1.1,., / (,,, ), (ACDC, DCAC), (, ),, (, ). (discrete), (module), GaN IT, /. Fig. 1 1) (Silicon) IGBT (Insulated Gate Bipolar Transistor), MOSFET (Metal Oxide Semiconductor Field Effect Transistor), IGBT, (wide bandgap). Fig. 1.. 1.2 GaN,, 53
., IT,,,,. (wide bandgap) GaN (Gallium Nitride),. Fig. 2 GaN /, GaN (E g=3.4ev) (700). GaN -,, GaN (Si=1.1eV, GaN=3.2eV),,. IGBT30% HEV,, 10%. 2) Fig. 3 /// Fig. 3.,,,. GaN, (GaAs, Gallium Arsenide). GaN 10 Fig. 4. GaN 1/5. GaN Fig. 5 IT,,,,.. Fig. 2. GaN,. Fig. 4. IGBT GaN. 54
(a) GaN (b) Fig. 5. GaN. 2.1 GaN NTIS () 6,,,,,, GaN. 3) GaN-on-Si IT GaN,, GaN, 300-600V GaN-on-Si, GaN Si GaN / FET,, GaN, GaN HFET GaN HFET,, passivation, GaN,, Aufree Si CMOS normally-off GaN Au-free normally-off GaN FET. GaN-Si Si (110) CMOS, GaN 380V, 95% DC-DC, GaN-Si CMOS IC. AlGaN/GaN / / IC 1800 cm 2 /Vs AlGaN/GaN 1500V normally-off/-on 95% GaN. spin-ondielectric GaN SOD sol-gel GaN normally-off. GaN MBE AlGaN/GaN, n-type p-type, 600V/10A GaN SBD/FET.,,, GaN. GaN 4 MBE MOCVD AlGaN/GaN, 600V/ 1.2V GaN SBD, 600V/ 3V GaN FET 55
, GaN 4 MOCVD AlGaN/GaN, 1200V/5A GaN SBD, 1200V/5A normally-off GaN FET. GaN. 2.2 2.2.1. GaN,, GaN GaN RF. 2) WBGS-RF 2003 5 2010 4 7, 1 (Phase I) GaN, 2 (Phase II), 3 (Phase III) subsystem MMIC, 21, TriQuint. WBGS-RF NEXT 2009 9 2014 8 5 - GaN, GaN-on-SiC MMIC TriQuint 1.5-17 GHz 9-15W, PAE 20-38%, ARL 35 GHz 4W, PAE 23%. GaN, GaN-on-Si EPC 200V, 2013 3 Transphorm 600V/17A GaN-FET 600V/8A SBD, GaN Systems GaN-on-SiC 1200V/7A 600V/15A. Transphorm 4 kw, Si TO-220 SiC Si. 2.2.2 GaN, RF. 2) KOR- RIGAN 7 29 2005 1 2009 12 5,,,, MMIC Thales Airborne System, KORRIGAN MANGA KORRIGAN 2010 5 2014 12,,,,, 5 14 SELEX SI. 4 AlGaN/GaN-on-SiC SiC, 0.15 / 0.25 / 0.5 AlGaN/ GaN HEMT CPW (Co-Planar Waveguide),, MMIC. 2.3.3 NEDO National ProjectGaN AIST,. 2) (METI : Ministry of Economy, Trade and Industry) 2002 9 2007 3 4 6 16 AlGaN/GaN HFET. 2 GHz 50V 230W ( 4.7 W/mm), 67%, 9.5dB, 30 GHz Ka-band 0.25 T-gate HFET 5.8 W/mm 56
. AIST (National Institute of Advanced Industrial Science and Technology), NEC Toyoda Gosei, R&D Furukawa Electric, Oki Electric, Mitsubishi Electric, Hitachi Cable, Matsushita Electric, Sumitomo Electric, ULVAC. (METI) 2010 1 2014 12 5 20 (6 ). 2.2.4. GaN 4) (Table 1, 2), 2010 IR EPC GaN-on-Si 200V IT Consumer., MicroGaN 600V/5A. 2012 Transphorm 600V GaN 2013, Velox SMPS GaN SBD (Schottky Barrier Diode), Azzuro 600V, IMEC 8. Table 1. GaN 57
Table 2. GaN Panasonic, Matsushita, Sanken, Toyota Toshiba, normally-off SBD., Toyota, Toshiba GaN. 2.3. GaN 2.3.1. Normally-off GaN FET GaN p- normally-off FET. Fig. 6 Gate Recess HEMT (V th), fluorine F Treatment. p- GaN p-gan Gate normally-off FET p- n (V th) +1.0V (V th) > +3V. NEC Piezo neutralization layer normally-off., Fig. 6. Normally-off GaN FET. 58
gate recess SiO 2, Si 3N 4, Al 2O 3 gate dielectric MIS (Metal-Insulator-Semiconductor) FET, Transphorm GaN normally-on FET normally-off Si MOSFET diode cascode normally-off FET. 2.3.2. GaN Fig. 7 (mesa) SiO 2, SiN x AlGaN/GaN 2DEG (2-Dimensional Electron Gas) Oxide filling, Furukawa Deep Mesa, Panasonic P + stopper Blocking voltage boosting, Cree Field-plate, AlGaN/GaN 2DEG carbon Back-barrier, IMEC Si Substrate local removal, Cree field-plate. GaN 5-15) (Table 3), UCSB surface dielectric, surface p- doping, p-type GaN, insulated gate,, Toshiba surface dielectric, insulated gate,, AlN nucleation, NCU surface dielectric,. IMEC surface dielectric,, Si, KU Leuven Si, FBH p-gan gate,, double hetero-structure, GaN back barrier, AlN nucleation, Berlin Univ. surface dielectric, insulated gate,, double hetero-structure, GaN back barrier, AlN nucleation. Table 3. GaN (2000-2013) Fig. 7. GaN FET. 2.3.3. GaN Package discrete, Pb/Sn TO- 220, 175. Transphorm GaN (TPH3006PS) TO-220 cascode GaN FET Si MOSFET (Fig. 8), 200 59
Fig. 8. GaN power switch (Transphorm). discrete TO-254/257 (Fig. 9),, hermetic seal. 200 GaN discrete Fig. 9 APEI normally-off 1200V/38A/50m JFET T j(max)=225 TO-254 hermetic. GaN 50-100A,, 200, GaN Si TO SOT,, (>150) APEI TO-254 1200V, 50-100A, 250 (Fig. 10). Fig. 10. () APEI X-6 discrete () building block approach,. 2.3.4. GaN GaN 10 RF, IT,. W W GaN. APEI DBC (Direct Bond Copper) Al 2O 3 (=35 W/m K, =8.4 ppm/k) AlN power substrate (=150W/mK, =4.5 ppm/k) (Fig. 11,12). Fig. 11. APEI, (>1MHz), X-5 SiC. Fig. 9. SiC power JFET(APEI). Fig. 12. GaN FET GaN SBD. 60
2.4., Table 5,. 16), Toyoda Gosei, Hitachi Cable 122(1), 59(2), Matsushita Electric 55(3), Sony 48(4). Top 10 Nichia Chem, Oki Electric Nitronex (Table 5)., 16) Toyoda Gosei Al 0.15Ga 0.85N, Al 0.07Ga 0.93N, Al 0.2Ga 0.8N ELOG HVPE, Hitachi Cable (Al xga 1-x) 1-yIn yn, HT Buffer, Table 4. Key word Table 5. GaN 5/3. Nippon Telegraph & Telephone Al xga 1-xN/GaN, Sony AlGaN+, ELOG+, Al 0.15Ga 0.85N, Cree AlGaN/GaN HEMT, Matsushita Electric InAl yga 1-yN, Al 0.1Ga 0.9N, Al 0.26Ga 0.74N ELOG Device structure. Nichia Chem Ga xal 1-xN, Oki Electric Al xga 1-xN, Al xin yga 1-x-yN, Nitronex, Eudyna Device. GaN Table 6., Sharp (20090164339, Field Effect Transistor) GaN. Cree (20080124440, GaN Based HEMT with Buried Field Plate) Table 6. GaN 61
GaN HEMT. Fairchild (100857683, ) 1, 1 passivation 1, Fairchild (100770132, ),, passivation. Northrop Grumman Space (20090105405, High Electron Mobility Transistor Semiconductor Device Having Electric Field Relaxing Plate and Method of Manufacturing the Same) 1 T 2 T, Cree (US 2005/0253168, Wide bandgap transistors with multiple field plates),.,,. Cree (KR20060 071415, ) Sharp (JP2009-164339, Field Effect Transistor), KAIST (10-0782430, ) GaN, HEMT,,, shielding effect,,,,,. 3.1. Si Yole 17) (Fig. 13), 2012 1220 2020 1440 CAGR (Compound Annual Growth Rate)1.9%, 2012 410 2020 700 CAGR7.2%, 2012 125 2020 219 CAGR7.9%, 2012 9.12 2020 13 CAGR5.6%. IC,, (discrete), IC (voltage regulator) IC (power management IC), IPM (Intelligent Power Module), Si MOSFET, IGBT, SiC MOSFET, GaN FET, SBD, Fig. 13 62
Fig. 13. (Source : Yole Development 2013). IC,, (discrete) 70%. 3.2. GaN GaN, GaN-on-Si EPC 200V, 2013 3 Transphorm 600V/17A GaN FET 600V/8A GaN SBD, GaN Systems GaN-on- SiC 1200V/7A 600V/15A. Yole(Fig. 14), 900V 67% GaN 900V. 1,17) GaN Fig. 15, YoleLux ResearchWBG (Wide Band Fig. 15. GaN (Source : Yole Development 2012). Gap) 2020 22%. Fig. 16 GaN (2010-2020) 17), 2012 GaN 2013 Fig. 14.. Fig. 16. GaN () (2010-2020 ) (Source : Yole Development, 2013). 63
2015 GaN, 2019,, 2020 12% 50% GaN. 4.1. GaN GaN-on-Si CMOS (8 ), Si- WBG (GaN, SiC) (Fig. 17), DC-DC 3%, AC- DC 1.5-2%, DC-AC 2-3%, WBG. Fig. 17. Si WBG (GaN, SiC) (Source : SiC 2013 Report, Yole Development, May 2013)., PV, (HEV/EV /PHEV) GaN. 4.2.,,,. GaN. 20091 243.3 TOE (Ton of Oil Equivalent), 42.1% 28.2% ( 2010, ). 2010 474,660 GWh,,, LNG 307,528 GWh 65% (, 5 ). 2010 30% 2030 80%, 30% 90% 14,230 GWh, GaN 50% 95% 7,115 64
GWh. 35,522 GWh 2.4, 1.64 TOE 91.3 TC (Ton of Carbon). 4.3.,, IT Green IT, -,, GaN. 4.4. GaN (FET/SBD) Si, Sapphire, SiC. GaN (lateral).. GaN (vertical). GaN 2, Avogy 2013 10 WiPDA 2013 18) 1700V/5A GaN-on-GaN SBD, 3700V., GaN. 2013Transphorm. GaN.,, GaN. 1., GaN /,SiC GaN, KINTEX, Korea (2013). 2.,,,,, GaN,, 27 [1] 74-85 (2012). 3., GaN,SiC GaN, KINTEX, Korea (2013). 4.,,,,,,, / : GaN,, 27 [4] 96-106 (2012). 5. S. Karmalkar and U. K. Mishra, Enhacement of Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors Using a Field Plate,IEEE Trans. Electron Devices, 48 [8] 1515-21 (2001). 6. N. Zhang, High Voltage GaN HEMTs with Low On- Resistance for Switching Applications,Dissertation of Doctor Degree, UCSB, USA 2002. 7. H. Xing, Y. Dora, A. Chini, S. Heikman, S. Keller, and U.K. Mishra, High Breakdown Voltage AlGaN/GaN HEMTs Achieved by Multiple Field Plates,IEEE Electron Device Lett., 25 [4] 161-63 (2004). 8. Y. Dora, A. Chakraborty, L. McCathy, S. Keller, S.P. DenBaars, and U.K. Mishra, High Breakdown Voltage Achieved on AlGaN/GaN HEMTs with Integrated Slant Field Plates,IEEE Electron Devices Lett., 27 [9] 713-15 (2006). 65
9. W. Saito, T. Nitta, Y. Kakiuchi, Y. Saito, K. Tsuda, I. Omura, and M. Yamaguchi, On-Resistance Modulat ion of High Voltage GaN HEMT on Sapphire Substrate Under High Applied Voltage, IEEE Electron Device Lett., 28 [8] 676-78 (2007). 10. K. Remashan, W.-P. Huang, and J.-I. Chyi, Simulation and Fabrication of High Voltage AlGaN/GaN Based Schottky Diodes with Field Plate Edge Termination, Microelectron. Eng., 84 [12] 2907-15 (2007). 11. D. Visalli, M. Van Hove, J. Derluyn, P. Srivastava, D. Marcon, J. Das, M. R. Leys, S. Degroote, K. Cheng, E. Vandenplas, M. Germain, and G. Borghs, Limitations of Field Plate Effect due to the Silicon Substrate in AlGaN/GaN/AlGaN DHFETs, IEEE Trans. Electron Devices, 57 [12] 3333-39 (2010). 12. D. Visalli, Optimization of GaN-on-Si HEMTs for High Voltage Applications, Dissertation of Doctor Degree, Katholieke Universiteit Leuven, Germany 2011. 13. E. Bahat-Treidel, O. Hilt, F. Brunner, V. Sidorov, J. Würfl, and G. Tränkle, AlGaN/GaN/AlGaN DH- HEMTs Breakdown Voltage Enhancement Using Multiple Grating Field Plates (MGFPs), IEEE Trans. Electron Devices, 57 [6] 1208-16 (2010). 14. E. Bahat-Treidel, GaN-Based HEMTs for High Voltage Operation: Design, Technology and Characte rization, Dissertation of Doctor Degree, Berlin Univ., Germany, 2012. 15. Y. Dora, Understanding Material and Process Limits for High Breakdown Voltage AlGaN/GaN HEMTs, Dissertation of Doctor Degree, UCSB, USA, 2006. 16., (2009). 17. Yole Developement, Next Generation Power Device SiC/GaN Industry/Market Trends, I-Sedex 2013, KIN- TEX, Korea (2013). 18. D. Disney, Very-High Performance GaN-on-GaN Diodes, 1 st IEEE Workshop on Wide bandgap Devices and Applications 2013 Proceeding. 66