chapter 2 SAS 함수 SAS 함수는소프트웨어에내장되어작업자가손쉽게연산을할수있게데이터값은로그값을계산하려면 LOG() 함수를사용하면된다. 한다. 예를들어 맛보기 EXP() 함수 : () 안의관측치의지수값을구하는함수 RANNOR(seed) 함수 : 평균이 0 이고표준편차가 1인정규분포함수를따르는관측치를생성하는함수, SEED ( 시드 ) 는값을생성할때시작하는위치를나타내는는값으로
More information쉽게배우는알고리즘 6장. 해시테이블 테이블 Hash Table
쉽게배우는알고리즘 6장. 해시테이블 테이블 Hash Table http://academy.hanb.co.kr 6장. 해시테이블 테이블 Hash Table 사실을많이아는것보다는이론적틀이중요하고, 기억력보다는생각하는법이더중요하다. - 제임스왓슨 - 2 - 학습목표 해시테이블의발생동기를이해한다. 해시테이블의원리를이해한다. 해시함수설계원리를이해한다. 충돌해결방법들과이들의장단점을이해한다.
More informationMicrosoft PowerPoint - chap-11.pptx
쉽게풀어쓴 C 언어 Express 제 11 장포인터 컴퓨터프로그래밍기초 이번장에서학습할내용 포인터이란? 변수의주소 포인터의선언 간접참조연산자 포인터연산 포인터와배열 포인터와함수 이번장에서는포인터의기초적인지식을학습한다. 컴퓨터프로그래밍기초 2 포인터란? 포인터 (pointer): 주소를가지고있는변수 컴퓨터프로그래밍기초 3 메모리의구조 변수는메모리에저장된다. 메모리는바이트단위로액세스된다.
More information목차 BUG 문법에맞지않는질의문수행시, 에러메시지에질의문의일부만보여주는문제를수정합니다... 3 BUG ROUND, TRUNC 함수에서 DATE 포맷 IW 를추가지원합니다... 5 BUG ROLLUP/CUBE 절을포함하는질의는 SUBQUE
ALTIBASE HDB 6.3.1.10.1 Patch Notes 목차 BUG-45710 문법에맞지않는질의문수행시, 에러메시지에질의문의일부만보여주는문제를수정합니다... 3 BUG-45730 ROUND, TRUNC 함수에서 DATE 포맷 IW 를추가지원합니다... 5 BUG-45760 ROLLUP/CUBE 절을포함하는질의는 SUBQUERY REMOVAL 변환을수행하지않도록수정합니다....
More informationC# Programming Guide - Types
C# Programming Guide - Types 최도경 lifeisforu@wemade.com 이문서는 MSDN 의 Types 를요약하고보충한것입니다. http://msdn.microsoft.com/enus/library/ms173104(v=vs.100).aspx Types, Variables, and Values C# 은 type 에민감한언어이다. 모든
More information= ``...(2011), , (.)''
Finance Lecture Note Series 사회과학과 수학 제2강. 미분 조 승 모2 영남대학교 경제금융학부 학습목표. 미분의 개념: 미분과 도함수의 개념에 대해 알아본다. : 실제로 미분을 어떻게 하는지 알아본다. : 극값의 개념을 알아보고 미분을 통해 어떻게 구하는지 알아본다. 4. 미분과 극한: 미분을 이용하여 극한값을 구하는 방법에 대해 알아본다.
More information연속형 자료분석 R commander 예제
R commander 를 이용핚통계처리소개 : 사용자편의성이강화된무료의고급통계프로그램 김호 서울대학교보건대학원 Useful sites R is a free software with powerful tools The Comprehensive R Archives Network http://cran.r-project.org/ -> Windows -> base ->
More informationPowerPoint Presentation
Class - Property Jo, Heeseung 목차 section 1 클래스의일반구조 section 2 클래스선언 section 3 객체의생성 section 4 멤버변수 4-1 객체변수 4-2 클래스변수 4-3 종단 (final) 변수 4-4 멤버변수접근방법 section 5 멤버변수접근한정자 5-1 public 5-2 private 5-3 한정자없음
More information