The Asian Journal of Kinesiology Original Research Effects of Yoga Poses on Spinal Range of Motion, Posterior Superior Iliac Spine Levels and Muscle Activity According to Pelvic Displacement in Middle-aged Women Ah-Ram Kim 1, Sun-Ah Lee 2, Ho-Seong Lee 1,2* 1 Namseoul University, Cheonan, Korea 2 Dankook University, Cheonan, Korea ABSTRACT Received: January 23, 2018 Accepted: April 23, 2018 Published online: April 30, 2018 Keywords: Muscle activity Pelvic displacement Posterior superior iliac spine levels Yoga poses PURPOSE The purpose of this study was to investigate the effects of yoga poses on spinal range of motion, posterior superior iliac spine levels and muscle activity according to pelvic displacement in middle-aged women. METHODS Twenty middle-aged women were selected to normal pelvic displacement group (CON, n=6), anterior pelvic tilt group (APG, n=6) and posterior pelvic tilt group (PPG, n=8). Spinal range of motion, posterior superior iliac spine levels and muscle activity were measured during Yoga poses (Janusirsa asana, parivrrta upavistha, parsva upavistha, virabaddra asana III). RESULTS The following were the main results. flexion and pelvic tilt during right janushirasana asana were significantly decreased at APG and PPG compared to CON (p<.05, respectively). Also, pelvic tilt during right parivrrta upavistha was significantly decreased at APG and PPG compared to CON (p<.05, respectively). Furthermore, muscle activity in the erector spine, glutes medius, biceps femoris, and gastrocnemius during yoga poses were significantly increased at APG compared to CON (p<.05, respectively), and muscle activity in the glutes medius during yoga poses was significantly increased at PPG compared to CON (p<.05). CONCLUSIONS These results confirms that yoga poses in middle-aged women with pelvic displacement make a negative effect on spinal joint motion range, posterior superior iliac spine levels and muscle activity. The Asian Society of Kinesiology and the Korean Academy of Kinesiology 서론 골반 (pelvis) 은신체의무게중심을다리로전달하고 (Kang & Kim, 2011), 몸통의운동범위를증가시키는기능을담당하며 (Bae et al., 1999), 다리근육의원천이다 (Park & Park, 2004). 또한다리의움직임은골반을중심으로신체무게중심을인체의다방향 (divergent) 으로이동시키는 *Correspondence: Ho-Seong Lee, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 31116, Republic of Korea. E-mail: hoseh28@dankook.ac.kr 데골반과다리의자세정렬과움직임이바르지않으면골반의변형을가져올수있다 (Kendall et al., 1993). 이러한자세적보상에따른골반변위 (pelvic displacement), 즉, 골반의앞기울임및뒤기울임의변위는다리의기능적인단축과비대칭적근육발달때문에발생한다고알려져있으며, 특히, 중년여성은임신과출산을경험하며골반에다양한변화가발행하는데 (Choi, 2008), 임신으로인해복부는앞으로나오게되고허리뼈와골반은뒤로움직이게되면서복부근육들이느슨해지고, 약해지면서골반변위가일어나게되어다양한근골격계질환을야기한다고보고하였다 (Sahrmann, 2002). 따라서중년여성과골반변위는 This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Asian Journal of Kinesiology 61
밀접한관련성이있다고생각된다. 골반위치의변형중골반앞기울임 (anterior pelvic tilt; APT) 은복부근육의약화, 넙다리뒷근육및엉덩관절벌림근의약화, 척주주변근, 엉덩관절굽힘근의경직및유연성감소가주원인이며 (Levine et al., 1997), 반면에골반뒤기울임 (posterior pelvic tilt; PPT) 은복부근육, 넙다리뒷근육및엉덩관절벌림근의경직및유연성감소와척주주변근, 엉덩관절굽힘근의약화가주원인이다 (Min, 2005). 이와같이골반의움직임중시상면에서발생하는 APT와 PPT의비대칭은무릎과엉덩관절을앞으로굽히게하여허리뼈기울임 (lordotic posture) 의각도를증가시켜골반의앞과뒤의운동범위를감소시키며 (Kim et al., 1997), 또한 APT와 PPT의비대칭은몸통과다리에도영향을미쳐서자세의안정성과움직이는균형에도부정적인영향을미친다고보고하였다 (Kim, 2014). 일반적으로, 골반운동은엉덩관절과다리의개입을최소화시켜자세안정성을향상시킬수있으며 (Bae et al., 1999; Graves et al., 1990), 골반근육의적절한동시수축을자극하여골반의평형, 척추자세조절, 엉덩관절의활동성및정상적인근육긴장을유지시킬수있다 (Kim & Jang, 2014). 앞서언급한것처럼, APT와 PPT의움직임은척추에영향을미치고몸통자세를조절하는중요한역할을하는데도불구하고 (Kong et al., 2015; Osamu et al., 2014), 이러한골반의변위에대한고려없이진행되는운동은그효과도미비할뿐만아니라골반의변위를악화시킬가능성이있다고생각된다. 한편, 요가동작 (yoga poses) 은반복적인등척성수축과이완을통해근력, 균형을증가시키고 (Yun et al., 2009; Choi, 2007), 척추와골반근육의이완을촉진하여, 골반의앞기울임의감소와견인력을제공한다 (kimberly et al., 2005). 요가는신체의자세와정렬이매우중요하다고알려져있으며 (Oken et al., 2006), 많은동작들이신체의골반을중심으로다리의움직임과지지가필요한역할을담당하고있다. 선행연구에의하면, 요가는골반의가동성을증가시켜좌 우다리길이차이를유의하게감소시키고, 엉덩뼈높이변화에영향을미친다고보고하였다 (Choi, 2008). 따라서요가동작은골반및엉덩관절의안정성과가동성을유지하는데중요하며 (Iyengar, 1989; Leslie, 2007), 균형상태에서중립상태의골반을중심으로안정성있게이행할수있도록하는것이효과적이라고생각된다. 선행연구에의하면, 요가동작에서불균형한움 직임은신체의지속적인불균형을초래하며 (Schamberger, 2012), 특히골반의변위는신체중심부의불안정성을발생시켜서요가동작에서서거나앉는등의바른자세유지를어렵게한다고보고하였다 (Neumann, 2002). 이와같이요가동작중불균형한움직임으로인한골반의문제를예방하고치료하기위해서는신체의안정성과정렬이중요하다 (Evans et al., 2013; Iyengar, 1970). 선행연구에의하면, 요가동작은숙련도에따라관절가동범위와근활성도가현저한차이를나타내게되는데이는숙련자와비숙련자가활성화되는근육이다르기때문이라고보고하였다 (You et al., 2002). 이에따라각기다른요가동작시발현되는주근육을정확히인지하는것이중요하다고생각된다. 하지만골반변위에따른요가동작이골반과엉덩관절및주변근육에어떠한영향을미치는가에대해서실천적으로검토한연구는부족한실정이다. 따라서이연구에서는 APT 및 PPT의골반변위를갖고있는중년여성을대상으로요가동작이척추관절가동범위, 위뒤엉덩뼈가시의높이및근활성도에어떠한영향을미치는가를검토하는데그목적이있다. 연구방법연구대상이연구에서는중년여성을대상으로 X-ray 검사를통해선행연구를바탕으로허리척추앞굽음각 (lumbar lordosis) 을측정하여허리척추앞굽음각이 45 의정상인통제집단 (control group; CON, n = 6), 허리척추앞굽음각이 45 이상의골반앞기울임집단 (anterior pelvic tilt group; APG, n = 6) 및허리척추앞굽음각이 45 이하인골반뒤기울임집단 (posterior pelvic tilt group; PPG, n = 8) 으로분류하였다 (Neumann, 2002). 이연구에서는연구대상자선정을위해 G-power 3.1.9.2 프로그램을이용하였으며, 유의수준 <.05, 효과크기 <.025, 검정력 <.95에서산출하였을때적절한총표본수는 20명이요구되었다 (Faul et al, 2007). 연구대상자는모든피험자는수술이나시술을받은자는제외하였으며, 각피험자는실험기간중에개인적인격렬한신체활동, 약제복용및음주를금지시켰다. 모든피험자는연구의취지내용을충분히이해한후자발적으로실험에참여하였다. 피험자의신체적특성은 <Table 1> 과같다. 이연구는남서울대학교기관생명윤리위원회 (IRB) 의심의를거쳐진행되었다. 62 The Asian Journal of Kinesiology
Table 1. Physical characteristic of subjects. Group (n) CON (6) APG (6) PPG (8) Age (yrs) 52.67 ±12.58 47.50 ±8.69 51.00 ±12.47 Values are means ± SD Height (cm) 156.63 ±2.19 162.7 2±5.01 158.05 ±5.32 Weight (kg) 60.17 ±9.28 58.07 ±8.04 58.05 ±6.25 Body fat (%) 31.08 ±4.66 21.92 ±2.69 23.24 ±2.32 BMI (kg/ m2 ) 24.50 ±3.56 27.00 ±5.97 32.64 ±3.41 (ValedoMotion, Hocoma) 를이용하여왼쪽 (Left, L) 과오른쪽몸통 (Right, R) 의옆굽힘, 앞굽힘, 돌림, 그리고왼쪽 (Left, L) 과오른쪽골반 (Right, R) 의골반옆기울임, 골반의뒤방향및앞방향기울임을측정하였다 <Figure 1>. 감지기는총 3 곳에부착하였으며, 복장뼈센서 (Sternum sensor) 는복장뼈자루에서손가락 2개너비만큼아래에부착하였고, 천골센서 (Sacrum sensor) 는 S1 척추에부착하였으며, 요추센서 (Lumbar sensor) 는 L1 척추에부착하였다. 피부저항으로생기는오차를줄이기위하여알코올솜으로 부착부위를닦은후부착하였다. 실험절차모든대상자는신체조성과 4가지의요가동작 (Janusirsa asana, parivrrta upavistha, parsva upavistha, virabaddra asana Ⅲ) 중에왼쪽과오른쪽의몸통및골반의굽힘 (L-flexion, R-flexion), 왼쪽과오른쪽몸통의왼쪽 (L) 과오른쪽 (R) 위뒤엉덩뼈가시높이, 그리고동일한요가동작중에왼쪽의척추세움근 (L-ES), 중간볼기근 (L-GM), 넙다리두갈래근 (L-BF) 및장딴지근 (L-GN) 과오른쪽의척추세움근 (R-ES), 중간볼기근 (R-GM), 넙다리두갈래근 (R-BF) 및장딴지근 (R-GN) 의활성도를측정한후에집단간의비교를실시하였다. 객관적위험인자지표신체조성신체조성은생체전기저항법을이용한체성분측정기 (Inbody 770, Korea) 를사용하여체중 (kg) 과체지방율 (%) 을측정하였고, BMI(kg/m2) 를산출하였다. 요가동작중척추관절가동범위요가동작중척추관절가동범위는 Hocoma 무선척추관절가동범위측정기 요가동작중위뒤엉덩뼈가시의높이요가동작중위뒤엉덩뼈가시 (posterior superior lilac spine) 의높이는엉덩이의후면에서줄자를이용하여왼쪽및오른쪽몸통의엉덩뼈가시의정점을바닥에서부터높이를측정하였다. 요가동작중근활성도근전도신호는 Delsys trigno 무선근전도 (Delsys trigon wireless EMG system, Delsys Inc., Boston, MA, USA) 를이용하여수집하였다 <Figure 2>. 근전도의표본수집률 (sampling rate) 은 1,000 Hz로하였고, 주파수대역폭은 20~45 Hz의대역통과필터 (bandpass filter) 를적용하고, 동상제거비율 (common mode rejection ratio) 은 100dB이상, 초기잡음 (baseline noise) 은 1 mv이하및입력저항값 (input impedance) 은 100mOhms이상으로설정하였다. 각근육에서수집된표면근전도신호는 Delsys EMG 분석소프트웨어 (Delsys EMG Works Acqusition, Delsys Inc., Boston, MA, USA) 를사용하였다. 근전도신호는왼쪽 (Left; L) 및오른쪽 (Right; R) 척추세움근 (Erector spine; ES), 중간볼기근 (Glutes medius; GM), 넙다리두갈래근 (Biceps femoris; BF) 및장딴지근 (Gastrocnemius; GN) 을 Figure 1. Range of motion of spine Figure 2. EMG The Asian Journal of Kinesiology 63
Figure 3. Janusirsa asana 의전극은넙다리뼈의뒤쪽외측면에서궁둥뼈거친면의 1/2지점에부착하였으며, GN의전극은종아리뼈머리와발꿈치뼈융기의 1/2지점에부착하였다. 전극을고정하는부위는최대근수축유도시에뚜렷하게보이는근복 (muscle belly) 에부착한뒤근활성도의정규화를위해서각근육의최대수의적등척성근수축 (maximal voluntary isometric contraction; MVIC) 을요가동작전에실시하였다. 근활성도는각요가동작별로측정하였고, 측정오차를줄이기위해측정사이 5분씩휴식을하였으며총 5회측정한값의평균값을사용하였다 (Nooij et al., 2009). 산출된근전도파형을 RMS(root mean square) 값으로도출한후사전에측정된 MVIC에각근육을대비하여 %MVIC값으로정량화하였다. Figure 4. Parivrrta upavistha Figure 5. Parsva upavistha konasan Figure 6. Virabaddra asana III 측정하였다. ES의전극은두번째허리뼈 (L2) 에서오른쪽, 왼쪽으로 2cm지점에부착하였고, GM의전극은엉덩뼈바깥쪽위부분과정지점인넙다리뼈큰돌기의바깥쪽면사이 1/2지점근육의가장발달된부위에부착하였고, BF 요가동작이연구에서요가동작은 Yoga Dipika (2007) 와 Yoga Anatomu (2011) 에기술되어있는요가의몸통굽힘동작중에척추의가동범위를확인할수있는대표적인 4가지 (Janusirsa asana, parivrrta upavistha, parsva upavistha, virabaddra asana Ⅲ) 를이연구에맞게수정및보완하여구성하였다. Janusirsa asana 동작은두다리를앞으로쭉편자세에서왼쪽넓적다리와왼쪽장단지의바깥쪽이바닥에닿도록왼쪽무릎을굽혀서왼쪽으로 120 벌리고왼쪽발뒤꿈치를회음가까이의왼쪽넓적다리안쪽에밀착시켰으며, 팔은쭉뻗어양손으로발을잡고, 오른쪽무릎의뒤쪽을바닥에닿게하여몸통을앞으로굽히며오른다리가오른쪽으로기울지않도록하였다 <Figure 3>. Parivrrta upavistha 동작은다리를좌우로쭉편자세에서다리의각도는둔각 (90 보다작은크고 180 보다작은각 ) 이되게벌린후, 뒤꿈치축의중앙은바닥을누른상태로발바닥은앞을, 발끝은위로향하게한후오른팔을오른다리쪽으로뻗어오른발안쪽면을잡고몸통을뒤로젖혀왼쪽팔은오른발의바깥쪽을잡아몸통을위로튼자세를유지하였다 <Figure 4>. Parsva upavistha 동작은다리를좌우로쭉편자세에서다리의각도는둔각 (90 보다작은크고 180 보다작은각 ) 이되게벌린후, 뒤꿈치축의중앙은바닥을누르고발바닥은앞을, 발끝은위를향하게한후양팔을오른다리쪽으로뻗어오른발을잡고상체를오른다리위로굽히게하여왼쪽엉덩이와넓적다리뒤부분이들 64 The Asian Journal of Kinesiology
Table 2. Changes in spinal range of motion between CON, APG and PPG during the yoga poses Yoga poses Position Direction CON (n=6) APG (n=6) PPG (n=8) F Janusirsa asana Parivrrta upavistha Parsva upavistha Virabaddra Asana Ⅲ Left pelvic Right pelvic Left pelvic Right pelvic Left pelvic Right pelvic Left pelvic Right pelvic Values are means ± SD. * p<.05, p<.05 vs. CON. L-flexion 10.67±10.27 7.50±9.61 13.71±13.76 3.534 R-flexion 27.00±18.69 13.50±10.84 22.29±21.85 0.220 L-flexion 18.00±6.87 12.67±12.01 18.14±17.19 1.669 R-flexion 58.17±33.52 17.33±11.43 26.29±29.72 3.771 * L-flexion 37.17±26.56 39.00±24.10 38.71±31.03 0.352 R-flexion 38.83±29.08 15.00±10.75 18.86±23.48 0.131 L-flexion 32.50±20.95 39.00±20.07 38.43±30.28 1.900 R-flexion 37.00±28.53 9.33±5.01 13.43±12.47 3.859 * L-flexion 10.67±10.27 7.50±9.61 13.71±13.76 0.324 R-flexion 27.00±18.69 13.50±10.84 22.29±21.85 2.433 L-flexion 32.00±33.49 31.00±31.36 16.71±13.63 0.393 R-flexion 82.50±45.11 76.00±44.86 57.00±51.54 0.724 L-flexion 34.50±29.51 13.50±9.27 20.57±12.95 1.071 R-flexion 85.50±49.00 89.33±64.78 68.14±59.87 0.666 L-flexion 35.17±16.89 37.50±22.17 30.86±26.40 0.285 R-flexion 21.33±12.40 9.17±9.58 22.00±23.98 1.071 L-flexion 18.00±11.58 29.50±29.14 22.43±17.76 1.900 R-flexion 106.50±54.17 79.83±55.40 70.29±60.92 2.433 L-flexion 17.50±9.35 13.50±8.02 23.57±11.47 0.302 R-flexion 61.83±40.48 61.00±51.21 50.43±59.09 0.964 L-flexion 30.83±21.57 45.00±28.55 34.57±30.42 0.248 R-flexion 42.67±34.11 17.33±6.15 28.14±25.30 1.669 L-flexion 33.17±24.64 51.83±22.36 44.86±29.33 0.131 R-flexion 47.83±23.95 16.50±7.87 21.00±15.89 4.236 * L-flexion 37.33±27.09 19.50±19.21 17.14±16.31 1.759 R-flexion 31.17±42.76 32.00±31.36 38.43±23.54 0.475 L-flexion 34.67±29.85 23.00±7.95 17.71±10.16 1.577 R-flexion 33.50±31.49 33.00±32.09 14.57±8.58 2.982 L-flexion 42.83±46.73 68.33±20.87 68.29±25.43 0.681 R-flexion 71.00±28.38 49.83±19.83 53.57±27.53 0.436 L-flexion 49.33±43.59 55.50±36.57 67.86±20.38 0.565 R-flexion 49.33±43.59 49.50±16.63 58.00±22.08 1.805 뜨지않도록하였다 <Figure 5>. Virabaddra asana Ⅲ 동작은바르게선자세에서다리는 120cm 정도옆으로벌려오른발은오른쪽으로 90, 왼발은안쪽으로 60 돌리고, 몸통을돌려선후오른다리의무릎은 90 구부린상태에서상체를굽혀넓적다리위에가슴을대고왼다리를들어올리고오른다리를쭉편후, 오른다리는바닥과수직으로왼다리는넓적다리의앞면이바닥과평행이되도록하였다 <Figure 6>. 자료처리모든자료는 SPSS WIN Ver 20.0을이용하여평균과표준편차를산출하였다. 집단간에차이를규명하기위하여일원반복측정분산분석 (One-way repeated measures ANOVA) 을실시하였으며, 집단간에통계적으로유의한차이가있을경우사후검정 (LSD) 에따른다중비교를실시하였다. 통계적유의수준은 a =.05로설정하였다. The Asian Journal of Kinesiology 65
Table 3. Changes in posterior superior lliac spine levels between CON, APG and PPG during the yoga poses. (Unit: cm) Yoga poses Position Direction CON (n=6) APG (n=6) PPG (n=8) F Janusirsa asana Parivrrta upavistha Parsva upavistha Virabaddra Asana Ⅲ Values are means ± SD. * p<.05, p<.05 vs. CON. L 22.03±3.82 19.32±3.98 20.79±3.38 0.804 R 21.07±3.72 17.15±3.07 18.09±2.80 1.962 L 19.62±2.24 17.15±3.07 19.44±3.83 0.409 R 21.90±3.34 19.47±3.44 20.79±1.81 1.091 L 21.92±4.18 17.83±2.68 18.81±3.01 1.160 R 23.32±2.48 20.75±2.91 22.54±3.77 0.839 L 23.97±3.36 20.87±2.73 21.91±2.45 1.059 R 19.12±1.62 16.90±1.70 17.96±1.71 2.618 L 19.53±1.70 18.43±2.28 19.46±2.05 1.845 R 22.43±1.86 22.40±1.70 22.93±2.04 1.058 L 22.83±1.75 23.17±1.51 23.41±3.30 2.475 R 21.23±3.82 18.80±1.71 19.44±1.93 1.396 L 94.57±2.30 97.54±5.13 95.34±5.70 0.095 R 88.53±3.42 91.98±4.11 90.27±3.12 0.165 L 92.13±7.64 92.13±7.64 90.49±3.30 0.563 R 91.20±3.76 97.50±3.57 93.89±3.08 5.011 * 결과요가동작중척추관절가동범위요가동작중척추관절가동범위는 <Table 2> 에제시한바와같다. Janusirsa asana 동작중오른쪽몸통에서 L-flexion은 CON과비교해서 APG(p=.024) 및 PPG(p=.036) 에서유의하게낮게나타났으며, 오른쪽골반에서 R-flexion 은 CON과비교해서 APG(p=.018) 및 PPG(p=.049) 서유의하게낮게나타났다. 또한 Parsva upavistha 동작중오른쪽골반에서 R-flexion은 CON과비교해서 APG (p=.017) 및 PPG(p=.031) 에서유의하게낮게나타났다. 하지만 Parivrrta upavistha 및 Virabaddra Asana Ⅲ 동작중몸통및골반의척추관절가동범위는모든방향에서집단간에통계학적으로유의한차이가나타나지않았다. 요가동작중위뒤엉덩뼈가시높이요가동작중위뒤엉덩뼈가시높이는 <Table 3> 에제시한바와같다. Virabaddra asana Ⅲ 동작중오른쪽몸통에서오른쪽위뒤엉덩뼈가시의높이는 CON과비교해서 APG(p=.006) 에서유의하게높게나타났다. 하지만 Janusirsa asana, Parivrrta upavistha 및 Parsva upavistha 동작중위뒤엉덩뼈가시높이는모든방향에서집단간에통계학적으로유의한차이가나타나지않았다. 요가동작중근활성도요가동작중근활성도는 <Table 4> 에제시한바와같다. 왼쪽 Janusirsa asana 동작중 L-ES(p=.000), R-GM(p=.001), R-BF(p=.000) 및 R-GN(p=.000) 의근활성도는 CON과비교해서 APG에서각각유의하게높게나타났으며, 반면에 L-BF(p=.000) 및 L-GL(p=.006) 의근활성도는 CON과비교해서 APG에서각각유의하게낮게나타났다. 또한 R-GM(p=.000) 의근활성도는 CON 과비교해서 PPG에서유의하게높게나타났으며, 반면에 L-BF(p=.000), L-GN(p=.000) 및 R-ES(p=.040) 의근활성도는 CON과비교해서 PPG에서각각유의하게낮게나타났다. 오른쪽 Janusirsa asana 동작중 L-ES(p=.000), R-GM(p=.000), R-BF(p=.000) 및 R-GN(p=.000) 의근활성도는 CON과비교해서 APG에서유의하게높게나타났으며, 반면에 L-GM(p=.006) 의근활성도는 CON과비교해서 APG에서유의하게낮게나타났다. 또한 L-ES- (p=.000) 및 R-GM(p=.000) 의근활성도는 CON과비교해서 PPG에서각각유의하게높게나타났으며, 반면에 66 The Asian Journal of Kinesiology
Table 4. Changes in muscle activity between CON, APG and PPG during the yoga poses. (Unit: %MVIC) Yoga poses Direction Muscles CON (n=6) APG (n=6) PPG (n=8) F Janusirsa asana Parivrrta upavistha Parsva upavistha Left Right Left Right Left Right L-ES 35.44±1.61 42.93±4.48 34.62±1.00 18.905 * L-GM 13.30±0.49 10.19±1.83 9.25±6.03 1.413 L-BF 14.85±2.48 8.90±0.40 6.61±1.57 48.452 * L-GN 29.59±0.75 27.83±1.50 19.85±0.31 193.511 * R-ES 27.86±24.58 24.14±10.29 9.34±1.77 2.846 * R-GM 17.77±0.66 41.08±3.12 47.41±15.51 15.249 * R-BF 4.73±0.61 10.35±1.04 2.84±0.21 202.524 * R-GN 7.18±1.31 15.93±2.95 5.21±0.36 61.673 * L-ES 88.61±8.86 90.60±3.90 52.49±0.90 104.427 * L-GM 17.89±2.14 10.57±0.71 7.86±1.30 73.302 * L-BF 16.23±3.51 6.70±2.84 3.01±0.08 46.288 * L-GN 29.87±0.95 1.46±0.13 8.38±0.84 2528.096 * R-ES 21.47±9.95 33.54±32.15 19.47±7.29.923 R-GM 24.06±2.93 44.37±6.21 27.53±0.75 47.758 * R-BF 6.16±3.68 12.83±1.31 3.29±1.01 28.946 * R-GN 4.72±1.61 12.88±10.00 5.50±0.54 3.845 * L-ES 86.51±12.41 80.66±11.92 82.49±4.40.698 L-GM 18.70±1.95 8.06±0.58 5.76±2.48 75.107 * L-BF 17.44±4.45 9.18±1.04 5.79±0.48 34.193 * L-GN 30.00±1.48 25.86±3.86 19.45±0.45 33.891 * R-ES 21.81±9.28 11.40±3.32 22.16±10.52 3.509 R-GM 23.75±4.58 79.83±55.40 30.97±8.31 19.740 * R-BF 30.83±21.57 46.15±3.39 34.57±30.42 22.127 * R-GN 7.88±4.27 16.44±4.49 3.28±1.30 40.699 * L-ES 67.81±8.90 37.42±2.13 76.56±3.23 89.207 * L-GM 14.10±0.83 9.37±0.33 5.45±1.19 142.031 * L-BF 19.07±6.79 8.79±0.31 5.67±0.14 21.441 * L-GN 28.30±0.78 1.65±0.18 19.62±0.37 4309.949 * R-ES 40.28±9.98 37.49±15.55 17.71±13.33 4.931 * R-GM 19.47±1.69 43.62±3.31 30.97±8.77 23.662 R-BF 4.68±1.04 7.67±0.46 19.64±31.55.485 R-GN 3.77±0.27 28.47±6.60 5.07±0.46 86.815* L-ES 90.68±6.99 77.74±1.87 59.16±9.26 51.108 * L-GM 13.76±1.05 8.16±0.67 6.70±1.03 91.467 * L-BF 13.74±0.42 8.65±0.81 10.59±5.72 2.880 * L-GN 27.78±0.71 1.56±0.20 19.56±0.23 5971.626 * R-ES 14.30±3.47 14.55±9.85 9.07±1.34 1.726 R-GM 17.57±1.68 37.84±1.39 28.25±1.23 290.172 * R-BF 14.41±6.19 8.99±2.19 9.41±1.35 3.855 * R-GN 3.83±0.41 22.59±2.46 5.60±0.43 325.589 * L-ES 85.20±8.35 41.74±6.37 40.33±10.34 82.578 * L-GM 14.16±1.38 8.19±0.98 5.00±0.39 143.359 * L-BF 13.62±0.46 8.26±0.29 6.04±0.96 197.560 * Values are means ± SD. * p<.05, p<.05 vs. CON. L: left R: right, ES: erector spine, GM: glutes medius, BF: biceps femoris, GL: gastrocnemius. The Asian Journal of Kinesiology 67
Table 4. Changes in muscle activity between CON, APG and PPG during the yoga poses. (Unit: %MVIC) Cont. Yoga poses Direction Muscles CON (n=6) APG (n=6) PPG (n=8) F Parsva upavistha Virabaddra asana Ⅲ Right Left Right L-GN 27.92±0.39 1.60±0.29 19.47±0.29 9848.299 * R-ES 13.17±2.88 13.79±12.78 9.44±1.51 6.446 * R-GM 17.61±1.74 37.48±3.83 40.40±13.71 10.672 * R-BF 12.74±5.92 7.46±1.33 3.35±0.55 12.278 * R-GN 3.90±0.27 25.98±4.64 5.58±0.51 135.416 * L-ES 98.45±0.28 99.22±0.49 98.27±0.84 4.238 * L-GM 18.70±2.48 5.39±0.18 1.17±0.11 261.219 * L-BF 59.25±41.47 22.83±5.48 3.12±1.39 8.836 * L-GN 87.61±51.23 46.85±9.34 54.32±4.12 3.457 * R-ES 117.32±37.54 125.91±23.34 74.11±8.97 6.599 * R-GM 50.84±35.44 203.85±67.66 92.94±15.85 16.251 * R-BF 50.20±28.91 48.91±6.80 38.31±22.22.603 R-GN 9.41±11.00 56.35±8.17 40.96±11.23 34.931 * L-ES 99.60±0.37 98.93±0.92 99.23±0.38 2.881 * L-GM 51.63±21.35 16.00±4.38 16.32±1.51 16.957 * L-BF 58.61±24.15 55.17±8.18 18.33±2.89 14.203 * L-GN 43.01±20.27 42.59±19.73 2.91±1.53 11.282 * R-ES 131.75±66.38 91.79±14.92 68.32±8.18 4.192 * R-GM 30.86±7.89 36.71±4.76 64.41±19.12 13.590 * R-BF 29.73±14.01 21.87±7.91 27.33±2.79 1520 R-GN 40.60±7.31 61.81±11.25 52.78±10.20 6.538 * Values are means ± SD. * p<.05, p<.05 vs. CON. L: left R: right, ES: erector spine, GM: glutes medius, BF: biceps femoris, GL: gastrocnemius. R-BF(p=.000) 의근활성도는 CON과비교해서 PPG에서유의하게낮게나타났다. 왼쪽 Parivrrta upavistha 동작중 R-GM(p=.000), R-BF(p=.001) 및 R-GN(p=.000) 의근활성도는 CON과비교해서 APG에서각각유의하게높게나타났으며, 반면에 L-GM(p=.000), L-BF(p=.000), L-GN(p=.007) 및 R-ES(p=.025) 의근활성도는 CON과비교해서 APG에서각각유의하게낮게나타났다. 또한 R-GM(p=.042) 및 R-BF(p=.000) 의근활성도는 CON과비교해서 PPG에서각각유의하게높게나타났으며, 반면에 L-GN(p=.000) 의근활성도는 CON과비교해서 PPG에서유의하게낮게나타났다. 오른쪽 Parivrrta upavistha 동작중 R-GM(p=.002) 및 R-GN(p=.000) 의근활성도는 CON과비교해서 APG에서각각유의하게높게나타났으며, 반면에 L-ES(p=.000), L-GM(p=.000), L-BF(p=.000) 및 L-GN(p=.000) 의근활성도는 CON과비교해서 APG에서각각유의하게낮게나타났다. 또한 R-ES(p=.011) 및 R-GM(p=.003) 의근활성도는 CON과비교해서 PPG에서각각유의하게높게나타났으며, 반면에 L-GN(p=.000) 의근활성도는 CON과비교해서 PPG에서유의하게낮게나타났다. 왼쪽 parsva upavistha 동작중 R-GM(p=.000) 및 R-GN(p=.000) 의근활성도는 CON과비교해서 APG에서각각유의하게높게나타났으며, 반면에 L-ES(p=.002), L-GM(p=.000), L-BF(p=.029), L-GN(p=.000) 및 R-BF(p=.024) 의근활성도는 CON과비교해서 APG에서각각유의하게낮게나타났다. 또한 R-GN(p=.000) 의근활성도는 CON과비교해서 PPG에서유의하게높게나타났으며, 반면에 L-ES(p=.000) 및 R-BF(p=.032) 의근활성도는 CON과비교해서 PPG에서각각유의하게낮게나타났다. 오른쪽 parsva upavistha 동작중 R-ES(p=.024), R-GM(p=.002) 및 R-GN(p=.000) 의근활성도는 CON과비교해서 APG에서각각유의하게높게나타났으며, 반면에 L-ES(p=.000), L-GM(p=.000), L-BF(p=.000), L-GN(p=.000) 및 R-BF(p=.000) 의근활성도는 CON과비교해서 APG에서각각유의하게낮게나타났다. 또한 R-GM(p=.000) 의근활성도는 CON과비교해서 PPG에서유의하게높게나타났으며, 반면에 R-BF(p=.000) 의근활성도는 CON과비교해 68 The Asian Journal of Kinesiology
서 PPG에서유의하게낮게나타났다. 왼쪽 Virabaddra asana Ⅲ 동작중 L-ES(p=.004) 및 R-GM(p=.011) 의근활성도는 CON과비교해서 APG에서각각유의하게높게나타났으며, 반면에 L-GM(p=.000), L-BF(p=.001) 및 L-GN(p=.000) 의근활성도는 CON과비교해서 APG에서각각유의하게낮게나타났다. 또한 R-GL(p=.000) 의근활성도는 CON 과비교해서 PPG에서유의하게높게나타났으며, 반면에 L-GM(p=.000) 및 L-BF(p=.014) 의근활성도는 CON과비교해서 PPG에서각각유의하게낮게나타났다. 오른쪽 Virabaddra asana Ⅲ 동작중 R-GN(p=.002) 의근활성도는 CON 과비교해서 APG에서유의하게높게나타났으며, 반면에 L-ES(p=.030) 의근활성도는 CON과비교해서 APG에서유의하게낮게나타났다. 또한 R-GM(p=.000) 의근활성도는 CON과비교해서 PPG에서유의하게높게나타났으며, 반면에 L-GM(p=.000), L-BF(p=.000), L-GN(p=.001) 및 R-ES- (p=.012) 의근활성도는 CON과비교해서 APG에서각각유의하게낮게나타났다. 논의이연구에서는골반변위에따른요가동작이중년여성의척추관절가동범위, 위뒤엉덩뼈가시의높이및근활성도에미치는영향을검토하였다. 그결과, 골반변위가있는중년여성의요가동작은척추관절가동범위, 위뒤엉덩뼈가시의높이및근활성도에부정적인영향을미치는것을확인하였다. Kendall et al. (2005) 은균형적인움직임은관절과근육간에적절한조절을통해신체의구조와기능을긍정적으로유지한다고보고하였으며, Lee (2001) 은근골격계의균형조절은신체분절사이의생체역학적관계에서관절가동범위및근육의특성을포함한다고하였다. 일반적으로요가동작은몸통굽힘과폄의동작이많으며, 굽힘동작은신체의뒷다리 (hind limb), 허리 (lumbar), 등 (back) 및목 (neck) 을펴는동작으로써척추및골반의관절이앞으로굽혀지는동작이대부분이다. 이연구에서요가동작중척추관절가동범위는오른쪽 Janusirsa asana 중에몸통오른쪽굽힘과골반기울임에서 CON과비교해서 APG 및 PPG에서유의하게낮게나타났다. 이는요가동작이한방향으로움직이는상태에서도오른쪽과왼쪽의쓰임이다를수있음을알수있는결과라고생각된다. Janusirsa asana는척추에서는경미한굽힘이일어나고골반과엉치 엉덩관절에서보다많은굽힘이일어나는동작으로써습관적으로몸의한쪽을사용하는측면성을나타내기때문에굽힌다리쪽의엉치엉덩관절의가동성이큰경우, 몸통을편다리쪽으로굽히는것이수월해진다고알려져있다 (Leslie, 2007). 따라서이연구에서요가동작중척추의관절가동범위와골반기울임이 APG 및 PPG 모두오른쪽에서만유의하게낮게나타나는편측성움직임을보인것은생활속습관적인비대칭적사용과골반변위로인해엉치엉덩관절굽힘의움직임에제한이있기때문일것이라고생각된다. 이연구에서 Parivrrta upavistha 중오른쪽골반기울임은 CON과비교해서 APG 및 PPG에서낮게나타났다. 이는습관적인비대칭성과동시에골반의변위로인한엉덩관절가동범위의제한과엉덩관절벌림근육인중간볼기근과엉덩관절폄근인넙다리두갈래근의불균형으로인해궁둥뼈결절이지면에서닿은상태에서반대쪽으로힘을발휘하기어려워한쪽으로치우친결과엉덩관절의기울임이낮게나타났다고생각된다. 이처럼이연구에서척추관절가동범위는요가동작중에서만 APG 및 PPG 모두불균형한움직임을나타냈다. 이것은골반이중립에위치해있을때동적인자세에서안정적으로상체와하체의관절과근육을조절하고유지하여동작을행하는능력을증진시킬수있다고보고 (Seo et al., 1996) 한선행연구의내용과일치한다고생각된다. 따라서요가동작은신체의정렬, 즉골반의중립상태를유지할수있도록적절한지도가필요할것으로생각된다. 한편, 이연구에서요가동작에따라골반변위대상자의위뒤엉덩뼈가시의높이가차이를보인것은요가동작시사용되는척추세움근, 넙다리두갈래근및중간볼기근의불균형이발생하였기때문인것으로생각된다. 이연구에서요가동작중의근활성도는 CON과비교해서 APG에서척추세움근, 넙다리두갈래근, 중간볼기근및장딴지근에서보다높은차이를보였다. 또한 Janusirsa asana의근육작용은접힌다리쪽에서넙다리두갈래근의단축성수축과장딴지근의신장성수축이발생하고, 편다리쪽에서넙다리두갈래근및중간볼기근의신장성수축과장딴지근의단축성수축이발생하는데, 이연구에서왼쪽 Janusirsa asana 동작중에왼쪽척추세움근, 중간볼기근, 넙다리두갈래근및장딴지근의활성도는 CON과비교해서 APG에서낮게나타났으며, 오른쪽에서는높게나타났다. 특히, 척추관절가동범위에서유의한차이를보인오른쪽 The Asian Journal of Kinesiology 69
의경우, 접힌다리쪽의장딴지근의근활성도는 CON과비교해서 APG에서낮게나타났으며, 반대로편다리쪽에서높게나타났다. 또한장딴지근의활성도는 CON과비교해서 PPG에서높게나타났지만, PPG에비해 APG에서보다높게나타났으며, 중간볼기근및넙다리두갈래근의활성도도 CON 및 PPG와비교해서 APG에서높게나타났다. 이러한결과, 즉 APG의경우장딴지근, 중간볼기근및넙다리두갈래근이길어지거나약화된근육이기때문에보다많이기울이기위해서보다많은힘이발현됐을것으로생각된다. 선행연구에의하면, 관절가동범위는근육이나인대등관절을이루거나관계가있는여러구조물등의움직임에의해결정이된다고보고하였다 (Cho, 1995). Parivrrta upavistha 및 Parsva upavistha 중근활성도는 APG의왼쪽몸통의왼쪽에서는 CON과비교해서낮게나타났으며, 오른쪽에서는 CON과비교해서높게나타났다. 이동작에서근육의작용은중간볼기근, 넙다리두갈래근및장딴지근에서신장성수축이발생하고, 두동작모두다리를좌우로벌리고두다리를편상태로행하기때문에신장성수축시근활성도가 CON과비교해서 APG에서높게나타난것으로추측된다. 왼쪽 Virabaddra asana Ⅲ 동작시왼쪽근육군의활성도는 CON과비교해서 APG에서낮게나타났으며, 오른쪽근육군의활성도는 CON과비교해서 APG에서높게나타났다. 하지만위뒤엉덩뼈가시의높이에서차이를보인오른쪽을살펴보면, CON과비교해서지지하는다리쪽에서넙다리두갈래근의활성도는유의한차이가없지만, 엉덩관절의굽힘을조절하고골반의수평을유지하는중간볼기근의활성도는 CON 및 PPG과비교해서 APG에서높게나타났다. 이연구에서근활성도는오른쪽과완쪽의불균형이있다는것을확인하였다. 따라서골반변위에따른요가동작이중년여성의지속적인골반의기울임과비대칭을형성할수있고, 유연성및근력의저하를초래할수있다는가능성이시사되었다. 많은선행연구에의하면, 균형과기능적움직임은밀접한관련성이있으며 (Bohannon, 1991; Haart et al., 2004; Sarah et al., 2006), 불균형상태에서반복되는생활과습관은나쁜자세를만들고 (Cailliet, 1994; Mun, 2004), 유연성의감소와통증및운동제한으로인해결국에는뼈와연부조직의변화를초래한다고보고하였다 (Hwang et al., 1994; Park, 1997; David et al., 1999). 또한성인의경우에는몸통및다리에서편측성 (laterality) 활동이많으며 (Boldori et al., 1999), 이러한편측성활동은일상생활의활동수준을저하시킬수있다고보고하였다 (Kim, 2015). 따라서요가동작은골반의중립상태에서골반주변의근육과관절들을균형있게사용할필요가있다고생각된다. 결론이연구에서는골반변위에따른요가동작이중년여성의척추관절가동범위, 위뒤엉덩뼈가시의높이및근활성도에미치는영향을검토한결과, 골반변위가있는중년여성의요가동작은 CON과비교하여척추관절가동범위와위뒤엉덩뼈가시의높이에서유의하게낮게나타났으며, 근활성도는더많은유의차를보였다. 이상의결과, 골반변위가있는중년여성과정상여성간의요가동작은차이가있는것을확인하였다. 향후에는골반의고정여부에따른요가동작의생체역학적및근역학적영향을검토할필요가있다고생각된다. Conflicts of Interest The authors declare no conflict of interest. References Aiengar B.K.C. (2007). Yoga : Yoga dipika. Bae, S., Kim, TY, & Bae, J. H. (1999). A comprehensive kinematic approachto pelvis. The Journal of Korean Physical Therapy, 11(2), 93-102. Oken, M.C. Salinski, S.M. Elsas. (2006). Vigilance, alertness, or sustained attention: physiological basis and measurement, 117 (9), 1885-1901. Bohannon RW. (1991). Relationship among paretic knee extension strength, maximum weightbearing, and gait speed in patients with stroke. Journal of Stroke and Cerebrovascular Diseases, 1, 65-69. Boldori, L., Dal Solda M., & Marelli, A. (1999). Anomalies of the trunk. An analysis of their prevalence in young athletes. Minerva Pediatr, 5(1), 259 264. Cailliet. (1994). Low back pain syndrome. Choi, E. A. (2007). Yoga teaching method. Seoul. Choi, E. A. (2008). The effect of Hatha yoga practice to dis- 70 The Asian Journal of Kinesiology
placed pelvis correction of middle aged women. Changwon National University. Cho, Y. H. (1995). Health activities for the aged, Seoul. Clark, J. M., & Haynor, DR. (1987). Anatomy of the abductormuscles of the hipasstudied by computed tomography. The Journal of Bone & Joint Surgery, 69(7), 1021-1031. Dalstra, M., & Huiskes, R. (1995). Load transfer across the pelvic bone. Journal of Biomechanics, 28(6), 715-724. David G. Simons, Janet G. Travell, Lois S. Simons. (1999). Myofascial pain and dysfunction: the trigger point manual, Vol. 1 Upper Half of Body. DN.,& Cirulli, J. (1994). Pelvic stabilization during resistance training: Its effect on the development of lumbar extension strength. Archives of Physical Medicine and Rehabilitation, 75, 210-215. Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191. Hwang, C. M., Kim, H. S., Ahn, K. H. (1994). Segmental and dermatomal somatosensory evoked potentials in lower extremity of normal adult. The Journal of Korean Academy of Rehabilitation Medicine, 18(2), 234-241 Hwang, J. K. (2005). The effect of low back stretching exercise on lumbar lordosis angle, sit-up and modified visual analogue scale in loe back pain patients, Dankook University. Graves, JE., Webb, DC., Pllock, ML., Matkozich, J., Leggett, SL., Carpenter, DM. (1990). Quantitative assessment of full range-of-motion isometric lumbar extension strength. Spine. 15(4), 289-294. Haart M, Geurts AC, Huidekoper SC. (2004). Recovery of standing balance in postacute stroke patients: a rehabilitation cohort study. Archives of Physical Medicine and Rehabilitation, 85, 886 895. Harris-Hayes, M., Sahrmann, SA., & Van Dillen, LR. (2009). Relationship between the hip and low back pain in athletes who participate in rotation-related sports. Journal of Sport Rehabilitation, 18(1), 60-75. Lee, H. S. (2015). Enhanced muscle activity during lumbar extension exercise with pelvic stabilization. Journal of Exercise Rehabilitation, 11(6), 372-377. Kang, Y.H., kim, S. C. (2011). Change of morphologic pelvis and deviation according to gender, age -radiological pelvimetry. Korean Society of Radiological Science, 34(2), 91-96. Kendall, FP., McCreary, FP., & Provance, PG. (1993). Muscles: testing and function. Baltimore. Kendall, FP., McCreary, FP., & Provance, PG. (2005). Muscles: testing and function with posture and pain. Baltimore. Kimberly Anne., Williamsa., John Petronisb., David Smithc., David Goodrichd., Juan Wue. (2005). Effect of Iyengar yoga therapy for chronic low back pain. Pain, 115, 107 117. Kim, D. D., Kim., M. H., Kim, Y. H., Mun, S. E., Mun, S. K. (2009). Measurement and evaluation. Seoul. Kim, J. H. (2007). An influence of trunk control using pelvic movement upon the foot pressure of patient with hemiplegia. (Dissertation of Master s degree). Yong-in university, Yong-in, Republic of Korea. The Journal of Korean Physical Therapy, 19, 9-11. Kim, J. H., Jang, S. K. (2014). The Effects of Robo-horseback riding with changes of pelvic tilting and speeds on muscle activities of trunk and lower limb, 26(5), 290-295 Kim, S. J., Lee, S. H., Kim, W. S., Lee, E. H., Park, Y. H., Na, J. K. (1997). Analysis of increased myotatic reflex in children with spastic cerebral palsy. Annals of Rehabilitation Medicine. 23(3), 524-530. Kim, W. M. (2015). The effects of pelvic stabilization exercise program on the lumbopelvic subluxation and posture balance ability for chronic low back pain patients with malalignment syndrome, The graduate school of Hanyang university. Kim, Y., Kim, S., & Jang, H. (2014). Correlation of hip joint range of motion and femur head anterior glide mobility with gait ability in stroke patients. Journal of Korean Society of Physical Medicine. 9(1), 35-44. Kong, SW., Jeong, Y. W., & Kim, J. Y. (2015). Correlation between balance and gait according to pelvic displacement in stroke patients. Journal of Physical Therapy Science, 27(7), 2171-2174. Lee, H, S. (2001). A study of standing balance control between The Asian Journal of Kinesiology 71
normal subjects and subjects with low back pain. Taegu university. Lee, H. S. (2014). Effects of lumbopelvic stabilization exercise on lumbosacral region angle, dynamic balance, trunk extensor endurance and pain index in chronic low back pain patients) (Effects of lumbopelvic stabilization exercise on lumbosacral region angle, dynamic balance, trunk extensor endurance and pain index in chronic low back pain patients. Korean Journal of Sports Science, 23(2), 993-1005. Leslie kaminoff., & Amy matthews. (2007). Yoga anatomy. Leslie Kaminoff. (2011). Yoga Anatomy Edition. Levine., Michael W., Whittl. (1997). Three-dimensional relationships between the movements of the pelvis and lumbar spine during normal gait. Human Movement Science, 18(5), 682-692. Min, K. W. (2005). Therapeuiic exercise. Seungnam. Mun, S. E. (2004). General coordinative manipulation. Seoul. Myers, TW., Chaitow, L., & Juhan, D. (2001). Anatomy trains: Myofacial meridians for manual and movement therapists. Churchill Livingstone, Edinburgh. Neumann, D. A. (2002). Kinesiology of the musculoskeletal system. Nooij, R. D., Kallenberg, L. A. C. & Hermens, H. J.(2009). Evaluating the effect of electrode location on surface EMG amplitude. Journal of Electromyography and Kinesiology. 19, 257-266. Osamu Wada, Hiroshige Tateuchi, Noriaki Ichihashi. (2014). The correlation between movement of the center of mass and the kinematics of the spine, pelvis, and hip joints during body rotation. Gait & Posture, 39(1), 60-64. Post, WR., Teitge, R., & Amis, A. (2002). Patellofemoral malalignment: looking beyond the viewbox. Clinical Sports Medicine, 21(3), 521-546. Park, C. B., Park, S. Y. (2004). Exercise of anatomy & physiology. Seoul. Park, Y. H. (1997). The visual analysis of myofascial syndrome on balance posture. The Journal of Korean Society of Physical Therapy, 9(1), 177-184. Park, Y. H., Kim, D. H. (2016). Effects of Iyengar yoga practice for 12 weeks on lower body imbalance in middle-aged women. Journal of the Korea Academia-Industrial Cooperation Society, 18(1), 431-440. Sarah F Tyson, Marie Hanley, Jay Chillala, Andrea Selley, Raymond C Tallis. (2006). Balance disability after stroke. Physical Therapy, 86(1), 30-38. Sahrmann S A. (2002). Movement science and physical therapy. Journal of Physical Education, Recreation & Dance. 7, 4 7. Schamberger, W. (2012). The malalignment syndrome. second edition. Elsevier Limited. Seo, K. W., Ba, S. S., Shin, H. C. (1996). Change of the pelvic tilt angle on bobath approach in hemiplegic patients. The journal of Korean Academy of Physical Therapist, 3(1), 123-130. Tak, A. Y. (2011). The effect of yoga exercises for junior high school girl's posture and health-related physical fitness. Kyungsung university. Waryasz, G. R. (2010). Excercise strategies to prevent the development of the anterior pelvic tilt: Implications for possible prevention of sports hernias and osteitis pubis. The Journal of Strength & Conditioning Research, 32(4), 56-65. Youdas, J. W., Garrett, T. R., Harmsen, S., Suman, V. J., & Carey, J. R. (1996). Lumbar lordosis and pelvic inclination of asymptomatic adults. Physical Therapy Journal, 76(10), 1066-1081. You, S., Lee, J. H., You, S. S. (2010). Connective mechanism using muscle activity in half vinyasa. Korean Society for Wellness, 6, 3. Yun, S. J., Back, S. H., Shin, M. H., Kim, D. S. (2009). Effects of yoga training and BCAA amino acid in take on physical strength and body shape in middle-aged women. Korean Education Journal of Aesthetic Society, 7(3), 175-185. 72 The Asian Journal of Kinesiology