한수지 50(6), 762-769, 207 Original Article Korean J Fish Aquat Sci 50(6),762-769,207 사육밀도에따른쏘가리 (Siniperca scherzeri) 의성장및체조성변화 이상민 김이오 2 * 강릉원주대학교해양생물공학과, 2 충청북도내수면산업연구소 Effect of Stocking Density on the Growth and Body Composition of the Mandarin Fish Siniperca scherzeri Sang-Min Lee and Yi-Oh Kim * Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung 25457, Korea Chungcheongbuk-do Inland Fisheries Research Institute, Chungju 27329, Korea This study investigated the effects of stocking density on the growth of the mandarin fish Siniperca scherzeri, in small (-year old, 50.2 g/fish) and large (2-years old, 73. g/fish) size (age) groups. Small and large fish groups were fed pelleted diets twice daily for 0 and 5 weeks, respectively. In the small group, at the end of the feeding, the weight gain of fish at a density of 4 kg/m 3 was lower than that of fish at densities of 3, 2 and kg/m 3. However, fish stocking density did not affect feed efficiency. The daily feed intake of fish at a density of 4 kg/m 3 was lower than that fish at densities of 3, 2 and kg/m 3. In the large fish group, the weight gain of fish at a density of 4.5 kg/m 3 was higher than that of fish at densities of 6, 3 and.5 kg /m 3. Again, fish stocking density did not affect feed efficiency. The daily feed intake of fish at a density of 4.5 kg/m 3 was higher than that of fish at densities of 6, 3 and.5 kg/m 3. Based on these results, the optimum stocking density for small (50.2 g/fish) and large (73. g/fish) mandarin fish is 3 and 4.5 kg/m 3, respectively. Key words: Mandarin fish, Siniperca scherzeri, Fish size, Stocking density, Growth 서론 (Siniperca scherzeri),., (Kim et al., 988)... (Kim, 205). (Zohreh et al., 207). (Kim and Lee, 206) (Kim and Lee, 207).,.,. 26-29 (Kim and Lee, 206),,.,,, https://doi.org/0.5657/kfas.207.0762 Korean J Fish Aquat Sci 50(6) 762-769, December 207 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licens (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Received 2 November 207; Revised 9 December 207; Accepted 23 December 207 *Corresponding author: Tel: +82. 43. 220. 6522 Fax: +82. 43. 220. 6529 E-mail address: kimio@korea.kr Copyright 207 The Korean Society of Fisheries and Aquatic Science 762 pissn:0374-8, eissn:2287-885
쏘가리의적정사육밀도 763, (Choi et al, 20). (Brett, 979). (Brown et al., 957; Morrissy, 992; McClain, 995; Hwang et al., 204). (Boyce et al., 998; Irwin et al., 999; Rowland et al., 2006; Webb et al., 2007),.,.. 재료및방법 실험어및사육관리 (50.2 g) 2 (73. g). kg/m 3, 2 kg/m 3, 3 kg/m 3 4 kg/m 3 2 0, 2.5 kg/m 3, 3 kg/m 3, 4.5 kg/m 3 6 kg/m 3 2 5. (2,000 L) (3,000 L) 8 (24 ) [ph 6.7-7.8, DO (dissolved oxygen) 6.-7.6]. 8 L/min.,,. 실험사료 80% 20% (Table ). pellet. -25. Table. Ingredient and proximate composition of experimental diets for mandarin fish Siniperca scherzeri Ingredients (%) 어체측정및성분분석 0, 2 5, tricaine methanesulfonate (MS 222, Sigma, St. Louis, MO, USA) 00 ppm. 5 (-25 ). AOAC (995) (N 6.25) Auto Kjeldahl System (Buchi B-324/435/42, Switzerland; Metrohm 8-79/806, Swizerland), ether, 05 dry oven 6. 600 4. 혈액분석 5 ml. 7,500 rpm 0 (-70 ) (DRI-CHEM NX500i, FUJIFILM, Japan) total protein (TP), total cholesterol (TCHO), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), alkaline phosphatase (ALP), total bilirubin (TBIL) albumin (ALB). 통계분석 Small size Diets Large size Commercial diet 80 80 Fish meal 2 20 20 Chemical analysis (% of dry matter basis) Crude protein 53.9 54.7 Crude lipid 7.0 7.2 Ash 0.9.4 Commercial bind powder for eel produced from Purinafeed incorporation (Seongnam, Korea). 2 Mackeral fish meal imported from Chile containing 73% crude protein and 9% crude lipid. SPSS Ver. 20 (SPSS Inc., Chicago, IL, USA) program One-way ANOVA-test Duncan s multiple range test (Duncan, 955).
764 이상민ㆍ김이오 결과및고찰 0, Table 2 Table 3., 4 kg/m 3, 2 3 kg/m 3 (P<0.05),, 2 3 kg/m 3 (P>0.05). (P>0.05). 4 kg/m 3, 2 3 kg/m 3 (P<0.05), 4 kg/m 3, 2 3 kg/m 3 (P<0.05). 5, 2 Table 4 Table 5. 94% (P>0.05). 4.5 kg/ m 3.5 3 kg/m 3 6 kg/m 3 (P<0.05). (P>0.05). 4.5 kg/m 3.5, 3 6 kg/m 3 (P<0.05), 4.5 kg/m 3.5 3 kg/m 3 (P<0.05). (50.2 g) -3 kg/m 3 4 kg/m 3. (4 g) 30-50 /m 3 Table 2. Growth performance and feed efficiency of -year old mandarin fish Siniperca scherzeri fed experiment diet for 0 weeks Stoking density (kg/m 3 ) Initial mean weight (g) Survival (%) Final mean weight (g) Weight gain (%) 2 SGR (%/day) 3 Feed efficiency (%) 4 50.3±0.4 ns 95.0±2.0 b 9.±.65 b 36.7±2.85 b.23±0.02 b 76.8±.05 ns 2 50.4±0.60 95.0±2.0 b 20.9±2.90 b 39.8±7.80 b.25±0.05 b 78.±.5 3 50.2±0.39 95.0±.0 b 3.2±2.85 b 25.4±3.90 b.7±0.03 b 77.2±5.20 4 50.0±0.6 83.0±.0 a 00.3±.75 a 00.5±5.90 a.00±0.05 a 68.±.00 Values (mean±se of replicate groups) in the same column not sharing a common superscript are significantly different (P<0.05). 2 Weight gain (%)=(final body weight - initial body weight) 00/initial body weight. 3 SGR=(Ln final weight of fish Ln initial weight of fish) 00/ days of feeding trial. 4 Feed efficiency (%)=fish wet weight gain 00/feed intake (dry matter). ns Not significant (P>0.05). Table 3. Daily feed intake (DFI), daily protein intake (DPI) and protein efficiency ratio (PER) of -year old mandarin fish Siniperca scherzeri fed experiment diet for 0 weeks Stoking density (kg/m 3 ) DFI (%) 2 DPI (%) 3 PER(%) 4.43±0.0 b 0.72±0.0 b 2.53±0.02 a 2.43±0.05 b 0.78±0.02 b 2.55±0.07 a 3.35±0. b 0.74±0.06 b 2.65±0.2 a 4.04±0.05 a 0.57±0.03 a 3.4±0.3 b Values (mean±se of replicate groups) in the same column not sharing a common superscript are significantly different (P<0.05). 2 Daily feed intake=feed intake 00 / [(initial fish wt.+final fish wt.+dead fish wt.) days reared / 2]. 3 Daily protein intake=protein intake 00 / [(initial fish wt.+final fish wt.+dead fish wt.) days reared / 2]. 4 Protein efficiency ratio=wet weight gain / protein intake. Table 4. Growth performance and feed efficiency of 2-year old mandarin fish Siniperca scherzeri fed experiment diets for 5 weeks Stoking density (kg/m 3 ) Initial mean weight (g) Survival (%) Final mean weight (g) Weight gain (%) 2 SGR (%/day) 3 Feed efficiency (%) 4.5 73.±0.39 ns 94.0±2.00 ns 279.8±6.20 a 6.8±3.95 a 0.46±0.03 a 60.0±2.70 ns 3 73.±.42 97.0±.00 329.9±.65 b 90.6±0.50 b 0.62±0.0 b 62.4±.35 4.5 73.0±0.49 97.5±.50 368.0±3.70 d 2.7±2.80 c 0.72±0.0 c 60.5±.65 6 73.±0.4 94.0±.00 346.5±0.80 c 0.±0.35 b 0.67±0.0 b 60.0±2.20 Values (mean±se of replicate groups) in the same column not sharing a common superscript are significantly different (P<0.05). 2 Weight gain (%)=(final body weight - initial body weight) 00/initial body weight. 3 SGR=(Ln final weight of fish Ln initial weight of fish) 00/ days of feeding trial. 4 Feed efficiency (%)=Fish wet weight gain 00/feed intake (dry matter). ns Not significant (P>0.05).
쏘가리의적정사육밀도 765 60-70 /m 3 (Yi et al., 996). (Watanabe et al., 990; Ahmad et al., 999; Wallat et al., 2004), (Cruz and Ridha, 99; Yi et al., 996; Yi and Kwei Lin, 200). (4 kg/m 3 )., 2 (73. g).5-4.5 kg/m 3 6 kg/m 3 4.5 kg/m 3. 6 kg/m 3.5 kg/m 3 3 kg/m 3,, 6 kg/m 3. (54 g/fish) 30-60 /m 3 70 /m 3 (Yi et al., 996)., (Brown et al., 992; Cruze and Ridha, 99; Hargreaves et al, 99; Irwin et al., 999; Wallat et al., 2004; Watanabe et al., 990)., (Kincaid et al., 976; Lee et al., 996)., (Refstie, 977; Bjoernsson, 994), (King et al., 998; Fairchild and Howell, 200),, (Rowland et al., 2006; Watanabe et al., 990).,., (3 g) 3 kg/m 3 (Yoon et al., 2007), (3-40 g).4-3 kg/ m 3 (Choi et al., 207), (5-5 g).-.8 kg/ m 3 (MOF, 2000), (28 g) 5 kg/m 3 (Kim, 20), (44-60 g) 4.5-6 kg/m 3 (Oh et al., 203), Atlantic salmon (7 g) 86 kg/m 3 (Hosfeld et al., 2009), (80 g) 80 kg/m 3 (North et al., 2006), Atlantic cod (832 g) 30 kg/ m 3 (Lambert and Dutil, 200), red tilapia (75g) 7.5 kg/m 3 (Suresh and Kwei, 992). 3-4.5 kg/m 3, 5 kg/m 3 (Kim, 20),.4-3 kg/m 3 (Choi et al., 207),.-.8 kg/m 3 (MOF, 2000), 3 kg/m 3 (Yoon et al., 2007), (30-86 kg/m 3 ). Table 5. Daily feed intake (DFI), daily protein intake (DPI) and protein efficiency ratio (PER) of 2-year old mandarin fish Siniperca scherzeri fed experiment diet for 5 weeks Stoking density (kg/m 3 ) DFI (%) 2 DPI (%) 3 PER (%) 4.5 0.66±0.04 a 0.35±0.02 a 3.26±0.3 c 3 0.9±0.0 b 0.49±0.0 b 2.52±0.0 b 4.5.0±0.0 c 0.59±0.0 c 2.7±0.0 a 6 0.98±0.02 b 0.53±0.0 b 2.37±0.06 ab Values (mean±se of replicate groups) in the same column not sharing a common superscript are significantly different (P<0.05). 2 Daily feed intake=feed intake 00 / [(initial fish wt.+ final fish wt.+dead fish wt.) days reared / 2]. 3 Daily protein intake=protein intake 00 / [(initial fish wt.+final fish wt.+dead fish wt.) days reared / 2]. 4 Protein efficiency ratio=wet weight gain / protein intake. Table 6. Whole body proximate composition of -year old mandarin fish Siniperca scherzeri fed experiment diet for 0 weeks Stoking density (kg/m 3 ) Moisture (%) Crude protein (%) Crude lipid (%) Ash (%) 73.3±0.9 ns 9.0±0.0 ns 3.84±0.96 ns 5.±0.02 b 2 74.3±.59 7.5±0.8 3.3±.2 4.52±0.02 a 3 72.8±0.97 7.7±.02 3.77±0.2 5.37±0.3 b 4 73.±0.75 8.4±0.20 3.26±0.52 5.9±0.3 b Values (mean±se of replicate groups) in the same column not sharing a common superscript are significantly different (P<0.05). ns Not significant (P>0.05).
766 이상민ㆍ김이오. (50.2 g) (4 kg/m 3 ) 2 (73. g) (6 kg/m 3 )., (Wedemeyer, 996; Paspatis et al., 999; Rowland et al., 2006). (50.2 g) (4 kg/ m 3 ) 2 (73. g). 0 Table 6., (P>0.05). 2 kg/m 3 (P<0.05). 5 2 Table 7. Table 7. Whole body proximate composition of 2-year large mandarin fish Siniperca scherzeri fed experiment diet for 5 weeks Stoking density (kg/m 3 ) Moisture (%) Crude protein (%) Crude lipid (%) Ash (%).5 77.2±0.0 ns 5.6±0.36 a 0.66±0.0 ns.73±0.09 ns 3 76.5±0.23 7.2±.78 ab 0.92±0.20.49±0.26 4.5 76.6±0.25 7.5±.77 ab.2±0.6.59±0.6 6 76.8±0.95 2.4±0.7 b.02±0.07.56±0.04 Values (mean±se of replicate groups) in the same column not sharing a common superscript are significantly different (P<0.05). ns Not significant (P>0.05). Table 8. Plasma chemical composition of -year old mandarin fish Siniperca scherzeri fed experiment diet for 0 weeks Stoking density (kg/m 3 ) 2 3 4 TP (g/dl) 2 4.9±0.20 ns 4.5±0.20 4.±0.30 4.±0.0 Cholesterol (mg/dl), TCHO 3 407.0±4.0 ns 365±35.0 335±30.0 37±2.0 GOT (U/L) 4 33.5±3.50 ns 64.0±4.00 45.5±5.5 57.5±24.5 GPT (U/L) 5 6.0±.00 ns 6.5±0.50 7.0±.00 6.0±0.0 ALP (U/L) 6 358.5±37.5 ns 344.5±36.5 257.0±33.0 69.5±5.5 Bilirubin (mg/dl) 0.5±0.05 ns 0.5±0.05 0.50±0.0 0.50±0.0 Albumin (g/dl) 0.8±0.0 ns 0.7±0.0 0.7±0.0 0.7±0.0 Values are mean±se of replicate groups. 2 TP, Total protein. 3 TCHO, Total cholesterol. 4 GOT, Glutamic oxaloacetic transaminase. 5 GPT, Glutamic pyruvic transaminase. 6 ALP, Alkaline phosphatase. ns Not significant (P>0.05). Table 9. Plasma chemical composition of 2-year old mandarin fish Siniperca scherzeri fed experiment diet for 5 weeks Stoking density (kg/m 3 ).5 3 4.5 6 TP (g/dl) 2 3.8±0.0 ns 3.7±0.0 3.7±0.5 3.7±0.0 Cholesterol (mg/dl), TCHO 3 243.5±.50 ns 25.5±7.5 240.0±9.0 234.5±6.5 GOT (U/L) 4 8.5±4.5 ns 2.0±.00 24.5±3.50 38.5±2.50 GPT (U/L) 5 4.5±0.50 ns 4.0±0.0 4.0±0.0 5.0±0.0 ALP (U/L) 6 25.0±23.0 ns 280.0±79.0 297.5±2.5 282.5±4.5 Triglyceride (mg/dl) 500±0.0 ns 473±27.0 500±0.0 500±0.0 Bilirubin (mg/dl) 0.30±0.0 ns 0.5±0.05 0.25±0.05 0.25±0.5 Albumin (g/dl) 0.65±0.05 ns 0.60±0.0 0.60±0.0 0.60±0.0 Values are mean±se of replicate groups. 2 TP, Total protein. 3 TCHO, Total cholesterol. 4 GOT, Glutamic oxaloacetic transaminase. 5 GPT, Glutamic pyruvic transaminase. 6 ALP, Alkaline phosphatase. ns Not significant (P>0.05).
쏘가리의적정사육밀도 767, (P>0.05)., 6 kg/m 3.5 kg/m 3 (P<0.05).,. 2 Table 8 Table 9. total protein, total cholesterol, GOT, GPT, ALP, bilirubin albumin (P>0.05). GOT GPT transaminase (Kristofferson et al., 974), 2 (6 kg/m 3 ) GOT,., (50.2 g) 3 kg/m 3, 2 (73. g) 4.5 kg/m 3.. 사사 ( ),. References Ahmad TA, El-Zahar C and Wuan TO. 999. Nursing and production of the grouper Epinephelus coioides at different stocking densities in tanks and sea cages. Asian Fish Sci 2, 267-276. AOAC (Association of Official Analytical Chemists). 995. Official Methods of Analysis, 6th edition. Association of Official Analytical Chemists, Arlington, Virginia, U.S.A. Brett JR. 979. Environmental factor and growth. In: Fish physiology, Vol. VIII, Hoar, WS Randall DJ and Brett JR, eds. Academic Press, New York, U.S.A., 599-625. Brown GE, Brown JA and Srivastava RK. 992. The effect of stocking density on the behavior of Arctic charr (Salvelinus alpinus L.). J Fish Biol 42, 955-963. Brown ME. 957. Experimental studies on growth. In: M.E. Brown (Ed.). The Physiology of Fishes. Academic Press, New York, U.S.A., 36-400. Bjornsson B. 994. Effects of stocking density on growth rate of halibut (Hippoglossus hippoglossus L.) reared in large circular tanks for three years. Aquaculture 23, 259-270. https:// doi.org/0.06/0044-8486(94)90064-7. Boyce DL, Purchase CF, Puvanendran V and Brown JA. 998. Designing rearing environments for on-growing of juvenile yellowtail flounder (Pleuronectes ferrugineus). Bull Aquacult Ass Can 2, 23-24. Choi HS, Kim HG, Lee JH, Kim BR and Lee YS. 207. Effects of water temperature, stocking density and size variation on growth of Philippines eel (Anguilla bicolor pacifica) at intensive pond culture system. J Fish Mar Sci Educ 29, 03-020. Choi YU, Park HS and OH SY. 20. Effects of stocking density and feeding frequency on the growth of the pacific cod, Gadus macrocephalus. Korean J Fish Aquat Sci 44, 58-63. Cruz EM and Ridha M. 99. Production of the tilapia Oreochromis spirulus Gunther stocked at different densities in sea cages. Aquaculture 99, 95-03. https://doi. org/0.06/0044-8486(9)90290-n. Duncan DB. 955. Multiple-range and multiple F tests. Biometrics, -42. https://doi.org/0.2307/300478. Fairchild EA and Howell WH. 200. Optimal stocking density for juvenile winter flounder Pseudopleuronectes americanus. J World Aquacult Soc 32, 300-308. https://doi. org/0./j.749-7345.200.tb00453.x Hargreaves JA, Rakocy JE and Bailey DS. 99. Effects of diffused air and stocking density on growth, feed conversion and production of Florida red tilapia in cages. J World Aquacult Soc 22, 24-29. https://doi.org/0./j.749-7345.99. tb0072.x. Hosfeld CD, Hammer J, Handeland S, Fivelstad S and Stefansson S. 2009. Effects of fish density on growth and smolitification in intensive production of Atlantic salmon (Salmo salar). Aquaculture 294, 236-24. https://doi.org/0.06/j. aquaculture. 2009.06.003. Hwang HK, Son MH, Myeong JI, Kim CW and Min BH. 204. Effects of stocking density on the cage culture of Korean rockfish (Sebastes schlegeli). Aquaculture 434, 303-306. https://doi.org/0.06/j.aquaculture.204.08.06. Irwin S, Halloran JO and Fitzgerald RD. 999. Stocking density, growth and growth variation in juvenile turbot, Scophthalmus maximus. Aquaculture 78, -2. https://doi. org/0.06/s0044-8486(99)0022-2. Kim PK. 20. Effects of stocking density and dissolved oxygen concentration on the growth and hematology of the parrotfish, Oplegnathus fasciatus in a recirculating aquaculture system. Korean J Fish Aquat Sci 44, 747-752. https://doi. org/0.5657/kfas.20.0747. Kim YO. 205. The study aquaculture of Siniperca scherzeri. The research report of Chungcheongbuk-do Inland Fisheries Research Institute, Munwa Press, Chungju, Korea, 7-5.
768 이상민ㆍ김이오 Kim YO and Lee SM. 206. Growth of water temperature on growth and body composition of juvenile mandarin fish, Siniperca scherzeri. Korean J Fish Aquat Sci 49, 607-6. https://doi.org/0.5657/kfas.206.0607. Kim YO and Lee SM. 207. Effect of -year and 2-year old mandarin fish, Siniperca scherzeri fed the diets containing different fish meal levels. J Fish Mar Sci Educ 29, 054-062. Kim JD, Jung JY and Lee CH. 988. Study on the egg taking and hatching of Siniperca scherzeri Steindachner. Bull Nat l Fish Res Dev Agency Korea 42, 8-85. Kincaid HI, Bridges WR, Thames AE and Donahoo MJ. 976. Rearing capacity of circular containers of different sizes for fry and fingering rainbow trout. Progressive Fish-Culturist 38, -7. https://doi.org/0.577/548-8659(976)38[:rc occo]2.0.co;2. King N, Howell WH and Fairchild E. 998. The effect of stocking density on the growth of juvenile summer flounder Paralichthys dentatus. In: Proceedings of the twenty-sixth U.S. Japan Aquaculture Symposium. Howell WH, Keller BJ, Park PK, McVey JP, Takayanagi K and Uekita Y, eds. Durham Press, New Hampshire, U.S.A., 73-80. Kristofferson R, Broberg S, Oskari A and Pekkarinen M. 974. Effect of a sublethal concentration of phenol on some blood plasma enzyme activities in the pike (Esoxlucius L.) in brackish water. Ann Zool Fennici, 220-223. https://doi. org/0.007/bf00677929. Lambert Y and Dutil J. 200. Food intake and growth of adult Atlantic cod (Gadus morhua) reared under different condition of stocking density, feeding frequency and size-grading. Aquaculture 92, 233-247. https://doi.org/0.06/s0044-8486(00)00448-8. Lee JK, Kim SC and Lee SM. 996. Influence of stocking density on growth, feed efficiency and body composition of juvenile fat cod (Hexagrammos otakii Jordan et Starks) in indoor culture system. J Aquac 9, 233-237. https://doi. org/0./j.365-2095.2008.00564.x. McClain WR. 995. Growth of crawfish Procambarus clarkii as a fuction of density and food resources. J World Aquacul Soc 26, 24-28. https://doi.org/0./j.749-7345.995. tb00205.x. MOF (Ministry of Oceans and Fisheries). 2000. A study on the aquaculture of European and American eel, Ministry of Oceans and Fisheries Report, Seoul, Korea, 3. Morrissy NM. 992. Density-dependent pond growout of single year-class cohorts of a freshwater crayfish Cherax tenuimanus to two years of age. J World Aquacult Soc 23, 54-68. https://doi.org/0./j.749-7345.992.tb00764.x. North BP, Turnbull JF, Ellis T, Porter MJ, Migaud H, Bron J and Bromage NR. 2006. The impact of stocking density on the welfare of rainbow trout (Oncorhynchus mykiss). Aquaculture 255, 466-479. https://doi.org/0.06/j.aquaculture.2006.0.004. Oh DH, Song JW, Kim MG, Lee BJ, Kim KW, Han HS and Lee KJ. 203. Effect of food particle size, stocking density and feeding frequency on the growth performance of juvenile Korean rockfish Sebastes schlegeli. Korean J Fish Aquat Sci 45, 407-42. Paspatis M, Batarias C, Tiangos P and Kentouri M. 999. Feeding and growth in response of sea bass (Dicentrarchus labrax) reared by four feeding methods. Aquaculture 75, 293-305. https://doi.org/0.06/s0044-8486(99)0004-0. Refstie T. 977. Effects of density on growth and survival of rainbow trout. Aquaculture, 329-334. https://doi. org/0.06/0044-8486(77)90082-5. Rowland SJ, Mifsud C, Nixon M and Boyd P. 2006. Effects of stocking density on the performance of the Australian freshwater silver perch (Bidyanus bidyanus) in cages. Aquaculture 253, 30-308. https://doi.org/0.06/j.aquaculture.2005.04.049. Suresh AV and Kwei LC. 992. Effects of stocking density on water quality and production of red tilapia in a recirculated water system. Aquac Eng, -22. https://doi. org/0.06/044-8609(92)9007-r. Wallat GK, Tiy LG, Rapp JD and Moore R. 2004. Effect of stocking density on growth, yield and costs of producing rainbow trout, Oncorhynchus mykiss, in cages. J Appl Aquacult 5, 73-82. https://doi.org/0.300/j028v5n03_06. Watanabe WO, Clark JH, Dunham JB, Wicklund RI and Olla BJ. 990. Production of fingerling Florida red tilapia (Tilapia hornorum x T. mossambica) in floating marine cages. Progress. Ish Cult 52, 58-6. https://doi.org/0.577/548-8640(990)052%3c058:poffrt%3e2.3.co;2. Webb KA, Hitzfelder GM, Faulk CK and Holt GJ. 2007. Growth of juvenile cobia, Rachycentron canadum, at three different densities in a recirculating aquaculture system. Aquaculture 264, 223-227. https://doi.org/0.06/j.aquaculture.2006.2.029. Wedemeyer GA. 996. Physiology of Fish in Intensive Culture Systems. Chapman and Hall, New York, U.S.A., 232. https://doi.org/0.007/978--465-60-_. Yi Y and Kwei Lin C. 200. Effects of biomass of caged Nile tilapia (Oreochromis niloticus) and aerotion on the growth and yields in an integrated cage-cum-pond system. Aquaculture 95, 253-267. https://doi.org/0.06/s0044-8486(00)00558-5. Yi Y, Kwei Lin C and Diana JS. 996. Influence of Nile tilapia (Oreochromis niloticus) stocking density in cages on their growth and yield in cages and in ponds containg the cages. Aquaculture 46, 205-25. https://doi.org/0.06/s0044-8486(96)0377-4. Yoon SJ, Kim DH, Hwang HG, Song GC and Kim YC. 2007. Effects of water temperature, Stocking density and feeding frequency on survival and growth in the oblong rockfish Se-
bastes oblongus larvae. Korean J Ichthyol 9, 54-59. Zohreh S, Sanaz K, Kim YO and Lee SM. 207. Effect of dietary protein and lipid level on growth, feed utilization and muscle composition in golden mandarin fish, Siniperca scherzeri. Fish Aqu Sci, 20:7. https://doi.org/0.86/ s4240-07-0053-0. 쏘가리의적정사육밀도 769