한수지 48(3), 308-33, 205 Original Article Korean J Fish Aquat Sci 48(3),308-33,205 사료내단백질과지방수준이참돔 (Pagrus major) 치어의성장, 사료효율및비특이적면역력에미치는영향 김성삼 오대한 최세민 김강웅 김경덕 이봉주 한현섭 이경준 2 * 국립수산과학원사료연구센터, CJ 제일제당생물자원연구소, 2 제주대학교해양생명과학과 Effects of Dietary Protein and Lipid Levels on the Growth Performance, Feed Utilization and Innate Immunity of Juvenile Red Seabream Pagrus major Sung-Sam Kim, Dae-Han Oh, Se-Min Choi, Kang-Woong Kim, Kyoung-Duck Kim, Bong-Joo Lee, Hyon-Sob Han and Kyeong-Jun Lee 2 * Aquafeed Research Center, National Fisheries Research and Development Institute, Pohang 79-923, Korea Animal Bioscience Research Institute, CJ CheilJedang Corporation, Incheon 400-03, Korea 2 Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea A 3 3 factorial study was conducted to investigate the effects of dietary protein and lipid levels on the growth, feed utilization and innate immunity of red seabream Pagrus major. Nine diets consisting of three protein levels (42%, 46% and 50% crude protein) and three lipid levels (0%, 4% and 8% crude lipid) were formulated. Triplicate groups of red seabream were fed the experimental diets to apparent satiation (5-6 times a day, from 08:00 to 8:00 h at 2-h intervals) for 0 weeks. At the end of the feeding trial, the weight gain and specific growth rate of fish fed P46L4 (46% protein and 4% lipid), P50L0 (50% protein and 0% lipid) and P50L4 (50% protein and 4% lipid) were significantly (P<0.05) higher than those of fish fed P42L8 (42% protein and 8% lipid). The feed conversion ratios (FCR) of the fish were affected by dietary lipid levels (P<0.039), but not dietary protein levels. The FCR tended to increase with increasing dietary lipid levels from 0% to 8% with the 46% and 50% protein levels. The weight gain, protein efficiency ratio, specific growth rate, feed intake and survival of fish were not affected by either dietary protein or lipid levels. Myeloperoxidase activity in the group fed P50L4 (50% protein and 4% lipid) was significantly higher than that in the group fed P42L0 (42% protein and 0% lipid) or P50L8 (50% protein and 8% lipid). However, the myeloperoxidase activity of fish was not affected by either dietary protein or lipid level. The fish fed P46L4 (46% protein and 4% lipid) and P46L8 (46% protein and 8% lipid) showed significantly higher superoxide dismutase activity than did the fish fed P46L0 (46% protein and 0% lipid), P50L0 (50% protein and 0% lipid) of P50L8 (50% protein and 8% lipid). In conclusion, the optimum protein and lipid levels for the growth and feed utilization of juvenile red seabream were 46% and 4%, respectively, and the optimum dietary protein to energy ratio was 27.4 g/mj. Key words: Red seabream, Optimum protein to energy ratio, Protein level, Lipid level, Innate immunity 서론, / (P/E ratio). http://dx.doi.org/0.5657/kfas.205.0308 Korean J Fish Aquat Sci 48(3) 308-33, June 205 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licens (http://creativecommons.org/licenses/by-nc/3.0/)which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Received 29 October 204; Revised 6 December 204; Accepted 6 February 205 *Corresponding author: Tel: +82. 64. 754. 3423 Fax: +82. 64. 756. 3493 E-mail address: kjlee@jejunu.ac.kr Copyright 205 The Korean Society of Fisheries and Aquatic Science 308 pissn:0374-8, eissn:2287-885
사료내단백질과지방수준이참돔에미치는영향 309, (Lee and Kim, 2005)., (Wang et al., 204)., (protein sparing effect) (Ng et al., 2008). (Cho and Kaushik, 985; Ogata and Shearer, 2000; Sargent et al., 2002) (Yigit et al., 2002), (Hillestad and Johnsen, 994; Einen and Roem, 997). (Einen and Skrede, 998; Helland and Grisdale-Helland, 998; Company et al., 999), (Shearer et al., 997; Silverstein et al., 999).,,, (Kim et al., 2006). Maris and Kissil (979) gilthead seabream 44% 9%. 8-0% (Yone et al., 97). Takeuchi et al. (99) 52% 5%. Vergara et al. (996) gilthead seabream 5% 9%. P/E ratio. P/E ratio. 실험사료 재료및방법 9 (Table ). 3 3 factorial design 3 (CP; 42%, 46% and 50%) 3 (CL; 0%, 4%, and 8%) (P42L0, 42%CP+0%CL; P42L4, 42%CP+4%CL; P42L8, 42%CP+8%CL; P46L0, 46%CP+0%CL; P46L4, 46%CP+4%CL; P46L8, 46%CP+8%CL; P50L0, 50%CP+0%CL; P50L4, 50%CP+4%CL; P50L8, 50%CP+8%CL). P/E ratio / (NRC, 20)., 30%. (SMC-2, Kuposlice, Busan, Korea). 24-20 C. 실험어및사육관리. 2. ( : 7.66 0.03 g) 27 50 L 30. 2-3 L/min. (2-27 C) 2L:2D. 5-6 (08:00 h - 8:00 h), 0. 샘플수집및분석 3, 24., (weight gain), (feed conversion ratio), (specific growth rate), (protein efficiency ratio), (feed intake) (survival). 6 2-phenoxyethanol (200 ppm). 60 (5,000 g).. AOAC (995) (25, 3 h), (550 C, 6 h), (Kejltec system 2300, Sweden), Folch et al. (957) Soxhlet (Soxhlet heater system C-SH6, Korea). myeloperoxidase (MPO) Kumari and Sahoo (2005). HBSS (Hanks balanced salt solution) 96-well plates 80 L 20 L. 20 mm TMB (3,3'5,5'-tetramethyllbenzidine hydrochloride) 5 mm H 2 O 2. 2 4 M H 2 SO 4 35 L microplate
30 김성삼ㆍ오대한ㆍ최세민ㆍ김강웅ㆍ김경덕ㆍ이봉주ㆍ한현섭ㆍ이경준 Table. Formulation of the experimental diet for red seabream Pagrus major Ingredients (% DM) P42L0 P42L4 P42L8 P46L0 P46L4 P46L8 P50L0 P50L4 P50L8 P/E ratio (g/mj) 27.4 25.3 23.5 29.6 27.4 25.5 32. 29.7 27.6 Fish meal 44.0 44.0 44.0 46.0 46.0 46.0 48.0 48.0 48.0 Soybean meal 6.0 6.0 6.0 8.0 8.0 8.0 0.0 0.0 0.0 Corn gluten meal 6.0 6.0 6.0 8.0 8.0 8.0 0.0 0.0 0.0 Wheat flour 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 Dextrin 2.0 0.0 8.0 8.0 6.0 4.0 4.5 2.5 0.5 Cellulose 8.0 6.0 4.0 6.0 4.0 2.0 4.0 2.0 0.0 Fish oil 5.5 9.5 3.5 5.5 9.5 3.5 5.0 9.0 3.0 Mineral mix.0.0.0.0.0.0.0.0.0 Vitamin mix 2.0.0.0.0.0.0.0.0.0 CMC.0.0.0.0.0.0.0.0.0 Proximate composition Protein (%) 42.0 42.0 42. 45.3 45.2 45.3 50.4 50.2 50.2 Lipid (%) 0.6 4.3 7.8 0.2 3.8 8.3 0. 4.2 8.4 Ash (%) 8.8 9.2 9.2 9.6 9.8 9.5 0.2 0.2 9.9 Fiber (%) 0.5 8.5 6.5 8.73 6.73 4.73 6.95 4.95 2.95 Carbohydrate (%) 3 38.6 34.5 30.9 34.9 3.2 26.9 29.3 25.4 2.5 Energy (MJ/kg) 4 5.4 6.5 7.7 5.7 6.8 8.0 5.8 7.0 8.2 MgSO 4.7H 2 O, 80.0; NaH 2 PO 4.2H 2 O, 370.0; KCl, 30.0; Ferric citrate, 40.0; ZnSO 4.7H 2 O, 20.0; Ca-lactate, 356.5; CuCl, 0.2; AlCl 3. 6H 2 O, 0.5; Na 2 Se 2 O 3, 0.0; MnSO 4.H 2 O, 2.0; CoCl 2.6H 2 O,.0. 2 L-ascorbic acid, 2.2; DL-α tocopheryl acetate, 8.8; thiamin hydrochloride, 2.7; riboflavin, 9.; pyridoxine hydrochloride,.8; niacin, 36.4; Ca- D -pantothenate, 2.7; myo-inositol, 8.8; D -biotin, 0.27; folic acid, 0.68; p-aminobezoic acid, 8.2; menadione,.8; retinyl acetate, 0.73; cholecalficerol, 0.003; cyanocobalamin, 0.003. 3 Carbohydrate (%) = 00-(protein+lipid+fiber+ash). 4 Calculated based on 4 kcal/g protein, 9 kcal/g lipid, 4 kcal/g carbohydrate. reader (Thermo, USA) 450 nm. lysozyme Sankaran and Gurnani (972). Sodium citrate buffer (0.02 M, ph 5.52) Micrococcus lysodeikticus (Sigma, USA) 0.2 mg/ml. 0:, 450 nm 24. Lyophilized hen egg white lysozyme (sigma, USA) standard curve g/ml. Superoxide dismutase (SOD) superoxide dismutase assay kit (Sigma, USA). 통계학적분석 (Completely randomized design), SPSS (Version 2.0) One-way ANOVA Duncan's multiple test (P<0.05). Twoway ANOVA. arcsine. 결과및고찰 0 Table 2.,,,. P46L4, P50L0 P50L4 P42L8, P42L0, P42L4, P46L0, P46L8 P50L8. 4%, 8%. (P<0.039),
사료내단백질과지방수준이참돔에미치는영향 3 Table 2. Growth performance of red seabream Pagrus major (initial body weight, 7.66±0.03 g) fed the nine experimental diets for 0 weeks Diets FMB (g) WG (%) 2 FCR 3 PER 4 SGR (%) 5 FI (g) 6 Survival (%) P42L0 35.3±3.7 360±49 ab.8±0.05 a 2.02±0.08 bc 2.8±0.5 ab 46.±4.6 86.7±5.8 b P42L4 36.7±.7 382±28 ab.5±0.06 a 2.08±0.2 bc 2.24±0.08 ab 46.9±0.6 85.6±.9 b P42L8 33.8±.2 34±5 a.3±0.0 a 2.±0.0 c 2.2±0.05 a 43.6±3.5 92.5±5. b P46L0 36.7±0.3 377±2 ab.0±0.02 a.98±0.04 bc 2.23±0.0 ab 45.4±2.7 90.0±3.3 b P46L4 37.9±.9 395±26 b.3±0.23 a.98±0.36 bc 2.28±0.08 b 48.0±4.7 87.8±8.4 b P46L8 36.7±.8 382±22 ab.45±0.24 b.52±0.23 a 2.22±0.07 ab 50.0±. 76.7±9.4 a P50L0 38.4±.4 403±23 b.00±0.05 a.99±0.09 bc 2.3±0.06 b 45.4±.6 87.8±6.9 b P50L4 38.3±2.9 399±40 b.05±0.2 a.93±0.23 bc 2.29±0. b 49.3±2.9 84.4±3.8 b P50L8 35.7±.2 366±20 ab.22±0.24 ab.69±0.35 ab 2.20±0.06 ab 46.9±7.3 77.8±3.9 ab Two-way ANOVA (P value) Protein 0.066 0.090 0.77 0.055 0.078 0.470 0.437 Lipid 0.080 0.3 0.039 0.056 0.2 0.430 0.424 Protein Lipid 0.782 0.7 0.9 0.204 0.697 0.628 0.97 Mean values of triplicate groups, values are presented as mean±sd. Values in the same column having different superscript letters are significantly different (P<0.05). 2 Weight gain (%) = 00 (final mean body weight initial mean body weight)/initial mean body weight. 3 Feed conversion ratio = dry feed fed/wet weight gain. 4 Protein efficiency ratio = wet weight gain/total protein given. 5 Specific growth rate (%) = [(ln final body weight ln initial body weight)/days] 00. 6 Feed intake (g) = dry feed fed/fish.. P46L8 P42L0, P42L4, P42L8, P46L0, P46L4, P50L0 P50L4, P50L8. P42L8, P42L0, P42L4, P46L0, P46L4, P50L0 P50L0. P46L8, P50L8.. (Wang et al., 204). 4% 8%. (7.7 g) 4%. ( : 30-40 g) 8-0% (Yone et al., 97).,, (Wang et al., 203) (Daniels and Robinson, 986; Mohanta et al., 2009). 0% 50% 4%, 8% 46% 50%. (red tilapia, De Silva et al., 99), (gilthead sea bream, Vergara et al., 996), (rockfish, Lee et al., 2002).,, (Lim et al., 203). 46% 4-8%., 46%, 6.8 MJ/kg. 27.4 g/mj (9-27 g/mj) (NRC, 993). Table 3. (MPO, Lysozyme, SOD ). MPO P50L0, P42L4, P42L8, P46L0, P46L4, P46L8 P50L0.
32 김성삼ㆍ오대한ㆍ최세민ㆍ김강웅ㆍ김경덕ㆍ이봉주ㆍ한현섭ㆍ이경준 Table 3. Myeloperoxidase (MPO) activity, lysozyme activity, and superoxide dismutase (SOD) activity of fish fed the nine experimental diets in red seabream Pagrus major for 0 weeks Diets MPO (absorbance) Lysozyme (ug/ml) SOD (% inhibition) P42L0 0.95±0.07 a 0.65±0.06 32.6±2.5 bc P42L4.07±0.0 abc 0.55±0.07 30.9±.6 abc P42L8.07±0. abc 0.67±0.38 32.±2.2 bc P46L0.09±0.08 abc 0.63±0.26 24.2±0.4 a P46L4.07±0.06 abc 0.66±0.9 34.5±2. c P46L8.0±0.05 abc 0.58±0.20 33.8±0.6 c P50L0.4±0.4 bc 0.5±0.5 24.8±8. a P50L4.20±0.08 c 0.45±0.5 29.0±6.3 abc P50L8.0±0.02 ab 0.45±0.8 26.±2.6 ab Two-way ANOVA (P value) Protein 0. 0.204 0.022 Lipid 0.306 0.896 0.066 Protein Lipid 0.082 0.942 0.088 Mean values of triplicate groups, values are presented as mean±sd. Values in the same column having different superscript letters are significantly different (P<0.05)..,. SOD P46L4 P46L8 P46L0, P50L0 P50L8.. Lysozyme. Rawles et al. (20) sunshine bass (Morone M. saxatilis) 47.3-34.7%,. Wang et al. (204), (yellow catfish) 6-8%. 4% 46%., (7.7 g) 27.4 g/mj, 6.8 MJ/kg, 46% 4%. 사사 (, RP-204-AQ-300). References AOAC (Association of Official Analytical Chemists). 995. Official Methods of Analysis. 6 th edn. Association of Official Analytical Chemists, Arlington, Virginia. Cho CY and Kaushik SJ. 985. Effects of protein intake on metabolizable and net energy values of fish diets. In: Cowey CB, Mackie AM, Bell JG. (Eds.), Nutrition and feeding in fish. Academic Press, London, 95-7. Company R, Calduch-Giner JA, Kaushik S and Perez-Sanchez J. 999. Growth performance and adiposity in gilthead sea bream (Sparus aurata): risks and benefits of high energy diets. Aquaculture 7, 279-292. http://dx.doi.org/0.06/ S0044-8486(98)00495-5. Daniels WH and Robinson EH. 986. Protein and energy requirements of juvenile red drum (Sciaenops ocellatus). Aquaculture 53, 243-252. http://dx.doi.org/0.06/0044-8486(86)90354-6. De Silva SS, Gunasekera RM and Shim KF. 99. Interactions of varying dietary protein and lipid levels in young red tilapia: Evidence of protein sparing. Aquaculture 95, 305-38. http://dx.doi.org/0.06/0044-8486(9)90096-p. Einen O and Roem AJ. 997. Dietary protein/energy ratios for Atlantic salmon in relation to fish size: growth, feed utilization and slaughter quality. Aquacult Nutr 3, 5-26. http:// dx.doi.org/0.046/j.365-2095.997.00084.x. Einen O and Skrede GG. 998. Quality characteristics in raw and smoked fillets of Atlantic salmon, Salmo salar, fed high-energy diets. Aquacult Nutr 4, 99-08. http://dx.doi. org/0.046/j.365-2095.998.00053.x. Folch J, Lees M and Sloane-Stanley GH. 957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226, 497-509. Helland SJ and Grisdale-Helland B. 998. Growth, feed utilization and body composition of juvenile Atlantic halibut (Hippoglossus hippoglossus) fed diets differing in the ratio between the macronutrients. Aquaculture 66, 49-56. http:// dx.doi.org/0.06/s0044-8486(98)00273-7. Hillestad M and Johnsen F. 994. High-energy/low-protein diets for Atlantic salmon: effects on growth, nutrient retention and slaughter quality. Aquaculture 24, 09-6. http://dx.doi. org/0.06/0044-8486(94)90366-2 Kim KD, Kim KM, Kim KW, Kang YJ and Lee SM. 2006.
사료내단백질과지방수준이참돔에미치는영향 33 Influence of lipid level and supplemental lecithin in diet on growth, feed utilization and body composition of juvenile flounder (Paralichthys olivaceus) in suboptimal water temperatures. Aquaculture 25, 484-490. http://dx.doi. org/0.06/j.aquaculture.2005.06.020. Kumari J and Sahoo PK. 2005. Effects of cyclophosphamide on the immune system and disease resistance of Asian catfish Clarias batrachus. Fish Shellfish Immun 9, 307-36. http://dx.doi.org/0.06/j.fsi.2005.0.008. Lee SM and Kim KD. 2005. Effect of various levels of lipid exchanged with dextrin at different protein level in diet on growth and body composition of juvenile flounder Paralichthys olivaceus. Aquacult Nutr, 435-442. http://dx.doi. org/0./j.365-2095.2005.00372.x. Lee SM, Jeon IG and Lee JY. 2002. Effects of digestible protein and lipid levels in practical diets on growth, protein utilization and body composition of juvenile rockfish (Sebastes schlegelii). Aquaculture 2, 227-239. http://dx.doi. org/0.06/s0044-8486(0)00880-8. Lim SG, Han HK, Bang IC, Choi J and Lee SM. 203. Effect of dietary protein and lipid levels on the growth and body composition of juvenile long snout bullhead Leiocassis longirostris Günther. Korean J Fish Aquat Sci 46, 377-383. http:// dx.doi.org/0.5657/kfas.203.0377. Marais J.F.K and Kissil G.W. 979. The influence of energy level on the feed intake, growth, food conversion and body composition of Sparus aurata. Aquaculture 7, 203-29. http://dx.doi.org/0.06/0044-8486(79)9024-8. Mohanta KN, Mohanty SN, Jena J and Sahuz NP. 2009. A dietary energy level of 4.6 MJ kg - and protein-to-energy ratio of 20.2 g MJ - results in best growth performance and nutrient accretion in silver barb Puntius gonionotus fingerlings. Aquacult Nutr 5, 627-637. http://dx.doi.org/0./ j.365-2095.2008.00632.x. Ng WK, Abdullah N and De Silva SS. 2008. The dietary protein requirement of the Malaysian mahseer, Tor tambroides (Bleeker), and the lack of protein-sparing action by dietary lipid. Aquaculture 284, 20-206. http://dx.doi.org/0.06/j. aquaculture.2008.07.05. Ogata HY and Shearer KD. 2000. Influence of dietary fat and adiposity on feed intake of juvenile red sea bream Pagrus major. Aquaculture 89, 237-249. http://dx.doi.org/0.06/ S0044-8486(00)00374-4. Rawles SD, Thompson KR, Brady YJ, Metts LS, Aksoy MY, Gannam AL, Twibell RG, Ostrand S and Webster CD. 20. Effects of replacing fish meal with poultry by-product meal and soybean meal and reduced protein level on the performance and immune status of pond-grown sunshine bass (Morone chrysops M. saxatilis). 20. Aquacult Nutr 7, 708-72. http://dx.doi.org/0./j.365-2095.200.0083.x Sankaran K and Gurnani S. 972. On the variation in catalytic activity of lysozyme in fishes. Indian J Biochem Biophys 9, 62-65. Sargent JR, Tocher DR and Bell JG. 2002. The lipids, In: Halver JE, Hardy RW. (Eds.), Fish Nutrition, 3rd edition. Academic Press, San Diego California, 8-257. Shearer KD, Silverestein JT and Plisetskaya EM. 997. Role of adiposity in food intake control of juvenile chinook salmon (Oncorhynchus tshawytscha). Comp Physiol Biochem 8A, 209-25. http://dx.doi.org/0.06/s0300-9629(97)8680-6. Silverstein JT, Shearer KS, Dickhoff WW and Plisetskaya EM. 999. Regulation of nutrient intake and energy balance in salmon. Aquaculture 77, 6-69. http://dx.doi. org/0.06/s0044-8486(99)00076-9. Takeuchi T, Shiina Y and Watanabe T. 99. Suitable protein and lipid levels in diet for fingerlings of red sea bream Pagrus major. Nipp Suis Gakk 57, 293-299. Vergara JM, Robaina L, De Izquierdo M and La Higuera M. 996. Protein sparing effect of lipids in diets for fingerlings of gilthead sea bream. Fish Sci 62, 620-623. Wang LN, Liu WB, Zhang CN, Li XF, Xu WN, Cai DS and Tian HY. 204. Effects of dietary non-protein energy sources on growth, physiology and biochemistry of yellow catfish (Pelteobagrus fulvidraco). J Nanjing Agric Univ 37, 08-4. Wang YY, MA GJ, Shi Y, Liu DS, Guo XJ, Yang YH and Chen CD. 203. Effects of dietary protein and lipid levels on growth, feed utilization and body composition in Pseudobagrus ussuriensis fingerlings. Aquacult Nutr 9, 390-398. http://dx.doi.org/0./j.365-2095.202.00972.x. Yigit M, Yardim O and Koshio S. 2002. The protein sparing effects of high lipid levels in diets for rainbow trout (Oncorhynchus mykiss, W. 792) with special reference to reduction of total nitrogen excretion. Isr J Aquaculture- Bamidgeh 54, 79-88. Yone Y, Furuichi M and Sakamoto S. 97. Studies on nutrition of red sea bream. III. Nutritive value of optimum content of lipids in diet. Rep Fish Res Lab Kyushu Univ, 49-60.