eda_ch7.doc

Similar documents
Microsoft PowerPoint - Info R(3) pptx

Chapter 8 단순선형회귀분석과 상관분석

Microsoft Word - multiple

untitled

untitled

untitled

nonpara6.PDF

23

cat_data3.PDF

Microsoft Word - sbe13_reg.docx

슬라이드 1

wess_usage.PDF

슬라이드 1

nonpara1.PDF

<C0E5B7C1BBF328BEEEB8B0C0CCB5E9C0C729202D20C3D6C1BE2E687770>

슬라이드 1

untitled

01_°íºÀÂùöKš

*지급결제제도 01_차례

슬라이드 1

hwp


abstract.dvi

歯목차85.PDF

<C3D6BFECBCF6BBF328BFEBB0ADB5BF29202D20C3D6C1BE2E687770>

歯

LM_matrix.pages

Microsoft Word - ch4_multiple.doc

<C7A5C1F620BEE7BDC4>

제 1 부 연구 개요

슬라이드 1

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>

Chapter 7 분산분석

슬라이드 1

LIDAR와 영상 Data Fusion에 의한 건물 자동추출

Microsoft PowerPoint - MDA 2008Fall Ch2 Matrix.pptx

Microsoft Word - 동태적 모형.doc

歯목차89.PDF

삼성955_965_09

슬라이드 1

<B4EBB8B8C6C720BABBB9AE B9D9C5C12E687770>

Microsoft PowerPoint - LM 2014s_Ch4.pptx

<BFA9BCBAC0CEB1C7C1F8C8EFBFF82DC7CFB9DDB1E220C1A4C3A5C5E4B7D0C8B828C7A5C1F6BFCD20B3BBC1F620C7D5C4A7292E687770>

Microsoft Word - ch2_simple.doc

Microsoft Word - ch8_influence.doc

424

420

392

(72) 발명자 정진곤 서울특별시 성북구 종암1동 이용훈 대전광역시 유성구 어은동 한빛아파트 122동 1301 호 - 2 -

歯목차71.PDF

1 n dn dt = f v = 4 π m 2kT 3/ 2 v 2 mv exp 2kT 2 f v dfv = 0 v = 0, v = /// fv = max = 0 dv 2kT v p = m 1/ 2 vfvdv 0 2 2kT = = vav = v f dv π m

Microsoft Word - ch3_residual.doc

<4D F736F F D20C0C0BFEBB0E8B7AE20C1A B0AD202D20B0E8B7AEB0E6C1A6C7D E646F63>

슬라이드 1

슬라이드 1

1 5 0

Chapter 7 분산분석

Microsoft Word - Ch3_Derivative2.docx

2156년올림픽 100미터육상경기에서여성의우승기록이남성의기록보다빠른첫해로남을수있음 2156년올림픽에서 100m 우승기록은남성의경우 8.098초, 여성은 8.079초로예측 통계적오차 ( 예측구간 ) 를고려하면빠르면 2064년, 늦어도 2788년에는그렇게될것이라고주장 유사

ANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행

OR MS와 응용-03장

歯엑셀모델링

Application TI-89 / Voyage TM 200 PLT application. application, application. APPLICATIONS :, N. 1. O application. 2. application : D C application,. a

³»Áö_1È£_0107L

100, Jan. 21, 호, Jan. 21, , Jan. 21, 2005

¼º¿øÁø Ãâ·Â-1

Microsoft Word - SPSS_MDA_Ch6.doc


Chapter 7 분산분석

fx-82EX_fx-85EX_fx-350EX

3.고봉현

0710 세종힐스공고

<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>

I 문학과 우리 사회 눈 은 다가오는 계절인 봄의 생명력과 연결되어 작품 전체의 분위 기를 주도하고 있다. 1. 문학과 인접 분야 바탕 학습 확인 문제 본문 009쪽 01 4 문학은 음악, 미술 등과 같이 예술의 한 갈래로, 다른 예술 갈래와 달리 언

< C0FCC0CEC3CA2E687770>

<B3EBB5BFB0FCB0E8B9FD20B1B9C8B820B0E8B7F920C0C7BEC828C3D6C1BE29A4BB2E687770>

416.fm

<BAF9C7D8BFEEC7D7BCB1B9DA20C1F6C4A728B1B9B9AE292E687770>

< B3E220B0EDB7C9C0DA20C5EBB0E85FB0E6B3B22E687770>

<3136C1FD31C8A35FC3D6BCBAC8A3BFDC5F706466BAAFC8AFBFE4C3BB2E687770>

Ç¥Áö-¸ñÂ÷

포도.PDF

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

호-11

BIS Solvency (RBC) Solvency. Solvency,. Solvency.

歯표지_최종H_.PDF


<B0F8C1A4C0CCBFEB5FB0A1C0CCB5E5B6F3C0CE28BFF8BABB2920BCF6C1A42E687770>

untitled

<352E20BAAFBCF6BCB1C5C320B1E2B9FDC0BB20C0CCBFEBC7D120C7D1B1B920C7C1B7CEBEDFB1B8C0C720B5E6C1A1B0FA20BDC7C1A120BCB3B8ED D2DB1E8C7F5C1D62E687770>

1 1,.,

화판

Control Simulation and Experiment of a Cart-Pendulum System Mission. Control and Estimator Design Derivation of the (coupled nonlinear) dynamic equati

1Æí5Àåc00ç±³¢50è

<BCD2B0E6C0FCBCAD20C1A62032B1C72E687770>

歯목차80.PDF

untitled


Microsoft PowerPoint - IPYYUIHNPGFU

歯부담금편람.PDF

Transcription:

( ) (, ) (X, Y) Y Y = 1 88 + 0 16 X =0601 Y = a + bx + cx X (nonlinea) ( ) X Y X Y b(016) ( ) log Y = log a + b log X = e Y = b ax 71 X (explanatoy va :independent ), Y (dependent : esponse) X, Y Sehyug Kwon, Dept of Statistics, HANNAM Univesity http://wolfpackhannamack Fall, 00 04-69-76 11

711 : FITNESStxt SASUSER Fitness SAS/Insight Sehyug Kwon, Dept of Statistics, HANNAM Univesity http://wolfpackhannamack Fall, 00 04-69-76 113

71 SAS PROC PLOT ( ) HPOS=50 VPOS=5 (Hoizontal) 50%, (Vetical) 5% Sehyug Kwon, Dept of Statistics, HANNAM Univesity http://wolfpackhannamack Fall, 00 04-69-76 114

713 SAS PROC GPLOT PLOT I Intepolation( ), V value( ), C Colo Sehyug Kwon, Dept of Statistics, HANNAM Univesity http://wolfpackhannamack Fall, 00 04-69-76 115

714 SAS SAS/Insight SAS (Solution) (scatte plot matix) Sehyug Kwon, Dept of Statistics, HANNAM Univesity http://wolfpackhannamack Fall, 00 04-69-76 116

1 (18 ) 1 Oxygen Y, Runtime X Oxygen X, Runtime Y 7? Sehyug Kwon, Dept of Statistics, HANNAM Univesity http://wolfpackhannamack Fall, 00 04-69-76 117

1 ( ) ( ) 1 ( ) ( ), 1( ) 1( 71 SAS PROC CORR VAR, PROC CORR NOSIMPLE Sehyug Kwon, Dept of Statistics, HANNAM Univesity http://wolfpackhannamack Fall, 00 04-69-76 118

(Peason) ( : ρ = 0 ) p- 005( 5%) (un time) (-086) ( ) (AGE) (MAXPULSE) 04149 (p- =0003) (age) (RUNTIME) ( ) ( =019, p- =031) ( : 06 ) Sehyug Kwon, Dept of Statistics, HANNAM Univesity http://wolfpackhannamack Fall, 00 04-69-76 119

7 HO: =ρ0 =0 HO: =ρ0 0 t = ~ T ( n ) (1 ) /( n ) 1+ z* = 05ln 1 1+ ~ N(05ln 1 ρ ρ 1, ) n 3 1+ h1 = 05 ln 196 / 1 n 3) 1+ h = 05ln + 196 / 1 n 3) 95% e ( e h1 h1 e + e h1 h1 e, e h h e + e h h ) ( ) 1+ z( x) = 05ln 1 z = 1/( n z( x) z( y) x x x 3) + 1/( n 1+, z( y) = 05ln 1 y ~ N(0,1) 3) y y 73 ( ) ( Y = a + bx ) 1) (X Y) ) b( ) : (1) X (unit) Y b () b 3) a, b X Y ( ) Sehyug Kwon, Dept of Statistics, HANNAM Univesity http://wolfpackhannamack Fall, 00 04-69-76 10

731 (association),, ( ) ( ) ( ) ( ) ( ) Log-linea( ) ( ) ( ) Logistic egession, (coelation analysis) (egession analysis) (linea) (casual elationship) ( ),, IQ,? IQ IQ? (independent vaiable) (explanatoy vaiable) (, IQ) (esponse vaiable) (dependent vaiable) ( ) ( :??) F Galton, ( : egess) Sehyug Kwon, Dept of Statistics, HANNAM Univesity http://wolfpackhannamack Fall, 00 04-69-76 11

73 y i = a + bxi + ei fo i = 1,,, n ( ) e i iid N (0, σ ) ~ =( a + bx i )+ ( e i ) (cf) iid: independently( ) and identically distibuted( ) 1) ) 3 3) (esidual analysis) ( aˆ, b ˆ ) OLS (Odinay Least Squae ) min e = ( ) i yi a bxi a, b Y ( ) unexplained by Model y ( ) Explained by Model R =SSR/SST ( yi y) = ( yi yˆ) + ( yˆ y) => SST = SSE + SSR ( = + ) X SSR / df F = : ( : H 0 : b = 0 t- ) SSE / df Sehyug Kwon, Dept of Statistics, HANNAM Univesity http://wolfpackhannamack Fall, 00 04-69-76 1

733 Sy 1) b ˆ = Sx 1) ) 3)F- ) = R 734 SAS ( ) ( ) SSR SSE SST t = F Sehyug Kwon, Dept of Statistics, HANNAM Univesity http://wolfpackhannamack Fall, 00 04-69-76 13

F- ( t- ) ( b = 0 ) 331 1 331 : = 84-331* (t=-917, p<0001) 735 (esidual analysis) (,, : F- ) Y Residual, X (pedicted) ( ) ± STDENT=RES_S RES_S Y = MSE Sehyug Kwon, Dept of Statistics, HANNAM Univesity http://wolfpackhannamack Fall, 00 04-69-76 14

F- ê Yˆ Sehyug Kwon, Dept of Statistics, HANNAM Univesity http://wolfpackhannamack Fall, 00 04-69-76 15

Y Residual( ê ) Yˆ Y * = Y * Y = Log( Y ) Y * = 1/ Y 735 SAS Solution Sehyug Kwon, Dept of Statistics, HANNAM Univesity http://wolfpackhannamack Fall, 00 04-69-76 16

( 114) Sehyug Kwon, Dept of Statistics, HANNAM Univesity http://wolfpackhannamack Fall, 00 04-69-76 17