에너지경제연구 Korean Energy Economic Review Volume 17, Number 1, March 2018 : pp. 37~65 가정부문전기수요의결정요인분석 : 동태적패널 FD GMM 기법을중심으로 37
38
39
40
41
ln ln ln ln ln ln ln 42
ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln 43
ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln 44
< 표 1> 전국단위기초통계량 45
~ 46
< 표 2> 상관계수분석 < 표 3> 지역별분석을위한분류 47
< 표 4> 광역시의변수별기초통계량 < 표 5> 광역시를제외한기타지역의변수별기초통계량 48
ln 49
< 표 6> 패널단위근검정결과 Δ Δ Δ Δ Δ Δ ln ln ln ln ln 50
< 표 7> 과대식별제약검정및오차항자기상관검정 51
< 표 8> 전국가정용전기수요함수추정 Δln Δln Δln Δln Δln Δln Δln Δln Δln Δln Δln Δln Δln Δln 52
Δln Δln Δln ln ln ln Δln 53
Δln ln Δln Δln Δln Δln ln 54
< 표 9> 지역별과대식별제약검정및오차항자기상관검정 55
< 표 10> 지역별가정용전기수요추정결과 Δln Δln Δln Δln Δln Δln Δln Δln ln ln ln ln ln 56
ln ln Δln ln ln ln ln ln ln 57
Δln ln ln ln ln ln ln ln < 표 11> 부분조정모형으로추정한전기수요의탄력성 58
59
60
ln 접수일 (2017 년 9 월 18 일 ), 게재확정일 (2017 년 10 월 29 일 ) 61
. 2000.... 2014.. 32 3. pp177-202.. 2014.... 2012. :. 21 3. pp341-370.. 2017. -... 2009.. 10 2.. pp87-100.. 2013.. 22 1. pp1-7.. 2013. :. 12 2. pp33-58.. 1986... Alberini, A., Filippini, M. 2011. Response of residential electricity demand to price: the effect of measurement error. Energy Econ 33 : pp889 895. Al-Faris, A. R. 2002. The Demand for Electricity in the GCC Countries. Energy Policy 30 : pp117 124. Beenstock, M., E. Goldin and D. Nabot. 1999. The Demand for Electricity in Israel. Energy Economics 21 : pp168 183. Bernstein, M., Griffin, J. 2005. Regional Differences in the Price-elasticity of Demand for Energy. RAND Corporation, Santa Monica, California. 62
Brown, R. L., J. Burbin and J. M. Evans. 1975. Techniques for Testing the Constancy of Regression Relationships Over Time. Journal of the Royal Statistical Society Series, 37, 1975, pp149 192. Dergiades, T., Tsoulfidis, L. 2008. Estimating residential demand for electricity in the United States, 1965 2006. Energy Econ 30 : pp2722 2730. Filippini, M. 1999. Swiss Residential Demand for Electricity. Applied Economics Letters 6 : pp533-538. Halicioglu, F. 2007. Residential Electricity Demand Dynamics in Turkey. Energy Economics 29 : pp199-210. Houthakker, H. S. 1951. Some Calculations on Electricity Consumption in Great Britain. Journal of the Royal Statistical Society 114 : pp359-371. Kamerschen, D.R., Porter, D.V. 2004. The demand for residential, industrial and total electricity 1973 1998. Energy Econ 26 : pp87 100. Mizobuchi, K. 2008. An empirical study on the rebound effect considering capital costs. Energy Economy, 30(5) : pp.2486-2516. Nakajima, T. 2010. The residential demand for electricity in Japan: an examination using empirical panel analysis techniques. J. Asian Econ. 21 : pp.412 420. Nakajima, T., Hamori, S. 2010. Change in consumer sensitivity to electricity prices in response to retail deregulation: a panel empirical analysis of the residential demand for electricity in the United States. Energy Policy 38(5) : pp.2470 2476. Narayan, P. K. 2005. The Saving and Investment Nexus for China: Evidence for Cointegration Test. Applied Economics 37 : pp.1979-1990. Narayan, P. K. and R. Smyth. 2005. The Residential Demand for Electricity in Australia: An Application of the Bounds Testing Approach to Cointegration. Energy Policy 33 : pp.467-474. Okajima and Okajima. 2013. Estimation of Japanese price elasticities of residential electricity demand, 1990 2007. Energy Economics 40 : pp.433-440. Paul, A., Myers, E., Palmer, K. 2001. A partial adjustmentmodel of U.S. electricity 63
demand by region, season, and sector. Resource for the Future Discussion Paper. Pedroni, P. Purchasing power parity tests in cointegrated panels. Rev. Econ, 2009. Sargan, J. "The Maximum Likelihood Estimation of Economic Relationships with Autoregressive Residuals." Econometrica, 29, 1961, pp.414-426. Shin, J. S. Perception of Price When Price Information is Costly: Evidence from Residential Electricity Demand. The Review of Economics and Statistics 67 : pp.591-598. Ziramba, E. 2008. The demand for residential electricity in South Africa. Energy Policy 36 : pp.3460 3466. 64
ABSTRACT In this paper, we estimate the determinants of the demand function for electricity by FD GMM method based on panel data of 16 regions during 1996-2013. the results of the study are as follows. 1) The results of a partial adjustment model showed better results than these of ARDL model in terms of statistical significance and economical meaningness; 2) the elasticities of price and income were negative(-) and positive(+) and the long run elasticities were more elastic than the short run; 3) the elasticities of cooling degree days and aging population ratio were positive(+) and negative(-); 4) there was a rebound effect that the effect of economic growth dominates the effect of energy efficiency improvement over time; 5) the government policy for electricity needs to consider the increased income elasticity that dominates the increased price elasticity. Key words : Electric demand, FD GMM, Patial adjustment model, Elasticity, Rebound effect 65