Krean Chem. Eng. Res., Vl. 44, N. 2, April, 2006, pp. 193-199 i s Cu-Mn { m Š s Ç kçmy *, * 704-701 e e 1000 (2005 9 29p r, 2006 3 27p }ˆ) Activity and Characteristics f Cu-Mn Oxide Catalysts Supprted n Hye-jin Kim, Sung-W Chi and Chang-Sep Lee* Department f Envirnmental Science, * Department f Chemistry, Keimyung University, 1000, Shindang-dng, Dalse-gu, Daegu 704-701, Krea (Received 29 September 2005; accepted 27 March 2006) k l v Cu-Mn l Š l mr pp 160~280 Cp m l r p s m. BET, SEM, TPR, TPO, XPS XRD pn l p m. Š lp mr pp 280 C p l p lrp, rr Cu-Mn v p 15.0 wtícu-10.0 wtímnp p ˆ. TPR/TPO XPS, 15 Cu-10 Mn p n p m p mp l v p p p m. XRD, Mn CuO p pq p l p n n p, p p p p p ˆl p p. h Abstract The catalytic xidatin f tluene ver -Al 2 supprted cpper-manganese xide catalysts in the temperature range f 160-280 C was investigated by emplying a fixed bed flw reactr. The catalysts were characterized by BET, scanning electrn micrscpy (SEM), temperature-prgrammed reductin(tpr), temperature-prgrammed xidatin(tpo), X-ray phtelectrn spectrscpy (XPS) and X-ray diffractin(xrd) techniques. Catalytic xidatin f tluene was achieved at the belw 280 C, and the ptimal cntent f cpper and manganese in the catalyst was fund t be 15.0 wtícu-10.0 wtímn. Frm the TPR/TPO and XPS results, the redx peak f 15 Cu-10 Mn catalyst shifted t the lwer temperature, and the binding energy was shifted t the higher binding energy. Furthermre, It is cnsidered that is superir t Mn xides and CuO in the rle as active factr f catalysts frm the XRD results and als catalytic activities are dependent n the redx ability and high xidatin state f catalysts. Key wrds: Tluene, Cpper, Manganese,, Catalytic Oxidatin 1. (vlatile rganic cmpunds, VOC)p p n nr, r r, p l n v me (pht chemical xidants)p p v k r m. l pq vp p vp ep v VOC lr rr l p. VOC p nr tep r l p p 72Í v p s l lr r} p v p [1]. VOC rl l,, p, l, p p, p tl l p r, p p d } l r p k r pp rml nm T whm crrespndence shuld be addressed. E-mail: hjkim6529@kmu.ac.kr pl, l v pp p rl ep p [2]. p rp VOC } m r p p. v Pt, Pd pp p p pm l p p ˆ k dl m vl p l lnp p n p [3, 4]. p p rp rs np p l p p p. l r p p p rp p rs l ep k v p. p rp tl l l v p, t Cum Mnp VOC r p l, ep p p. Li [5]p reverse micremulsin l p rs p n, 220~280 C l 98Íp Š l r p 193
194 vë nëp} p ll mp, Mazzcchiam Kadduri[6] n pn l lžk p p mr pp e, 200 C l lžk p mr r p m., Terribile [7]p Ce-Zr l Cu m Mnp ~ l p rs pn l ˆ p mr pp ee, Cum Mnp pp p vv lpp p. l l p pn l v Cu Mn rs m. rs pn l Š lp mr p p ee l p l pl Cu/Mn pp l m p s m., rs p ˆ, ˆ p p p mp, XRD XPS p p r ˆl l s m. 2. 2-1. { m v Cu-Mn (Aldrich, 155 m 2 /g) ~l Cu(N ) 3 6H 2 O(Aldrich, 99.99Í)m Mn(N ) 2 xh 2 O(Aldrich, 99.99Í) r ~ n l l p rs m. r v l p r vp n e l v e p, v v r v l p p r 120 C s l 12e s, l 500 Cp m 4e k m. l v p p Cu 5, 10, 15, 20 wtí, Mn 10 wtí mp, m l 5ÍCum 10ÍMnp v p n 5 Cu-10 Mnp ep m. 2-2. { m l l n e q k r p rp q Fig. 1l ˆ l. 10 mmp U-type m l 0.1 gp m vv l p m. p d Š l 200 ppm/n 2 balance rs Š l dm O 2, N 2 n m. v rl (MFC, BROOKS 5850E SERIES) n l Š l 30, 75, 150 ppm, O 2 21 vlí, N 2 78.99 vlí sr mp p 50 ml/min pr v l 160~280 C m l p e p ee m. p d p d p FID q d Š (Hewlett Packard mdel 6890 Series II) pn m. Š l r p p p el p mp inlet Š l m l v v k e n mp utlet Š l v m l p n m. Inlet tluene Inlet tluene Outlet tluene Cnversin = 100 Š l p e p r p l p Š l r pl m p l ml 3e k Š lp m l Š l pp s m. p p m 160~280 C l 20 C p dme p, m l 1e k kr eˆ p p Š l l r m. p Š l mr l m p s l 44 2 2006 4k Fig. 1. Schematic diagram f the micr reactr. A. Mass flw meter D. Temperature cntrller B. Micr syringe E. Catalyst reactr C. Heater F. GC-FID 1Íp H 2 O Fig. 1p micr syringe pn l tp mp, p tp r 110 Cp m l e p dm p p e p m. 2-3. { m p p s l TCD q TPR/TPO q (Autchem 2910, Micrmeritics Inc.)p n l dm e p ee m. e p 0.1 gp p l 500 Cl 1e k O 2 r } p 10Í H 2 /Ar d 20 ml/minp p t 2.5 C/minp dm ml 500 C v H 2p p r m. e p p mp eˆ, 2Í O 2 /He d 20 ml/ minp p t 3 C/minp dm ml 500 C v O 2p p r m. rs p rp BET(Micrmeritics, ASAP 2400)p p n m p ˆ SEM(Hitachi, S-4200)p pn l r m. p r s X-ray diffractin(xrd, Panalytical X'pert PRO MRD analyzer) pn m, s p Cu Kα (λ=0.1543 nm)p n l dƒ (2θ) 20~80 l 0.0167 j m. p ˆ s l XPS(X-ray phtelectrn spectrscpy) spectrmeter(v.g. Scientific, Escalab 250) n l Al K-alpha(CAE=50 ev) s l XPS p mp, } C1s p l v p 285 ev t l chemical shift p r m. 3. 3-1. { m ~ Cu-Mn l p Š l mr pp s l Fig. 2l ˆ l. Š l 30 ppmp n, k 260 C l Š lp mr p k pp Cu v p v l p p v kk. pl, Š lp 75 ppmp nl 10 Cu-10 Mn 15 Cu-10 Mn l p Š lp mr pp 260 Cl ˆ p, 15 Cu- 10 Mn p Š l pp q n mp p 15 Cu-10 Mn>20 Cu-10 Mn>10 Cu-10 Mn>5 Cu-10 Mnp
l v Cu-Mn p 195 Fig. 2. Catalytic xidatin f tluene ver Cu-Mn xide catalysts as functins f reactin temperature and cncentratin. pp k pl. 150 ppmp l p l vp pl 75 ppm p m mp, 15 Cu-10 Mn 260 Cl Š lp mr pp ˆ p 5 Cu-10 Mn 280 Cl Š lp mr l. pm p, Š lp d l Š l m r p lvp k plp, p p Kim[8]p l ˆ. Kimp Š l v p p ˆ VOC pl p r p ˆ p m. Fig. 2l ˆ pn l 50Í, 90Íp Š l r pp ˆ m T 50 T 90 p e l Table 1l ˆ l. Š lp 30 ppmp r r l e, Cup v m T 50 p 190 C l, T 90 p 235 C l p pp ˆ l., 75 ppm l 15 Cu-10 Mn p T 50 p 202 C T 90 p 236 Cpp k pp 150 ppm l 15 Cu-10 Mn p T 50 p 238 C T 90 p 256 Cp rm mll Š l Table 1. Catalytic xidatin f tluene ver Cu-Mn xide catalysts Catalyst Cncentratin T 50 ( C) T 90 ( C) 5 Cu-10 Mn 130 ppm 183 236 175 ppm 219 254 150 ppm 248 267 10 Cu-10 Mn 130 ppm 189 233 175 ppm 219 250 150 ppm 245 258 15 Cu-10 Mn 130 ppm 189 233 175 ppm 203 236 150 ppm 238 256 20 Cu-10 Mn 130 ppm 192 234 175 ppm 213 240 150 ppm 243 257 Fig. 3. The influence f reactin time n reactivity f catalytic xidatin f tluene ver Cu-Mn xide catalystsg (A:G tluene cncentratin =150 ppm, temperature=220 C; B:G tluene cncentratin=30, 75 ppm, temperature=220 C at 15 Cu-10 Mn catalyst). p mr v p p pl. p Cu v p l Š lp mr m p ˆ p, 15 Cu-10 Mn q rml Š lp mr pp ˆ p k pl., 15ÍCu-10ÍMn p Cu-Mn rs p f Š lp mr p p p pp p m. Š l mr p d eq m p 220 C l e l Š l r pp r m. Fig. 3(a)l p 15 Cu-10 Mn p p rp n p p pp, r pp 2e p p 31Íp 8e e 25Í r pp kvp mp 14e p l 29Í p pr v p p pl., p p Cup v p l l. Š l r pp n 15 Cu-10 Mn l p 30, 75 ppm q d Fig. 3(b)l ˆ m p 30 ppm l 30Í p r pp p 45Í p p r pp ˆ lp, 75 ppm l 30Í l 25Í pp Š l r pp ˆ p pl. 220 Cl p p p r pp n 15 Cu-10 Mn p p l p p pl. 3-2. { m Ž Š Cup v p e rs p rp r Table 2l ˆ l. l Mn Cu v Cu-Mn p rp 155 m 2 /gp p r n mpp k pp, Cu p v l rp p ˆ l. pr l p l 10Í Krean Chem. Eng. Res., Vl. 44, N. 2, April, 2006
196 vë nëp} Table 2. The BET surface area f Cu-Mn xide catalysts Catalyst Surface Area (m 2 /g) 5 Cu-10 Mn 106.6 10 Cu-10 Mn 102.3 15 Cu-10 Mn 101.6 20 Cu-10 Mn 96.5 Fig. 5. X-ray diffractin patterns f Cu-Mn xide catalysts. Fig. 4. SEM images f Cu-Mn xide catalysts (1:5 Cu-10 Mn, 2:10 Cu- 10 Mn, 3:15 Cu-10 Mn, 4:20 Cu-10 Mn). Mn v e p n p rp 127.2 m /g m 2 p Cup p p rp 106.6 m /gp n 2 lpp k pp, Cu p v l p rp n mpp k pl. Cu-Mn p ˆ s SEM rp Fig. 4l p p 5 Cu-10 Mn, 10 Cu-10 Mn p l t 300 nm p p qp pq p l. p vp Cum Mnp ~ l l p p ˆ t p. 15 Cu-10 Mn l pq p vp rp l, Cu p q p 20 Cu-10 Mn pq vp ƒ r p t l. r r SEM Š l mr m l e l, p r l m p v k p k pl. p Kim[8] p ee l p v l VOC pl l l lv p k, l l p Š lp mr p l tqp l t p. Cu v l Cu-Mn p r s s l XRD p mp, Fig. 5l ˆ l. l p 5 Cu-10 Mn l 2θ = 30.43, 35.88, 43.74, 57.73, 63.34 l p d sl p r l n ˆ lp, 10 Cu-10 Mn p rl 44 2 2006 4k l. Papavasiliu [9]p l e l rs m l p d s r lpp pl. 15 Cu-10 Mn l pnl CuOl 2θ = 35.45, 38.69, 48.68 l l p Cu v p v l v m., Mnp p Cu p 5 Cu-10 Mn l Mn l v k p k Mnp Cum n~ l d sp ˆ sq r ˆ sq p. Chen [10] p Mnp 5Í p v n r p Mn p p m, Papavasiliu [9]p n k l rs Cu-Mn l p d sm Mn 2 p p m. pl Alns [11]p CuOm MnO 2 rp l rs l l l XRD patternp m. Tang [12]p MnO-CeOxp XRD Ž p Mn Cep l ps m. Mn/(Mn+Ce) 0.75 pp Mn 2 p rp ˆ Mn/(Mn+Ce) 0.5 p Mn 2 m CeO 2 pl n~ Mn 2 p l ˆ v kp CeO 2 p r ˆ m. Mnp n~ np p l l Mnp rp Mn/(Cu+Mn) p l ps p lv. Mn/(Cu+Mn) p p, 5 Cu-10 Mn:0.7, 10 Cu-10 Mn:0.54, 15 Cu-10 Mn:0.44, 20 Cu-10 Mn:0.37p Mnp p p 5 Cu-10 Mnm 10 Cu-10 Mn l Mnp p Mn r ˆ v kp Cum Mn pl n~ Mn l ˆ v k p. p l p rs p l Mn p l lpp p. Table 3l XRD l llv r m CuOp pp ˆ l. 5 Cu-10 Mn 10 Cu-10 Mn r p sq p lp, 15 Cu-10 Mn 20 Cu-10 Mn m CuOp rp el sq
Table 3. The crystallite ratis f Cu-Mn xide catalysts XRD phases( ) Catalyst CuO 5Cu-10Mn 100-10Cu-10Mn 100-15Cu-10Mn 64 36 20Cu-10Mn 51 49 Cup p v l CuOp p kv p k pl. v 5 Cu-10 Mn 10 Cu-10 Mn l t p tn r s l. pl, Cup v p 15Í p p Cu-Mn p nl p nl CuO r s lp CuO rp pp Cup v p v v p k pl. p, l l rs Cu-Mn rp l rmmll n p p r p sq p p rp Cup v p v 15 Cu-10 Mn p p q n mp Mn CuO rp pq l p n p Ž., 15 Cu-10 Mn p p 20 Cu-10 Mn n ˆ p CuOp p p vv p k CuO tn pq k p r. Mn CuOp l p n CuO r p pq p l p n n p. Š l pl p m CuOp p l l l l v n p pp p Ž. p p r l H 2 -TPR e p mp r Fig. 6l ˆ l. p H 2 -TPR, 5 Cu-10 Mn l v Cu-Mn p 197 p ~ w n 172 Cl w n 278 Cl lp, 10 Cu-10 Mn 160 Cm 246 Cl, 20 Cu-10 Mn 154 Cm 227 Cl ~ w w n ˆ l., 15 Cu-10 Mn p ˆ p, 154 Cm 182 C, 226 Cl p p pl., Cup v p v l p m rmp p mp 15, 20Í p Cu v p n ~ w m p m., 15 Cu-10 Mn 20 Cu-10 Mn p ~ w p H 2 r signal 15 Cu-10 Mn p H 2 p pp p pl. e s p q p s l O 2 -TPO e p m Fig. 7l ˆ l. p p 5 Cu-10 Mn Cup v p v rml p p kv p p plp, ~ w n v O 2 p rml q p p 15 Cu-10 Mn p p ˆ., mmll p eq l p m l ~ v p k p. p p pp Kim Lee[13] rl pq p p pl pqp v q rl pq p e p v l m p Ž m. p p e s, 15 Cu-10 Mn p p q n p p pp, p m l p p ˆ p Cu-Mn l p p p p r p Ž. p l pp Š l e p m. pp p p r l p pp p. l p t Langmuir-Hinshelwd Fig. 6. TPR curves f Cu-Mn xide catalysts. Fig. 7. TPO curves f Cu-Mn xide catalysts. Krean Chem. Eng. Res., Vl. 44, N. 2, April, 2006
198 vë nëp} p rl p p l ˆl pl l p rr p p Mars-van Krevelen p l pp p q l p v qm q p p v kp q d lr qm p l p q q l p e }r rp q l pp p p [14]. l l n Cu-Mn Š l mr p e p pl p ppv k Š l l p ppv p l Š l ˆ e p m. r e p 0.1 gp 110 Cl O 2 1e r} ml v v eˆ 200 ppm Š lp 50 ml/minp tp Š l p GC-FID m. tp 200 ppmp Š l t l p v v k Š l p kp 2 min p m. Š lp kp blank e m p kp Š l p s p e l Š l p p lv p r Š lp tp rp l m. tp Š l kp l p r rp l p m., Š l p 0.178 mml/gpl. pl p p lv l rp Š lp r l ml v ~ v eˆ, 2 C/min p m d m l Š l ˆ e p m l ˆ lv m. Cu-Mn p Š l mr pp ƒ vl p p k vl p p pl p rp lp p mr pp n v p. Table 4 p ˆl r l XPS p. p rp CuO 933.4~933.9 ev, Cu 2 O 932.1~932.5 ev, MnO 641.0 ev, Mn 2 641.1~641.4 ev, MnO 2 642.0~642.4 ev mlp l v [15]. l l ˆ Cum Mnp kk, Cu 2p 3/2p l v 932.45~ 933.10 evp ˆ p Cu 2+ Cu 1+ ~Cu sq p p pp, Mn 2p 3/2p l v 641.45~642.15 ev Mn 2+ ~Mn ˆpp p 4+ p. p ˆm p r p } l n p q n 15 Cu-10 Mn p q p p ˆ p p Š lp mr l m p p. p rp ˆ v l v v eˆ mp [16] l vp v pp p., p ˆ Table 4. The binding energies(ev) f Cu(2p) and Mn(2p) levels fr Cu-Mn xide catalysts Binding energies (ev) Catalyst Cu 2p 3/2 Mn 2p 3/2 5Cu-10Mn 932.80 ev 641.85 ev 10Cu-10Mn 932.80 ev 641.60 ev 15Cu-10Mn 933.10 ev 642.15 ev 20Cu-10Mn 932.45 ev 641.45 ev 44 2 2006 4k Fig. 8. Influence f water n reactivity f catalytic xidatin f tluene ver 15 Cu-10 Mn catalystg(water cncentratin=1, tluene cncentratin=100 ppm, reactin temperature=260 C). qrq k p eˆ pp pl p m [14]. l l n p ˆ Š l pp n p p. Fig. 8l rs p er r rn p r l p qn p m p s m. r 260 C m l 20e k Š l mr pp ˆ v s m. e 99.9Íp Š l r pp v p p plp, 1Í tp l 260 Cl Š l pp m p l p pp p ˆ v kk. l Cu p v l p m p s Wang[17]p l l 20Í p p m Wangp p l p k. l l rs Cu-Mn p v k p s lp p rl rnp p. 4. Cu-Mn pn Š l mr pl pp p s l p p p ll. rr p pp l Cu 15Í, Mn 10Í v p ˆ p, Š lp kvl r pp mp 260 C l mr p k rm p n p k pl. rs p r p ˆ l m p v kpp k pl. p l Š lp mr l p p ˆ p k pl. p r sm ˆ p Mn CuOp l p n CuO r p pq p l p n n p Š l mr pl pl p l rp p p r p npp qn p Ž. e r p p r
l v Cu-Mn p 199 qe l m p m p s, e p l l p Š lp r p p ˆ v kk. Cu-Mn d s l rm p l k l k r p n mp, p ƒ vp p. l lq l e vlr l l p k l l p p. l v t l q l. y 1. Sichir, S., J. Env. Hi-Tech., 9, 15-19(2004). 2. Cper, C. D., Alley, F. C., Air Pllutin Cntrl, 2nd ed., Waveland Press, 337(1994). 3. Ihm, S. K., Jun, Y. D., Kim, D. C. and Jeng, K. E., Lw-temperature Deactivatin and Oxidatin State f Pd/-Al 2 Catalysts fr Ttal Oxidatin f n-hexane, Catal. Tday, 93(95), 149-154(2004). 4. Centen, M. A., Paulis, M., Mntes, M. and Odrizla, J. A., Catalytic Cmbustin f Vlatile Organic Cmpunds n Au/ CeO 2 /Al 2 and Au/Al 2 Catalysts, Appl. Catal. A:Gen., 234, 65-78(2002). 5. Li, W. B., Chu, W. B., Zhuang, M. and Hua, J., Catalytic Oxidatin f Tluene n Mn-Cntaining Mixed Oxides Prepared in Reverse Micremulsins, Catal. Tday, 93(95), 205-209(2004). 6. Mazzcchia, C. and Kadduri, A., On the Activity f Cpper Chrmite Catalysts in Ethyl Acetate Cmbustin in the Presence and Absence f Oxygen, J. Ml. Catal. A:Chem., 204(205), 647-654(2003). 7. Terribile, D., Trvarelli, A., Leitenburg, C. D., Primavera, A. and Dlcetti, G., Catalytic Cmbustin f Hydrcarbns with Mn and Cu-dped Ceria-zircnia Slid Slutins, Catal. Tday, 47, 133-140(1999). 8. Kim, S. C., The Catalytic Oxidatin f Armatic Hydrcarbns ver Supprted Metal Oxide, J. Haz. Mat., B91, 285-299(2002). 9. Papavasiliu, J., Avgurpuls, G. and Iannides, T., Steam Refrming Over Cpper-manganese Spinel Oxide Catalysts, Catal. Cm., 6, 497-501(2005). 10. Chen, T. J., Kim, H. J. and Chi, S. W., Tluene Catalytic Oxidatin by Manganese Oxide: (1) Activity and Characterizatin, J. Krean. Sc. Atms. Env., 21(2), 161-168(2005). 11. Alns, L., Palacis, J. M., Garcia, E. and Mliner, R., Characterizatin f Mn and Cu Oxides as Regenerable Srbents fr Ht Cal Gas Desulfurizatin, Fuel Prc. Tech., 62, 31-44(2000). 12. Tang, X., Li, Y., Huang, X., Xu, Y., Zhu, H., Wang, J. and Shen, W., MnOx-CeO 2 Mixed Oxide Catalysts fr Cmplete Oxidatin f Frmaldehyde: Effect f Preparatin Methd and Calcinatin Temperature, Appl. Catal. B:Env., 62, 265-273(2005). 13. Kim, Y. H. and Lee, H. I., Redx Prperty f Transitin Metal Oxides in Catalytic Oxidatin, J. Krean. Ind. Eng. Chem., 10(8), 1161-1168(1999). 14. Chn, H. Z. and Se, G., Catalysis an Intrductin, 4rd ed., Hanlimwn, Seul(2002). 15. http://www.lasurface.cm. 16. Niemantsverdriet, J. W., Spectrscpy in Catalysis, secnd., Netherlands(2000). 17. Wang, C. H., Al 2 -Supprtsd Transitin-Metal Oxide Catalysts fr Catalytic Incineratin f Tluene, Chemsphere, 55, 11-17(2004). Krean Chem. Eng. Res., Vl. 44, N. 2, April, 2006