: Kor. J. Fertil. Steril., Vol. 31, No. 4, 2004, , 1, , ,2 Human Amniotic Fluid Cells Support Expansion Culture of Hum

Similar documents
Microsoft Word - 2-최영민.DOC

歯 PDF

Can032.hwp

줄기세포.PDF

388 The Korean Journal of Hepatology : Vol. 6. No COMMENT 1. (dysplastic nodule) (adenomatous hyperplasia, AH), (macroregenerative nodule, MR

Pharmacotherapeutics Application of New Pathogenesis on the Drug Treatment of Diabetes Young Seol Kim, M.D. Department of Endocrinology Kyung Hee Univ

<30372EC0CCC0AFC1F82E687770>

12.077~081(A12_이종국).fm

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

Lumbar spine

황지웅

<313120B9DABFB5B1B82E687770>


03이경미(237~248)ok

012임수진

(Establishment and Management of Proteomics Core Facility)

09권오설_ok.hwp

(

( )Kju269.hwp

(....).hwp

untitled

이 발명을 지원한 국가연구개발사업 과제고유번호 SI-1304 부처명 기획예산처 연구관리전문기관 산업기술연구회 연구사업명 정부출연 일반사업 연구과제명 생명통합정보시스템 활용 독창적 신약개발협동연구사업 기 여 율 1/1 주관기관 한국화학연구원 연구기간





untitled

γ

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종

Microsoft Word - KSR2016S168

DBPIA-NURIMEDIA

Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타

아태연구(송석원) hwp

A 617

03-서연옥.hwp

Osteoblast Progenitor Cells Derived from Umbilical Cord Blood 167 μ μ α α μ β μ μ α μ μ μ μ β μ

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

석사논문.PDF

Crt114( ).hwp

7.ƯÁýb71ÎÀ¯È« š

±èÇ¥³â

03-ÀÌÁ¦Çö

기관고유연구사업결과보고

139~144 ¿À°ø¾àħ

歯1.PDF

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

54 한국교육문제연구제 27 권 2 호, I. 1.,,,,,,, (, 1998). 14.2% 16.2% (, ), OECD (, ) % (, )., 2, 3. 3

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

( )Kju225.hwp

분 기 보 고 서 (제 47 기) 사업연도 2014년 01월 01일 2014년 03월 31일 부터 까지 금융위원회 한국거래소 귀중 2014년 5월 30일 제출대상법인 유형 : 면제사유발생 : 주권상장법인 해당사항 없음 회 사 명 : 파미셀 주식회사 대 표 이 사 : 김

hwp

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: : A basic research

,......

09-감마선(dh)

( )Jkstro011.hwp

???춍??숏

09구자용(489~500)

44-4대지.07이영희532~

<B9AEC8ADB0E6C1A6BFACB1B820C1A63137B1C720C1A633C8A C2F720BCF6C1A4BABB292E687770>

Kbcs002.hwp

한약재품질표준화연구사업단 강활 ( 羌活 ) Osterici seu Notopterygii Radix et Rhizoma 생약연구과

목 차 회사현황 1. 회사개요 2. 회사연혁 3. 회사업무영역/업무현황 4. 등록면허보유현황 5. 상훈현황 6. 기술자보유현황 7. 시스템보유현황 주요기술자별 약력 1. 대표이사 2. 임원짂 조직 및 용도별 수행실적 1. 조직 2. 용도별 수행실적

노인정신의학회보14-1호

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

줄기세포 연구자들을 위한 Stem cell Research Solutions 2018 줄기 세포 연구 관련 베스트셀링 제품 할인 프로모션! 8월 16일부터 9월 30일까지 특별한 혜택을 만나보세요.

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

김범수

현대패션의 로맨틱 이미지에 관한 연구

,......

975_983 특집-한규철, 정원호

전체 목차 1. 주류 일반 2. 기능성 3. 숙취 4. 주세법 5. 주류 일반 상식 6. 우리술 즐기기


개최요강


?

19(1) 02.fm

Sheu HM, et al., British J Dermatol 1997; 136: Kao JS, et al., J Invest Dermatol 2003; 120:

135 Jeong Ji-yeon 심향사 극락전 협저 아미타불의 제작기법에 관한 연구 머리말 협저불상( 夾 紵 佛 像 )이라는 것은 불상을 제작하는 기법의 하나로써 삼베( 麻 ), 모시( 苧 ), 갈포( 葛 ) 등의 인피섬유( 靭 皮 纖 維 )와 칠( 漆 )을 주된 재료

09È«¼®¿µ 5~152s


Development of culture technic for practical cultivation under structure in Gastrodia elate Blume

., (, 2000;, 1993;,,, 1994), () 65, 4 51, (,, ). 33, 4 30, 23 3 (, ) () () 25, (),,,, (,,, 2015b). 1 5,

main.hwp

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

27 2, 1-16, * **,,,,. KS,,,., PC,.,,.,,. :,,, : 2009/08/12 : 2009/09/03 : 2009/09/30 * ** ( :

Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI: 3 * Effects of 9th

歯kjmh2004v13n1.PDF

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: : * Research Subject

Microsoft Word - 02-지희준.DOC

#Ȳ¿ë¼®

관훈저널106호봄_내지

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: * Strenghening the Cap

Statistical Data of Dementia.



Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: * A Study on Teache


본문.PDF

Transcription:

: 31 4 2004 Kor J Fertil Steril, Vol 31, No 4, 2004, 12 1 2, 1,2 2 2 1,2 1 1 1 1 1,2 Human Amniotic Fluid Cells Support Expansion Culture of Human Embryonic Stem Cells Hee Sun Kim 1,2, Hye Won Seol 2, Hee Jin Ahn 2, Sun Kyung Oh 1,2, Seung Yup Ku 1, Seok Hyun Kim 1, Young Min Choi 1, Jung Gu Kim 1, Shin Yong Moon 1,2 1 Department of Obstetrics and Gynecology, 2 Institute of Reproductive Medicine and Population, Medical Research Center, College of Medicine, Seoul National University, Seoul, Korea Objective: This study was performed to evaluate the possibility of prolonged culture of human embryonic stem cells (hesc; SNUhES2) on human amniotic fluid cells (hafc), which had been storaged after karyotyping Method: The hafc was prepared for feeder layer in the presence of Chang's medium and STO medium (90% DMEM, 10% FBS) at 37 in a 5% CO 2 in air atmosphere Prior to use as a feeder layer, hafc was mitotically inactivated by mitomycin C The hescs on hafc were passaged mechanically every seven days with ES culture medium (80% DMEM/F12, 20% SR, bfgf) Results: The hafc feeder layer support the growth of undifferentiated state of SNUhES2 for at least 59 passages thus far SNUhES2 colonies on hafc feeder appeared slightly angular and flatter shape as compared with circular and thicker colonies observed with STO feeder layer and showed higher level with complete undifferentiation in seven days Like hesc cultured on STO feeders, SNUhES2 grown on hafc expressed normal karyotype, positive for alkaline phosphatase activity, high telomerase activity, Oct-4, SSEA-3, SSEA-4, Tra-1-60 and Tra-1-81 and formed embryoid bodies (EBs) Conclusion: The hafc supports undifferentiated growth of hesc Therefore, these results may help to provide a clinically practicable method for expansion of hesc for cell therapies Key Words: Human embryonic stem cells (hesc), Human amniotic fluid cells (hafc), Feeder layer, Undifferentiation, Expansion of hesc (human embryonic stem cells, hesc) (inner cell mass, ICM), (karyotype),, :, ) 110-744 28, Tel: (02) 2072-2384, Fax: (02) 3672-7601, e-mail: shmoon@snuackr * 21 (SC11011) - 261 -

(cell therapy) (fetal abnormalities) 1 3 (prenatal genetic diagnosis) 11,12 (mouse embryonic fibroblast, MEF) octamer-binding transcription (feeder layer) factor-4 (Oct-4), 1,2 RNA (retrovirus) (coculture) 4 (mo- use embryonic stem cell, mesc), gelatin leukemia inhibitory factor (LIF) (IVF-ET) 5 10 LIF 6 Xu 7 extracellular matrix Matrigel (conditioned media), 10 ml (1000 rpm, 8 ) Chang's (Irvine scientific,, Richards 8 (fetal Santa Anna, CA, USA) 1 ml muscle) (fetal skin) 35 mm (adult fallopian tuba) (epithelial cell) 05 ml 37, 5% CO 2,, Amit 4 Hovatta 9 (foreskin) 2 ml, Cheng 10 (adult bone ma- rrow) 4 5 025% trypsin-edta (human amniotic fluid cells, hafc) (genetic alteration) - 262 - (SNUhES2), 13

, 70 80% bfgf 02, µm Ma- 150 trigel 35 mm mitomycin C (001 mg/ml), Chang's, 10% Fetal Bovine Serum (HyClone, Utah, USA), penicillin streptomycin Dulbecco's Modified Eagle Medium (DMEM, GIBCO), (cell surface marker) AP, SSEA-1, 3 4 Tra 1-60, 1-81 STO (ATCC, USA), Oct-4 telomerase PCR 71 Oh (SNUhES2) 14 alkaline phosphatase (AP), Oct-4, stage-specific embryonic antigen-3, 4 (SSEA-3, 4) 500 4, (46,XX) 5 ml (DMEM/F12, 20% SR, 1% non- 14 essential amino acid, 01 M β-mercaptoethanol, 05% penicilline/streptomycin) 01% gelatin mitomycin C mitomycin C, (colony) glass knife 100 200 7 neurofilament heavy chain (NFH) keratin DMEM/F12 (GIBCO) RT-PCR primer, 20% serum replacement (SR, GIBCO), sequences PCR Amylase (for- 04 ng/ml basic fibroblast growth factor (bfgf, Invi- ward: 5'-GCTGGGCTCAGTATTCCCCAAATAC-3', retrogen), 1% non-essential amnio acid, 01 mm β-merca- verse: 5'-GACGACAATCTCTG-3'), albumin (forward: ptoethanol, 05% penicilline/streptomycin 5'-CCTTTGGCACAATGAAGTGGGTAACC-3', reve- rse: 5'-GACGACAATCTCTGACCTGAGTAGC-3'), CMP (forward: 5'-ATGACTGTGAGCAGGTGTGCATCAG- Mitomycin C (2 10 6 cells) 25 3', reverse: 5'-CTGGTTGATGGTCTTGAAGTCAGCCcm 2 flask 3'), enolase (forward: 5'-TGACTTCAGTCGCCTGATG- FBS DMEM ATCCC-3', reverse: 5'-TGCGTCCAGCAAAGATTGC- - 263 - (three germ layer) (derivatives) (endoderm) amylase albumin, (mesoderm) cartilage matrix protein (CMP) enolase (ectoderm)

CTTGTC-3'), NFH (fowaard: 5'-TGAACACAGACGC- 12, TATGCGCTCAG-3', reverse: 5'-CACCTTTATGTGA- GTGGACACAGAG-3'), keratin (forward: 5'-AGGAA- (over- ATCATCTCAGGAGGAAGGGC-3', reverse: 5'ATCT- growth) mitomycin C CAGGAGGAAGGGC-3', reverse: 5'-AAAGCACAGA- mitomycin C TCTTCGGGAGCTACC-3') PCR 94 30, 68 30 primer mitomycin C 72 30 30 PCR 2% agarose gel, mitomycin C mitomycin C (prolife- 9, ration) A B C D Figure 1 Morphology of SNUhES2 cell line grown on haf feeder layer (A) SNUhES2 P71-5 cell colony at day 2 on hafc treated with mitomycin C (B) SNUhES2 P71-5 cell colony at day 7 on hafc treated with mitomycin C (C) SNUhES2 P71-5 cell colony at day 2 on hafc non-treated with mitomycin C (D) SNUhES2 P71-5 cell colony at day 7 on hafc non-treated with mitomycin C - 264 -

A B Figure 2 Results of karyotyping(a) SNUhES2 P71-25 on hafc treated with mitomycin C: 46,XX (B) SNUhES2 P71-25 on hafc non-treated with mitomycin C: 46,XX (Figure 2A) (Figure, 2B) STO (46,XX),, mitomycin C (Figure 1A, B) mitomycin C (Figure 1C, D), (Figure 5A, B) Mitomycin C (Figure 5C) - 265 - AP (Figure 3A, G) SSEA-4 (Figure 3F, L), Tra-1-60 (Figure 3B, H), Tra-1-81 (Figure 3C, I), SSEA-1 (Figure 3D, J) SSEA-3 (Figure 3E, K) telomerase (Figure 4A) Oct-4 (Figure 4B),

A B C D E F G H I J K L Figure 3 Immunocytochemical staining results of cell surface markers for detecting undifferentiation state of hesc grown on hafc; (A) (F) SNUhES2 P71-25 on hafc treated with mitomycin C (G) (L) SNUhES2 P71-25 on hafc non-treated with mitomycin C (A, G) AP (+) (B, H) Tra-1-60 (+) (C, I) Tra-1-81 (+) (D, J) SSEA-1 ( ) (E, K) SSEA-3 (+) (F, L) SSEA-4 (+) mitomycin C 4 5 Matrigel (Figure 6) - 266 -

A A B C B Figure 4 Detection of telomerase activity and Oct-4 (A) telomerase activity Lane 1: SNUhES2 cells grown on hafc treated with mitomycin C, Lane 2: Heat inactivated control of lane 1 sample, Lane 3: SNUhES2 cells on hafc non-treated with mitomycin C, Lane 4: Heat inactivated control of lane 3 sample, Lane 6: hafc, Lane 7: Heat inactivated control of lane 6, Lane 8: Positive control (B) Oct-4 expression of SNUhES2 grown on hafc Lane 1, 3, 5: beta- actin of lane 2, 4 and 6, respectively, Lane 2: SNUhES2 cells grown on hafc treated with mitomycin C, Lane 4: SNUhES2 cells on hafc nond ih i i C L 6 hafc Figure 5 Morphology and gene expression in embryoid bodies (A) EBs formed with SNUhES2 P71-5 cells at day 7 on hafc treated with mitomycin C (B) EBs formed with SNUhES2 P71-5 cells at day 7 on hafc non-treated with mitomycin C (C) RT-PCR results for detection of three germ layer markers: Endoderm (amylase and albumin), mesoderm (CMP and enolase) and ectoderm (keratin and NFH) Lane 1 is undifferentiated hesc grown on hafc treated with mitomycin C, lane 2 is EB for day 5, lane 3 is EB for day 10 and lane 4 is hafc as negative control - 267 - (fetal bovine serum, FBS)

Figure 6 Morphology of colony of SNUhES2 cell on day 7 grown on feeder free condition (magnification: 1,2 1998 Thomson 1 RNA 4 extracellular matrix,, (soluble factor), 59 Mitomycin C (primate) 16,17, mi- tomycin C Cheng 10 AP, SSEA-4, TRA-1-60, TRA-1-81, SSEA-3, SSEA-1 (suspension),,, mitomycin C mitomycin C mitom- - 268-30, 10 serum-free, bfgf serum replacement (SR) 18 SR 2000 Xu 7 laminin, collagen, fibronectin matrigel extracellular matrix mitomycin C, mitomycin C

ycin C Cheng SSEA-4 TRA-1-60 mitomycin C TRA-1-81 flow cytometer, early passage, late passage (gene expression) mitomycin C microarray mitomycin C, (cytotoxicity) (carcinogen), mito- matirx, SR, transforming growth factor β1 mycin C (TGFβ1), LIF bfgf mitomycin C Amit 4 2 SR 3 3 3 (embryonic) (fe- tal), 23,24 Hovatta 9,, Richards 19 11, 50, 90% (embryonic stem cell, ESC), 80% Carpenter 20 Rosler 21 Xu 7 Thomson 1-269 - Amit 22 fibronectin (epithelioid), (amniotic fluid cell) (fibroblast) 13 Richards 8 mesenchymal (transition) (embryonic germ cell, EGC) (embryonic carcinoma cell, ECC) Oct-4, 25,26 telom-

erase 27 AP, SSEA-4, TRA-1-60 TRA-1-81, telomerase 13 Oct-4 telo- merase (Figure 4A) (in vivo) teratoma,, extracellular matrix (factor) 6 2000 cytokine (growth factor) bfgf bone morphogenic protein 4 (BMP4) 1 Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz, MA, Swiergiel JJ, Marshall VS, et al Embryonic stem cell lines derived from human blastocysts Sci- ence 1998; 282: 1145-7, 2 Reubinoff BE, Pera MF, Fong CY, Trounson A, Bo- 28 ngso A Embryonic stem cell lines from human bla- stocysts: Somatic differentiation in vitro Nat Biote- chnol 2000; 18: 399-404 proteomics 3 Pera MF, Reubinoff B, Trounson A Human embr- yonic stem cells J Cell Sci 2000; 13: 5-10 4 Amit M, Margulets V, Segev H, Shariki K, Laevsky I, Coleman R, et al Human feeder layers for human, embryonic stem cells Biol Reprod 2003; 68: 2150-6 5 Williams R, Hilton D, Pease S, Wilson T, Stewart C, Gearing D, et al Myeloid leukemia inhibitory factor maintains the developmental potential of embryonic stem cells Nature 1988; 336: 684-7 6 Lim KWE, Bodnar A Proteome analysis of condi-, tioned medium from mouse embryonic fibroblast fe- eder layers which support the growth of human em- bryonic stem cell Proteomics 2002; 2: 1187-203 - 270 -, proteomics proteomics (factor)

7 Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, et al Feeder-free growth of undifferentiated human embryonic stem cells Nat Biotechnol 2001; 19: 971-4 8 Richards M, Fong CY, Chan WK, Wong PC, Bongso A Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells Nat Biotechnol 2002; 20: 933-6 9 Hovatta O, Mikkola M, Gertow K, Stromberg AM, Inzunza J, Hreinsson J, et al A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells Hum Reprod 2003; 18: 1404-9 10 Cheng L, Hammond H, Ye Z, Zhan X, Dravid G Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture Stem Cells 2003; 21: 131-42 11 Milunsky A Amniotic fluid cell culture In Milunsky, A (ed) Genetic Disorder and the fetus Plenum Press; New York, 1979 pp 75-84 12 Hoehn H, Salk D Morphological and biochemical heterogeneity of amniotic fluid cells in culture Methods Cell Biol 1982; 26: 11-34 13 Prusa AR, Marton E, Rosner M, Bernaschek G, Hengstschlager M Oct-4 expressing cells in human amniotic fluid: A new source for stem cell research? Hum Reprod 2003; 18: 1489-93 14 Oh SK, Kim HS, Ahn HJ, Seol HW, Kim YY, Park YB, et al Derivation and characterization of new human embryonic stem cell lines, SNUhES1, SN- UhES2 and SNUhES3 Stem Cells In press 2005 15 Chomczynski P, Sacchi N Single-step method of RNA isolation by acid guanidinium thiocyanatephenol-chloroform extraction Anal Biochem 1987; 162: 156-9 16 Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, et al Isolation of a primate embryonic stem cell line Proc Natl Acad Sci USA 1995; 92: 7844-8 17 Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Hearn JP Pluripotent cell lines derived from common marmoset (Callithrix kacchus) blastocysts Biol Reprod 1996; 55: 254-9 18 Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, et al Clonally derived human embryonics stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture Dev Biol 2000; 227: 271-8 19 Richards M, Tan S, Fong CY, Biswas A, Chan WK, Bongso A Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells Stem Cells 2003; 21: 546-56 20 Carpenter MK, Rosler ES, Fisk GJ, Brandenberger R, Ares X, Miura T, et al Properties of four human embryonic stem cell lines maintained in a feederfree culture system Dev Dyn 2004; 229: 243-58 21 Rosler ES, Fisk GJ, Ares X, Irving J, Miura T, Rao MS, et al Long-term culture of human embryonic stem cells in feeder-free conditions Dev Dyn 2004; 229: 259-74 22 Amit M, Shariki C, Margulets V, Itskovitz-Eldor J Feeder layer- and serum-free culture of human embryonic stem cells Biol Reprod 2004; 70: 837-45 23 Gosden CM Amniotic fluid cell types and culture Br Med Bull 1983; 39: 348-54 24 Prusa AR, Hengstschlager M Amniotic fluid cells and human stem cell research: A new connection Med Sci Moni 2002; 8: 253-7 25 Donovan PJ High Oct-ane fuel powers the stem cell Nature Genet 2001; 29: 246-7 26 Pesce M, Scholer HR Oct-4: Gatekeeper in the beginnigs of mammalian development Stem Cells 2001; 19: 271-8 27 Mosquera A, Fernandez JL, Campos A, Goyanes VJ, Ramiro-Diaz JR, Gosalvez J Simultaneous decrease of telomere length and telomerase activity with ageing of human amniotic fluid cells J Med Genet 1999; 36: 494-6 28 Schuldiner M, Yanuka O, Itskovitz-Elder J, Melton DA, Benvenisty N Proc Natl Acad Sci USA 2000; 97: 11307-12 - 271 -