The characteristic analysis of winners and losers in curling: Focused on shot type, shot accuracy, blank end and average score SungGeon Park 1 & Soowo

Similar documents
Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

<31342DC0CCBFEBBDC42E687770>

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>



Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: NCS : * A Study on

Journal of Educational Innovation Research 2017, Vol. 27, No. 1, pp DOI: * The

DBPIA-NURIMEDIA

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H



Kinematic analysis of success strategy of YANG Hak Seon technique Joo-Ho Song 1, Jong-Hoon Park 2, & Jin-Sun Kim 3 * 1 Korea Institute of Sport Scienc

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: * A Study on Teache

<31372DB9CCB7A1C1F6C7E22E687770>

<C7CFB0E8B4EBC7D0BFACB8CDC0FC5FB4EBC1F8C7A55FBEE7BDC45F31C7D0B3E22E786C73>

27 2, 17-31, , * ** ***,. K 1 2 2,.,,,.,.,.,,.,. :,,, : 2009/08/19 : 2009/09/09 : 2009/09/30 * 2007 ** *** ( :

230 한국교육학연구 제20권 제3호 I. 서 론 청소년의 언어가 거칠어지고 있다. 개ㅅㄲ, ㅆㅂ놈(년), 미친ㅆㄲ, 닥쳐, 엠창, 뒤져 등과 같은 말은 주위에서 쉽게 들을 수 있다. 말과 글이 점차 된소리나 거센소리로 바뀌고, 외 국어 남용과 사이버 문화의 익명성 등

1..

서론 34 2

DBPIA-NURIMEDIA

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: (LiD) - - * Way to


DBPIA-NURIMEDIA

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: * Suggestions of Ways

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

<C7D1B1B9B1B3C0B0B0B3B9DFBFF85FC7D1B1B9B1B3C0B05F3430B1C733C8A35FC5EBC7D5BABB28C3D6C1BE292DC7A5C1F6C6F7C7D42E687770>

디지털포렌식학회 논문양식

< C6AFC1FD28C3E0B1B8292E687770>

Kor. J. Aesthet. Cosmetol., 라이프스타일은 개인 생활에 있어 심리적 문화적 사회적 모든 측면의 생활방식과 차이 전체를 말한다. 이러한 라이프스 타일은 사람의 내재된 가치관이나 욕구, 행동 변화를 파악하여 소비행동과 심리를 추측할 수 있고, 개인의

15_3oracle

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특


歯1.PDF


(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

Abstract Background : Most hospitalized children will experience physical pain as well as psychological distress. Painful procedure can increase anxie

012임수진

<313120B9DABFB5B1B82E687770>

Microsoft Word - P02.doc

I

Research subject change trend analysis of Journal of Educational Information and Media Studies : Network text analysis of the last 20 years * The obje

-

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: An Exploratory Stud

DBPIA-NURIMEDIA

R&D : Ⅰ. R&D OECD 3. Ⅱ. R&D

<B9CCB5F0BEEEB0E6C1A6BFCDB9AEC8AD5F31322D32C8A35FBABBB9AE5FC3CAC6C731BCE25F6F6B5F E687770>

03신경숙내지작업

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

DBPIA-NURIMEDIA

Program Component 1 ZAGITOVA Alina OAR # Executed s s 1 FCSp StSq

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: A Study on Organizi

04_이근원_21~27.hwp

<31372DB9DABAB4C8A32E687770>

시안

Microsoft PowerPoint - XP Style

<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>

Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI: 3 * Effects of 9th

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A Research Trend

부산교육 311호

Theoretical foundation for the ethics of coaching sport Sungjoo Park* Kookmin University [Purpose] [Methods] [Results] [Conclusions] Key words:

인문사회과학기술융합학회

01.여경총(앞부분)


27 2, 1-16, * **,,,,. KS,,,., PC,.,,.,,. :,,, : 2009/08/12 : 2009/09/03 : 2009/09/30 * ** ( :

03-ÀÌÁ¦Çö

DBPIA-NURIMEDIA

충남교육181호-3.25.pdf


Journal of Educational Innovation Research 2016, Vol. 26, No. 3, pp.1-16 DOI: * A Study on Good School


Lumbar spine

Journal of Educational Innovation Research 2016, Vol. 26, No. 1, pp.1-19 DOI: *,..,,,.,.,,,,.,,,,, ( )

γ

12이문규

<31362DB1E8C7FDBFF82DC0FABFB9BBEA20B5B6B8B3BFB5C8ADC0C720B1B8C0FC20B8B6C4C9C6C32E687770>

한국성인에서초기황반변성질환과 연관된위험요인연구

03이경미(237~248)ok

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: A Study on the Opti

......CF0_16..c01....

27 2, * ** 3, 3,. B ,.,,,. 3,.,,,,..,. :,, : 2009/09/03 : 2009/09/21 : 2009/09/30 * ICAD (Institute for Children Ability

AT_GraduateProgram.key

DBPIA-NURIMEDIA

歯14.양돈규.hwp

188 최 영 환 청률을 통한 가치측정을 통한 자기 권리를 주장할 수 있 는 근거 자료로 활용할 수 있다. 즉, 방송사가 주장하는 낮은 중계권료를 주장할때는 프로야구가 낮은 시청률을 기록했을 때만이 정당하다. 하지만, 프로야구의 뜨거운 열기만큼이나 시청률도 급 성장세를

hwp

04김호걸(39~50)ok

07_À±¿ø±æ3ÀüºÎ¼öÁ¤

歯CRM개괄_허순영.PDF

.....hwp

Microsoft Word - KSR2012A021.doc

한국체육학회지.hwp

ecorp-프로젝트제안서작성실무(양식3)

304.fm

레이아웃 1

44-4대지.07이영희532~

Transcription:

The characteristic analysis of winners and losers in curling: Focused on shot type, shot accuracy, blank end and average score SungGeon Park 1 & Soowon Lee 2 * 1 Program of Software Convergence, Soongsil University & 2 School of Software, Soongsil University [Purpose] [Methods] [Results] [Conclusion] Key words:

Table 1. Types of curling operations and shots used at the Sochi 2014 Winter Olympics and the related literature Shot type Sochi Olympics Literature Draw Take-out Draw, Guard, Freeze Front, Takeout, Hit & Roll, Clearing, Raise, Promotion Takeout, Double Takeout, Wick/Soft Peeling Draw, Front, Guard, Raise, Wick/Soft Peeling, Freeze Takeout, Hit & Roll, Clearing, Promotion Takeout, Double Takeout Through Through Through Fig. 1. An example of selecting the last stone according to scoring in curling game

Fig. 2. Entity-Relationship Diagram for curling match information Table 2. Characteristics of participating countries in Sochi Winter Olympic curling games Men s Team Rank Game W L W Tie-bre aker Mean Age Women s Team Rank Game W l CAN 1 11 9 2 81.8-30.4 CAN 1 11 11 0 0.0-32.8 GBR 2 12 5 58.3 Win 30.2 SWE 2 11 8 3 2. - 33.2 SWE 3 11 9 2 81.8-2.4 GBR 3 11 6 5 54.5-23.6 CHN 4 12 5 58.3 Loss 28.2 SUI 4 11 5 6 45.4-33.6 NOR 5 5 5 50.5-33.2 JPN 5 9 4 5 44.4-29.8 DEN 6 9 4 5 44.4-31.0 DEN 6 9 4 5 44.4-26.6 RUS 9 3 6 33.3-25.6 CHN 9 4 5 44.4-28.0 SUI 8 9 3 6 33.3-25.4 KOR 8 9 3 6 33.3-26.8 USA 9 9 2 22.2-29.2 RUS 9 9 3 6 33.3-24.8 GER 9 1 8 11.1-38.8 USA 9 1 8 11.1-39.2 W Tie-br eaker Mean Age

Table 3. The descriptive statistics for shot types by position of the winners and the losers Operation Draw Take-out Shot type Draw Guard Freeze Front Takeout Hit & Roll Clearing Raise Promotion takeout Double takeout Wick & Sick Through Total Winner Loser Lead Second Third Skip Total Lead Second Third Skip Total 638 (33.1%) 0 (5.2%) 0 (0.0%) 262 (13.6%) 345 (1.9%) 19 (9.3%) 148 (.%) 64 (3.3%) 44 (2.3%) 122 (6.3%) 19 (1.0%) 9 (0.5%) 1,930 551 (28.5%) 131 (6.8%) 2 11 (6.1%) 414 (21.5%) 20 (.%) 195 (.1%) 61 (3.2%) 64 (3.3%) 1 (9.2%) (0.4%) 4 (0.2%) 1,930 6 (31.9%) 128 (6.6%) 4 (0.2%) 9 (5.%) 385 (20.0%) 216 (11.2%) 149 (.%) 6 (3.9%) 63 (3.3%) 166 (8.6%) 6 (0.3%) 11 (0.6%) 1,928 661 (34.8%) 2 (5.4%) 1 4 (8.1%) 369 (19.4%) 162 (8.5%) (8.3%) 2 (3.8%) 65 (3.4%) 142 (.5%) (0.4%) (0.5%) 1,902 2,465 (32.2%) 461 (6.0%) 642 (8.3%) 1,513 (19.%) 64 (9.9%) 649 (8.4%) 23 (3.6%) 236 (3.1%) 60 (.9%) 39 (0.5%) 34 (0.4%),690 08 (36.%) 135 (.0%) 2 229 (11.9%) 340 (1.6%) 16 (9.1%) 112 (5.8%) 48 (2.5%) 42 (2.2%) 6 (5.5%) 14 (0.%) 18 (0.9%) 1,930 586 (30.4%) 122 (6.3%) 2 5 (5.4%) 426 (22.1%) 18 (9.%) 20 (.%) 69 (3.6%) 49 (2.5%) 164 (8.5%) 9 (0.5%) 4 (0.2%) 1,930 52 (29.6%) 0 (.8%) 1 116 (6.0%) 381 (19.%) 222 (11.5%) (9.1%) 8 (4.0%) 48 (2.5%) 163 (8.4%) 13 (0.%) 11 (0.6%) 1,930 6 (32.2%) 111 (5.8%) 1 202 (.6%) 36 (19.%) 182 (9.5%) 143 (.5%) 0 (3.%) 52 (2.%) 136 (.1%) 8 (0.4%) 13 (0.%) 1,909 2,481 (32.2%) 518 (6.%) 6 652 (8.5%) 1,523 (19.8%) 6 (.0%) 63 (8.3%) 265 (3.4%) 191 (2.5%) 569 (.4%) 44 (0.6%) 46 (0.6%),699 Table 4. The result of shot types chi-square test by the position of the winner and the loser Lead Second Third Skip Total p-value p-value p-value p-value p-value 25.330.008* 6.820.813 12.164.351 12.440.332 11.861.34 Table 5. The result of shot types chi-square test by the winner and the loser Shot type p-value Shot type p-value Shot type p-value Draw.882.049* Takeout 0.262.96 Promotion Takeout.5.855 Guard 4.350.226 Hit & Roll 2.280.516 Double Takeout.548.908 Freeze 3.45.290 Clearing.91.04* Wick & Soft 3.364.339 Front 9.480.024* Raise 2.14.438 Through 1.628.653

Table 6. The average shot accuracy by position of the winners and the losers Operation Shot type Winner Loser Lead Second Third Skip Mean Lead Second Third Skip Mean Draw 84.0 9.4 80.0.3 80.2 84.5 80.8.2 9.9 80.8 Draw Guard 88.3 83.6 83.4 9.9 83. 86.9 81.1 83.3 8.6 82. Freeze 0.0 0 0 0.0 85. 0 5.0 50.0 0 83.3 Front 8.3 80.3 82.8 81.8 84.0 90.0 6.9 8..4 81.9 Takeout 86.5 9.8 80.0 9. 81.4 85.3 80.4 80.6 83.2 82.2 Hit & Roll.4 5.6 81.5 6.5.9 83.2 82.2 83.5 80.5 81.3 Take-out Clearing 84.6 83.6 80.0 82.6 82.8 9.9 80.3 81.3 80.6 80.6 Raise 82.0.5 2.4 66. 4.3 95.8 6.1 3.1 5.0 8.5 Promotion takeout 9.5 80.5 9.0 80.8 80.0 83.9 6.5 9. 80.8 80.1 Double takeout 81.6 9.9 2.1 81. 8.5 83.5.0 9.6 8. 9.3 Wick & Sick 63.2 82.1 91. 8.6 8.6 83.9 63.9 69.2 68.8 2. Through 34.4 62.5 92.5 63.9 65.3 44.1 93.8 81.3 40.9 55.6 Total Mean 83.8 9.8 9. 8.6 80.5 85.0 9.8 9.4 9.6 81.0 Table. The result of chi-square test for the average shot accuracy by the winners and the losers Operation Draw Take-out Draw Guard Freeze Front Takeout Hit & Roll Clearing Raise Promotion takeout Double takeout Wick & Sick Through.882 4.350 3.45 9.480.262 2.280.91 2.14.5.548 3.364 2.563 p 0.49*.226.290.024*.96.516.04*.438.855.908.339.464

Table 8. Blank end numbers by the winners and the losers partition End 1 2 3 4 5 6 8 9 Total Game Number Mean 1st With hammer Winner Loser Sum 2 (.9) (16.3) 42 (16.0) (4.1) 4 (3.3) (3.8) 8 (4.) 8 (.6) (5.) 9 (5.3) 3 (2.2) 11 (4.2) 11 (6.5) 4 (3.3) 14 (5.3) 8 (4.) (8.) 16 (6.1) (5.9) (.9) 20 (.6) 12 (.1) 3 (3.3) (5.) (8.8) 6 (5.4) 20 (.6) 63 (3.1) 3 (39.1) 99 (3.8) (0) 9 (0) 262 (0) 99 1.2 99 0.98 198-1st Without hammer Winner Loser Sum (.5) 2 (16.4) 42 (16.0) 3 (4.1) 6 (3.6) (3.8) (8.2) (4.2) (5.8) 2 (3.1) 8 (4.8) 11 (4.2) 3 (4.1) (6.1) 14 (.2) 8 (.2) 9 (5.5) 16 (6.1) (.3) (6.1) 20 (.6) 3 (3.1) 12 (.3) (5.) 5 (6.2) 14 (8.5) 20 (.6) 36 (38.1) 62 (3.6) 99 (3.8) 92 (0) 165 (0) 262 (0) 99 0.93 99 1.6 198 -

Table 9. The result of the average score per end by the winner and the loser With hammer Without hammer partition End 1 2 3 4 5 6 8 9 Winner (A) 0.8 0.921 0.683 0.94 0.825 0.85 0.905 0.905 0.51 0.603.8 Loser (B) 0.622 0.649 0.595 0.514 0.486 0.459 0.514 0.514 0.30 0.135 5.22 (A)-(B) 0.188 0.22 0.088 0.280 0.339 0.398 0.391 0.391-0.9 0.468 2.656 Accumulated 0.188 0.460 0.548 0.828 1.16 1.565 1.956 2.34 2.188 2.656 - Winner (C) 0.222 0.22 0.611 1.056 1.139 0.50 0.8 0.8 0.694 0.833.58 Loser (D) 0.081 0.484 0.806 0.548 0.500 0.452 0.419 0.419 0.645 0.161 4.52 (C)-(D) 0.141 0.238-0.195 0.508 0.639 0.298 0.359 0.359 0.049 0.62 3.068 Accumulated 0.141 0.39 0.184 0.692 1.331 1.629 1.988 2.34 2.396 3.068 - Total

Baek, J, C.(2003). Comparative analysis of culling operations team leveled the match. Miganhaeng master's thesis. Suwon University Graduate School of Education. Bae K., Park D. H., Kim D. H. & Shin H. (2016). Markov Decision Process for Curling Strategies. Journal of the Korean Institute of Industrial Engineers, 24(1), 65-2. Cho G. J. & Baek J. C. (2003). A Comparative of the Strategy in Curling Game Based on Individual Team's Level. Korea sport research, 20(1), 993-02. Heo, J, U.(2008). Man Shot in the distribution of Position Stars curling game. Sports Science Institute, first-class game, field leaders apply research report. Kostuk K. J., Willoughby K. A., & Saedt. A. P. (2001). Modelling curling as a Markov process. European Journal of Operation Research, 133, 55-565. Kim C. H. & Yoon H. K. (2008). The Analysis on The World Curling Games for the Improvement in Performance Ability. The Korea Journal of Sports Science,1(2), 4-5. Kim C. H. (2009). The Analysis on Result of Junior Curling games. The Korea Journal of Sports Science, 18(1), 19-111. Kim T. W. & Chae J. S. (2016). Analysis of Women s Curling Performance, Digital Media DB Construction and Artificial Neural Networks. Korean Journal of Sport Science, 2(2), 402-420. Kostuk K. J., Willoughby K. A. & Saedt A. (2001). Modelling curling as a Markov process. European Journal of Operational Research, 133, 55-565. Lee J. H. (2005). 2000 and 2005 Comparative Analysis on Curling Competitive Strategy. Master Thesis. Suwon University Graduate School of Education. Park G. I. (2000). An analysis on the game content of curling athlete. Korean National University of Physical Education The Graduate School of Community Sports Science, Master Thesis. Park S. G. & Lee S. W. (2013). The Curling Analysis Based on the Possession of the Last Stone per End. Procedia Engineering, 60, 391-396.

Park S. G., Hwang B. K., Lee H. S., & Yun S. M. (2013). A Play Content Analyses of 2012 World Championship Games by the Four Selected National Wheelchair Curling Teams. Korean Journal of Adapted Physical Activity, 21(2), -26. Park S. G., Yoon H. K., & Lee S. W. (2016a). The Ranking prediction of Women Curling Games based on Performance Indicators in Curling. The Korea Journal of Sports Science, 25(2), 9-1. Park S. G., Yoon H. K. & Lee S. W. (2016b). Performance Analysis of Women's Curling games in 2014 Sochi Winter Olympics. The Korea Journal of Sports Science, 25(2), 1161-111. Robert P. S., Osama K. S., & Hsinchun C. (20). Sports Data Mining. London: Springer. Throp. C. (2013). Curling (Winter Sports). Chicago: Raintree. Willoughby, K. A. & Kostuk K. J. (2004). Preferred Scenarios in the Sport of Curling. Interfaces, 34(2), 11-122. Willoughby, K. A. & Kostuk, K. J. (2005). An Analysis of a Strategic Decision in the Sport of Curling. Decision Analysis, 2(1), 58-63. Yang J. B & Lee M. S. (2013). International Curling Games Analysis for 2018 PyeongChang Winter Olympic Using Logistic Regression Analysis. The Korea Journal of Sports Science, 22(3), 393-404.