THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 27(9),

Similar documents
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 30(7),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct , EBG. [4],[5],. double split ring resonator (D

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1),

04 김영규.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

05 목차(페이지 1,2).hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 30(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 28, no. 4, Apr (planar resonator) (radiator) [2] [4].., (cond

04 최진규.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

, V2N(Vehicle to Nomadic Device) [3]., [4],[5]., V2V(Vehicle to Vehicle) V2I (Vehicle to Infrastructure) IEEE 82.11p WAVE (Wireless Access in Vehicula

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 27(1), ISSN

<313920C0CCB1E2BFF82E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Aug.; 27(8),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 26(12),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 3, Mar (NFC: non-foster Circuit).,. (non-foster match

24 GHz 1Tx 2Rx FMCW ADAS(Advanced Driver Assistance System).,,,. 24 GHz,, [1] [4]. 65-nm CMOS FMCW 24 GHz FMCW.. 송수신기설계 1 1Tx 2Rx FMCW (Local Oscillat

04 박영주.hwp

PCB ACF 77 GHz. X,,.,. (dip brazing), (diffusion bonding), (electroforming),, [1],[2].. PCB(Printed Circuit Board), (anisotropic conductive film: ACF)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 26(3),

03 장태헌.hwp

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

. 서론,, [1]., PLL.,., SiGe, CMOS SiGe CMOS [2],[3].,,. CMOS,.. 동적주파수분할기동작조건분석 3, Miller injection-locked, static. injection-locked static [4]., 1/n 그림

09È«¼®¿µ 5~152s

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

11 함범철.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 27, no. 8, Aug [3]. ±90,.,,,, 5,,., 0.01, 0.016, 99 %... 선형간섭

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 28(5),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 9, Sep GHz 10 W Doherty. [4]. Doherty. Doherty, C

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Oct.; 27(10),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 28(2),

RRH Class-J 5G [2].,. LTE 3G [3]. RRH, W-CDMA(Wideband Code Division Multiple Access), 3G, LTE. RRH RF, RF. 1 RRH, CPRI(Common Public Radio Interface)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun , [6]. E- [9],[10]. E- 3D EM(electromagnetic),,

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Oct.; 27(10),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1), IS

09권오설_ok.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 27(9),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 28, no. 9, Sep [1]. RFID.,,,,,,, /,,, (,,,, ) [2] [4].., ( 99

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

韓國電磁波學會論文誌第 21 卷第 9 號 2010 年 9 月. PCS(Personal Communication Service), WCDMA(Wideband Code Division Multiple Access), WiBro(Wireless Broadband),, (dua

박선영무선충전-내지

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 25(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 26(5),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Aug.; 30(8),

05 목차(페이지 1,2).hwp

인문사회과학기술융합학회

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 27, no. 12, Dec ,. VHF,, [1],[2].,.,,. [3] [9]., VHF.,. VHF.. 안

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 26(12),

PCB PCB. PCB P/G de-cap [2],[3]., de-cap ESL(Equivalent Series Inductance) [3],. P/G [4], P/G. de-cap P/G, PCB.. 단일비아를이용한 P/G 면공진상쇄 2-1 P/G 면공진현상 PCB

韓國電磁波學會論文誌第 21 卷第 11 號 2010 年 11 月 (a) (a) Frequency response (b) (b) Corresponding pole-zero diagram 그림 1. Fig. 1. Characteristic of multi-band filte

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 26(5),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Apr.; 26(4),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 29(6),

DBPIA-NURIMEDIA

09 남형기.hwp

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 29(5),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

(수정).hwp

08 조영아.hwp

<4D F736F F F696E74202D20454D49A3AF454D43BAEDB7CEBCC52EBBEABEF7BFEBC6F7C7D428BBEFC8ADC0FCC0DA >

(JKONI 16(6): , Dec. 2012) 간결하고효과적인 X-band 위성통신용계단형셉텀편파기의설계방법 김지흥 *, 이재욱 *, 이택경 *, 조춘식 * Jee-Heung Kim *, Jae-Wook Lee *, Taek-Kyu

. /. / 2-way / Corporate, 2-way / /,. Corporate / 1/4, 6 18 GHz 3, Corporate. (a) Corporate (a) Corporate power combining structure (b) (b) Spatial po

I

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 29(3),

LCD [2].,. (TEMPEST).,,.... CRT(Cathode Ray Tube),, [3]. LCD(Liquid Crystal Display) [4]. LCD [5].,, VGA(Video Graphics Array) DVI (Digital Visu

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 9, Sep [1],[2].,.,, [3],[4]., 4 MI- MO(Multiple Input

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Apr.; 29(4),

,.. 2, , 3.. 본론 2-1 가상잡음신호원생성원리, [8].,. 1.,,. 4 km (13.3 μs).,. 2 (PN code: Pseudo Noise co- 그림 2. Fig. 2. Pseudo noise code. de). (LFSR: Line

08김현휘_ok.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 12, Dec 또한, 최근 위성통신은 점차 많은 데이터량과 주파수 활용문제로 인하여 Ka 인 초고

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

DBPIA-NURIMEDIA

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

04_이근원_21~27.hwp

ÁÖÀçÀ² Ãâ·Â

< C6AFC1FD28B1C7C7F5C1DF292E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 27, no. 12, Dec 그러나 eloran 송신 안테나는 매우 넓은 영역을 차지한 다. 예를 들어 미국에

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 28(11),

05 목차(페이지 1,2).hwp

±è¼ºÃ¶ Ãâ·Â-1

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 26(3),

07 최운성.hwp

DBPIA-NURIMEDIA

29 Ⅰ. 서론 물리학자들이 전파의 이론을 정립한 이후, 이를 기술적으로 실현함은 물론 적정 수준의 19세기 물리학자인 페러데이, 맥스웰, 헤르츠 등의 연구 결과로 인류는 전기장과 자기장의 변화 에 따른 전파를 만들어 낼 수 있게 되었고, 인류에 게 있어 없어서는 안되

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 27(5),

°í¼®ÁÖ Ãâ·Â

Transcription:

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2016 Sep.; 27(9), 791 799. http://dx.doi.org/10.5515/kjkiees.2016.27.9.791 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) X-Band Design of the Reconfigurable Frequency Selective Surface for X-Band Applications with Improved Isolation 이인곤 박용배 전흥재 김윤재 홍익표 In-Gon Lee Yong-Bae Park* Heung-Jae Chun** Yoon-Jae Kim*** Ic-Pyo Hong 요약 X-, (frequency selective surface). FSS Four-legged loaded, Four-legged loaded ON/OFF,, ON/OFF. FSS WR-90. Abstract This paper presents the design of reconfigurable frequency selective surfaces for X-band bandpass operation with improved isolation. The proposed reconfigurable FSS is composed of a four-legged loaded element, a inductive stub and a bias grid. The PIN diode is located between the four-legged loaded element and the stub, which can control the frequency response of reconfigurable FSS by ON/OFF state. By adjusting the length of the stub, the desired bandpass frequency and the improved isolation between ON and OFF state can be obtained. For validation of simulated results, we have carried out transmission characteristic measurements using rectangular waveguide of WR-90. The measured results are in good agreements with the simulated results. Key words: Reconfigurable Frequency Selective Surface, Four-Legged Loaded Element, Isolation, Transmission. 서론 (unit cell), [1]. (FSS: Frequ-. (Department of Information & Communication Engineering, Kongju National University) * (Department of Electrical & Computer Engineering, Ajou University) ** (Department of Mechanical Engineering, Yonsei University) *** (Agency for Defense Development) Manuscript received April 27, 2016 ; Revised June 23, 2016 ; Accepted September 7, 2016. (ID No. 20160427-049) Corresponding Author: Ic-Pyo Hong (e-mail: iphong@kongju.ac.kr) c Copyright The Korean Institute of Electromagnetic Engineering and Science. All Rights Reserved. 791

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 27, no. 9, Sep. 2016. ency Selective Surface), [2] [4]. FSS,.,,,,, [1]. FSS FSS,,,. FSS [5], [6], [7] (RCS: Radar Cross Section) [8]. FSS,, [9], (Reconfigurable-FSS). FSS MHz THz,,,,,,.,, [9],[10]. FSS,,.,, [11],[12]. FSS,,,,,. RF, [10],[13]., (PIN), RF MEMS(Micro-Electro-Mechanical Systems),,.,,, [14] [22]. 792

X-Band, (+V), (0 V) X- Four-legged loaded FSS. FSS, [14] [22], [15],[16],[22], [20],[22],.,,. FSS ON/OFF X- C-,.. 재구성 FSS 구조의설계 FSS Four-legged loaded, (Via hole), Π. FSS (RF choke, resistor),,, [10]. ANSYS HFSS Floquet,,,. FSS 1(a) (b),, 1. X- ON/OFF MACOM MA4PBL027, 1 (c) 1. 0.5 mm, (ε r) 3.5, (tanδ) 0.0018 Taconic RF-35, 0.3 mm. FSS, TE, TM, (0 ) 15, 30. TE FSS 2(a), TM 2(b), Π L 5, 2(c). FSS 표 1. FSS Table 1. Design parameters & equivalent values of PIN diode. Classification Parameter Value Parameter Value Dimensions PIN diode L 1 7.62 mm L 5 1.96 mm L 2 6.22 mm W 1 0.5 mm L 3 6.22 mm W 2 0.3 mm L 4 3.26 mm W 3 0.4 mm L D 0.15 uh R F 0.05 Ω C R 0.03 pf R R 100 kω 793

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 27, no. 9, Sep. 2016. 윗면과 아랫면 (a) TE mode (a) (a) Top and bottom view (b) TM mode 측면 (b) (b) Side view 다이오드 등가회로 (c) (c) Equivalent circuit of PIN diode 그림 1. 제안된 재구성 FSS의 단위구조와 다이오드 등가 회로 재구성 (c) Parametric analysis 구조의 계산된 투과 손실 결과 Fig. 1. Designed reconfigurable FSS and equivalent circuit of PIN diode. 그림 2. FSS Fig. 2. Simulated transmission characteristic of reconfigurable FSS. 결과로부터 입사파의 수직 입사를 기준으로 공진 주파수 는 다이오드의 단락 상태에서 9.98 GHz, 3 db 대역폭은 1.41 GHz, db 794 개방 상태에서 공진 주파수는 6.29 GHz, 3 대역폭은 1.68 GHz으로 약 3.61 GHz의 동작 주파수

X-Band (a) -10 GHz (a) ON-10 GHz (b) -10 GHz (b) OFF-10 GHz 표 2. L 5 Table 2. Transmission characteristics for variation of parameter "L 5". L 5 [mm] f ON [GHz] f OFF [GHz] f offset [GHz] Isolation (f ON-f OFF) (db) 0.6 10.2 7.24 2.96 10.35 1.0 9.99 6.98 3.01 12.02 1.4 9.97 6.69 3.28 15.47 1.8 9.96 6.40 3.56 21.74 2.2 9.88 6.12 3.76 36.32 (c) -6 GHz (c) ON-6 GHz (d) -6 GHz (d) OFF-6 GHz 그림 3. FSS Fig. 3. Induced current distribution of designed reconfigurable FSS., (0 30 )., 10 GHz, 6 GHz, 3(a) (d)., 3(a), (10 GHz). 3(d) Π, (6 GHz). 3(b), (c), (10 GHz, 6 GHz),., (10 GHz) L 1,, (6 GHz) L 5., L 5 2. L 5 0.6 2.2 mm OFF 7.24 GHz 6.12 GHz, L 5. L 5, (2.96 3.76 GHz). FSS, 3., FSS,,.,, (TE, TM) (0 30 ). Beam Lead MACOM MA4-795

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 27, no. 9, Sep. 2016. 표 3. 재구성 FSS 구조에 대한 제안된 구조와 선행 연구 의 성능 비교 Table 3. Comparisons between the proposed structure and previous studies for reconfigurable-fss. Ref. Techniques [15] PIN diode [16] Varactor [18] PIN diode Bias circuit config. 2-ind. bias Bias grid with inductive pad 2-ind. bias [19] PIN diode 1-parallel bias [20] PIN diode 1-series bias with 3-L, 1-R [21] PIN diode 1-parallel bias [22] PIN diode 1-series bais with 3-L Operating freq. (GHz) Stability Pol.1) Angle2) 8.0 10 TE only 0 45 2.5 5.0 TE, TM 0 45 10 12 4 8 1.0 12 1.5 8.0 6.0 10 1.8 2.5 TE only - TE only - TE only - TE only - This PIN diode 1-parallel bias paper 1) Polarization, 2) Angle of incident wave. 제작된 재구성 (a) FSS (a) Fabricated reconfigurable FSS TE, TM 0 30 TE only 0 45 과 Taconic RF-35를 사용하여 제작하였다. 도파관 내경 크기 22.86 mm 10.16 mm에 맞추어 FSS의 단위구조 를 1 3 배열하였으며, 실험의 편의성을 위해 WR-90 사이 즈 41.4 mm 41.4 mm에 맞추어 시료를 제작하였다. 제작 된 재구성 FSS 구조의 외형을 그림 4(a)에 나타내었으며, X-대역(8 12.5 GHz)에서 사용가능한 구형 도파관 WR90를 사용하여 투과 손실을 측정하였다. 그림 4(b)와 같 이, 구형 도파관 WR-90 중심에 제작한 FSS 시료를 위치 시키고, 전원을 인가하여 다이오드 상태에 따라 주파수 응답을 관찰하였으며, 수직 입사하는 입사파에 대하여 측 정된 투과 계수 결과를 그림 5에 나타내었다. 측정 환경을 고려하여 주파수 가변 폭이 넓어짐에 따 라 단락, 개방 상태에서의 투과 주파수 격리도가 커지는 경향을 이용, 주파수 격리도에 초점을 맞추어 실험하였 다. 측정결과와 계산결과의 비교를 위해 무한한 주기구조 를 가정한 Floquet 모드 해석이 아닌 도파관 모드 해석을 통해 얻은 결과와 측정 결과를 비교하였다. 측정 결과로부터, 핀 다이오드 단락 상태에서 동작 주 파수는 9.762 GHz에서 1.54 db의 투과 손실을(계산값: PBL027 796 측정 환경 (b) (b) Measurement setup 제작된 재구성 구조와 측정 환경 그림 4. FSS Fig. 4. Fabricated reconfigurable FSS and measurement environment. 투과 손실 측정 결과 그림 5. Fig. 5. Measured transmission characteristic using waveguide.

X-Band 0.84 db @ 9.87 GHz), 3 db 380 MHz ( : 725 MHz), (0 V) 14.5 db 12.98 db.. (5 25 db), ( 1 10 db), 10 db, 1.54 db [14] [16].. 결론 X- FSS,. Four-legged loaded, X-,,.,, 9.98 GHz FSS, WR-90. 9.762 GHz 12.98 db,.. References [1] B. A. Munk, Frequency Selective Surface: Theory and Design, John Wiley & Sons, 2005. [2] C. G. M. van't Klooster, A. Pacheco, C. Montesano, J. A. Encinar, and A. Culebras, "Reflect-array sub-reflector in X-Ka band antenna", 2013 IEEE International Symposium on Antennas and Propagation (ISAP), vol. 2, pp. 669-672, 2013. [3] T. Kan, K. Matsumoto, and I. Shimoyama, "Nano-pillar structure for sensitivity enhancement of SPR sensor", IEEE International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 1481-1484, 2009. [4] F. Costa, A. Monorchio, "A frequency selective radome with wideband absorbing properties", IEEE Transaction on Antennas and Propagation, vol. 60, no. 6, pp. 2740-2747, 2012. [5] L. Sun, H. Cheng, Y. Zhou, and J. Wang, "Broadband metamaterial absorber based on coupling resistive frequency selective surface", Optics Express, vol. 20, no. 4, pp. 4675-4680, 2012. [6] E. Arnaud, A. Kanso, T. Monediere, D. Passerieux, M. Thevenot, E. Beaudrouet, C. Dossou-Yovo, and R. Noguera, "Inkjet printing of frequency selective surfaces on EBG antenna radome", 6th European Conference on Antennas Propagation(EuCAP), pp. 2693-2696, 2012. [7] H. G. Sung, K. W. Sowerby, and A. G. Williamson, "Modeling a low-cost frequency selective wall for wireless-friendly indoor environments", IEEE Antennas and Wireless Propagation Letters, vol. 5, no. 1, pp. 311-314, 2006. [8] C. Sudhendra, A. R. Madhu, A. C. R. Pillai, R. Kark, and T. S. Rukmini, "A novel ultra wide band radar Absorber based on hexagonal resistive patch FSS", In Applied Electromagnetics Conference (AEMC), pp. 1-2, 2013. [9] S. V. Hum, J. Perruisseau-Carrier, "Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: A review", IEEE Trans. Antennas & Propagation, vol. 62, no. 1, pp. 183-198, 2014. [10] J. P. Turpin, J. A. Bossard, K. L. Morgan, D. H. Werner, and P. L. Werner, "Reconfigurable and tunable metamaterials: a review of the theory and applications", 797

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 27, no. 9, Sep. 2016. International Journal of Antennas and Propagation, vol. 2014, 2014. [11] K. ElMahgoub, F. Yang, and A. Z. Elsherbeni, "Design of novel reconfigurable frequency selective surfaces with two control techniques", Progress in Electromagnetics Research C, vol. 35, pp. 135-145, 2013. [12] K. Fuchi, J. Tang, B. Crowgey, A. R. Diaz, E. J. Rothwell, and R. O. Ouedraogo, "Origami tunable frequency selective surfaces", IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 473-475, 2012. [13] P. Yaghmaee, O. H. Karabey, B. Bates, C. Fumeaux, and R. Jakoby, "Electrically tuned microwave devices using liquid crystal technology", International Journal of Antennas and Propagation, vol. 2013, 2013. [14] M. Safari, S. Cyrus, and S. Lotfollah, "X-band tunable frequency selective surface using MEMS capacitive loads", IEEE Transactions on Antennas and Propagation, vol. 63, no. 3, pp. 1014-1021, 2015. [15] B. Sanz-Izquierdo, E. A. Parker, and J. C. Batchelor, "Dual-band tunable screen using complementary split ring resonators", IEEE Trans. Antennas & Propagation, vol. 58, no. 11, pp. 3761-3765, 2010. [16] F. Bayatpur, S. Kamal, "Design and analysis of a tunable miniaturized-element frequency-selective surface without bias network", IEEE Transactions on Antennas and Propagation, vol. 58, no. 4, pp. 1214-1219, 2010. [17] M. Niroo-Jazi, Mahmoud, and T. A. Denidni, "Reconfigurable dual-band frequency selective surfaces using a new hybrid element", 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), pp. 2673-2676, 2011. [18] M. M. Masud, B. Ijaz, A. Iftikhar, M. N. Rafiq, and B. D. Braaten, "A reconfigurable dual-band metasurface for EMI shielding of specific electromagnetic wave components", 2013 IEEE International Syposium on Electromagnetic Compatibility(EMC), pp. 640-644, 2013. [19] K. Qi, Y. Xiaofeng, and W. Yongfeng, "A tunable microwave absorber based on active frequency selective surface", Progress in Electromagnetics Research Symposium Proceedings, pp. 791-793, 2014. [20] P. Kong, et al., "Switchable frequency selective surfaces absorber/reflector for wideband applications", Journal of Electromagnetic Waves and Applications, vol. 29, no. 11, pp. 1473-1485, 2015. [21] L. Jialin, et al., "Design of a tunable low-frequency and broadband radar absorber based on active frequency selective surface", IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 774-777, 2016. [22] H. Wang, et al., "Broadband tunability of polarizationinsensitive absorber based on frequency selective surface", Scientific Reports, vol. 6, 2016. 2013 2 : ( ) 2015 8 : ( ) 2015 9 : [ 주관심분야 ], 1998 2 : ( ) 2000 2 : ( ) 2003 2 : ( ) 2003 2 2006 8 : KT 2006 9 : [ 주관심분야 ],, EMI/EMC 798

격리도가 향상된 X-Band 재구성 주파수 선택 표면구조 설계 전흥 재 년 1994년: Northwestern University 기계공학과 (공학박사) 1994년 1997년: Northwestern Uniersity 기 계공학과 (Post Doc.) 1997년 현재: 연세대학교 기계공학과 교 수 [주 관심분야] 레이돔 설계, FSS 구조 해 1990 석 김윤 재 홍익 표 년 월 연세대학교 전자공학과 (공학 사 년 월 연세대학교 전자공학과 (공학 석사 년 월 연세대학교 전기컴퓨터공학 과 공학박사 년 월 년 2월: 삼성전자 무선 사업부 책임연구원 2006년 2월 2007년 2월: Texas A & M University, Visiting Scholar 2012년 2월 2013년 2월: Syracuse University, Visiting Scholar 2003년 3월 현재: 공주대학교 정보통신공학부 교수 [주 관심분야] 전자기 수치 해석, 주파수 선택구조, EMI/EMC 1994 2 : ) 1996 2 : ) 2000 2 : ( ) 2000 3 2003 년 8월: 서울대학교 기계항공공학부 공학박사) 년 9월 2012년 3월: 서울대학교 정 밀기계설계공동연구소 선임연구원 2012년 4월 현재: 국방과학연구소 제7기 술연구본부 3부 [주 관심분야] 복합재 구조 설계/해석, 주 2011 ( 2011 파수 선택구조 799