ˆg Journal of the Korean Society for Marine Environmental Engineering Vol. 10, No. 3. pp. 127-137, August 2007 z f pp 1 Út r 1 Ú e 1 Ú 1 Ú 2 Ú 1 1 mn p n 2 mn p mff lsn The Electrochemical Chlorination for Marine Plankton Community Disinfection Jung-Hoon Kang 1, Kyoungsoon Shin 1, Bong-Gil Hyun 1, Min-Chul Jang 1, Eun-Chan Kim 2 and Man Chang 1 1 Southern Coastal Environment Research Division, South Sea Institute, KORDI, 391, Changmokmyun Koje-shi, Kyungnam, 656-830, Korea 2 Maritime and Ocean Engineering Research Institute, KORDI, 171 Jang-dong Yuseong, Daejeon, 305-343, Korea r m } r p kl re } t(d-2 regulation)p s v p o k, e Š(10-50 µm) Š(>50 µm)p p m. e s p s m q m 10 ppm(expt. 1) 30 ppm(expt. 2)p e r m, e 23.8 m 3 /hrp r m l e. e p s p r l q q p d pp o v l re tp. e Šp Ž p, r (Turner Designs 10-AU) pn l p l. s (10 ppm, 30 ppm)p } l n p p e Šp nvpp ˆ v kk, l m p r l p lp, p (Expt. 1: 6.95, Expt. 2: 7.11)l 0p l. p e Šp p e l l pp p. Šp Ž p l vp nvpp Š r l. r m } k l }v l ql v Šp lp, p Artemia s m. q m s p k l eˆ v 24e l Šp l. k Petrifilm plates(3m TM ) pn rs k p } p, q q p p, t r v kk. m s p } l rp eˆ 5p k p l q qp ˆ v kk. l p l r m } r l rr tp se pp ltl. Abstract To confirm whether or not the Electrochemical Disinfection System (EDS) meet with the D-2 regulation established by IMO (International Maritime Organization), the biological treatment efficacy of the EDS was assessed using three groups of natural marine plankton (bacteria, 10-50 µm and 50 µm sized organisms). Influent water was passed through the EDS under the flow velocity (23.8 m 3 /hr) and test design was consisted of control (no treatment) and experimental (10 ppm and 30 ppm) condition for total residual chlorine (TRC). And the biological condition of the influent water followed the standards established by the guidelines for the approval of ballast water management systems. The disinfection efficacy of the 10-50 µm sized organisms (phytoplankton) was assessed by three kinds of measurements using photomicroscope, epifluorescence microscope and fluorometer (Turner Designs 10-AU). After being passed through the EDS, all motile phytoplankton lost their motility under photomicroscope, the colour of chlorophyll fluorescence turned from red into green under epifluorescence, and the high chlorophyll fluorescence (Expt. 1: 6.95, Expt. 2: 7.11) detected by fluorometer decreased into value not detected. These results indicated phytoplankton community was totally killed after Corresponding author: jhkang@kordi.re.kr 127
128 r Ëe Ë Ëq ~Ë p Ëq electrochemical disinfection treatment. Survivorship of the larger organisms than 50 µm was determined based on the appendage's movement under a stereomicroscope. Natural assemblage collected from ambient seawater was killed shortly after being passed through the EDS, whereas some Artemia remained alive. However, no live Artemia was found after 24 hour further exposure to each TRC concentration (10 and 30 ppm) under darkness. After electrochemical treatment, the target bacteria such as aerobes, coliform and Escherichia coli were completely killed on the basis of CFU (colony forming unit) on Petrifilm plate (3 M TM ) after 48 hr incubation. Moreover, no regrowth was found in the three groups of plankton during five days under additional exposure to the treated water. These results indicated that the disinfection efficiency of the EDS on the three groups of plankton satisfy D-2 regulation. Keywords: Biological efficacy( r p), Electrochemical disinfection system(r m ), bacteria( k), phytoplankton(e Š), zooplankton ( Š) 1. (ballast water) p l p kr p ov rp. p k s p p n l r l k ˆ eˆ qqrp o p k r p (Hayes and Sliwa [2003]). p p lv, kp mp, ns pp kp s p lk r p n p tv, p p k n p (Ruiz et al.[2000]). p } l k p p ˆ ll p p n kv. o e Šp n } p ˆ ll op r k ˆ k p eˆ k (Lewis et al.[2003]), }l p Ž l keqp o p (Sutherland et al. [2001]). p l p n v m p v p p s p n l ˆ ll r p p npp (Orsi and Ohtsuka[1999]). l p n p k ˆ r ve r (IMO: International Maritime Organization) 2004 2o p m r p r o r kp m }ˆ m, l p t(d-2 regulation)p n l sr m. sl n sl p k ˆ p eˆ o l rp p ˆ l pn l (Zhang and Dickman[1999]; Dickman and Zhang[1999]). r pp 65% l ~(Locke et al.[1993]; Levings et al.[2004]) n s op p rp p, q l 200 lv p r r pl kr r kp. D-2 regulationp seˆ o p rp eˆ p } p q p p e l. r kl p p t r p o p } o rn Š m p (o [2005]), km (NaOCl)p rs ops p e rp r m p (Jeong et al.[2002]). l p ˆ k l m p p ql o p ˆo p r (o [2005]). v km p } pr o r p v l e s (composition) tp s e (test seawater) km p } r m } } s (D-2 regulation)p s lk. r p k oo (MEPC: Marine Environmental Protection Committee)l } p r p p o } e l plk p o k, 10-50 µm (t e Š), >50 µm (t Š)p vr m. r l r e (GloBallast program)p o m s p mk (vegetative cells), Šp ~(adults)m o (larvae)p t e p t p. 2005 l r 53 k oo p lkl l sq o s m ~ Šp p p o p p op rl 100% p eˆ pp t m. p p p e p Šp s p l kp } ˆ ll p v, e Šp mk m Š ~ } rp tn. e p s p ql ˆp Š vp, r p vr l p p / (phyla/divisions)l 5sp pl k tp seˆ. k ql ˆp Š vp p k t seˆ l n n, q p dpp o v (G-8)(Guidelines for the approval of ballast water management systems)l k Šp t p l tp re p. p l r p ˆp l rp km p e Šp vrrp r
k Š vp r m 129 l r m (EDS: electrochemical disinfection system)p o (prototype)p l, v l v p o Šp p r } p p m. } p 5pp e p Š q q(regrowth)p l rp p m. 2. m 2.1 n i r m edšp rp r (electrode) r (rectifier) r p l pp, l r (k p )p r l p r (Fig. 1). p rl kmpm(hypochlorous ion: OCl ), p e (OH ) p vp. edšp 200 m 3 /hr p p n } q e l k, p p q re p r p p rq l. edšp r p l p, l p e edšp 30/sec l. p n p pp, rp e k 23.8 m p 3 edšp. krrp ro p v t r pn m, r p rop rkp n 0~6V, r 0~200A, l p 0.99p, 85~265Vp p nrk o p. km 10ppm p ˆ p p r s p 3.6V, 9.6Apl, 30ppm s p 5.2V, 15.2Am. e s p r p q m (TRC: total residual chlorine) s (10 ppm, 30 ppm)p r e p Š r l. e l n r m p (prototype)p pn m e e, p o s (5, 10, 15 m /hr) 3 (25, 50, 75, 100, 125)p k l(ampere) s p e t r p p tp m. q m (EPA 4500)p o chlorine pocket photometer (HF scientific Inc.) pn l r m. Fig. 1. Diagram of electrochemical disinfection system. 2.2 n i 2.2.1 e t 2.2.1.1 r r r s r p 53 MEPC(Marine Environmental Protection Committee) pl } t(d-2 regulation) r l p o e (influent water)p tp m. 10~50 µm (t e Š)p tp s s p n p / (phyla/divisions) rl 5sp plk, s (standing crop)p 10 6 ~10 cells/lp o l plk 7. >50 µm (t Š)p ~ 10 2 ~10 3 individuals/l o l plk, p / (phyla/divisions) r l 5sp plk. s mk k (heterotrophic bacteria) ml 10p l sq lk 4. 2.2.2 e t 2.2.2.1 e Š(10~50 µm) kl o l l r p q (Jangmok Bay) l e s s p seˆ o t ( v : 45 cm, : 20 µm) l mp l e Š e m. e Š s p e s p s v pˆ o (Axioskop ZEISS Co.) l m. s (Control) e s (Expt. 1: 10 ppm, Expt. 2: 30 ppm)p e n (20 L) s p 4.8 10 6 ~ 1.4 10 7 cells/l p o ˆ e s p s m. 2.2.2.2 Š(>50 µm) Š ~ p e s p seˆ o Š }v ( v : 45 cm, : 200 µm) pn l q l Ž l e m. e s s l p o (Stemi SV11 ZEISS Co.) l Šp ~ (abundance) m. q Š p e tp pl p eˆ brine shrimp(artemia) s e (Expt. 1 Expt. 2) n (20 L)l l. s e ~ 4 10 2 ~ 6 10 ~/Lp o ˆ l tp 2 s m. 2.2.2.3 k lkll k s p 10 p p 4 ˆ l e tl s p r lp e l rn m. 2.2.3 e 2.2.3.1 e Š(10~50 µm) (1) s e Š s p o lž (500 ml) l k nk(lugol solution)p r m. 48e r kp kp kl 1mLp } l Sedgwick- Rafter Žl m p (Microscope BHS, Olympus, Japan) l m. p e Šp r p p p p s m (Cupp[1977]; Dodge[1982]; Shim[1994];
130 r Ëe Ë Ëq ~Ë p Ëq Tomas[1997]). (2) Ž r m } e Šp ~w, r (Turner-designs 10-AU) pn r, w, n (motility)p v e Šp n o, w, p p n m p p Ž l. p p p e Š sp p l p. r Ž p e, sp e Š Cylindrotheca closterium, Prorocentrum micans, Akashiwo sanguinea Scrippsiella sp.p 1 cells/ml p p 0p ˆ re Š l r p 0 p p t m. n o e Šp Ž p o e l 1mLp k Sedgwick-Rafter Žl l (Axioskop ZEISS Co.) l n p p m. e e } l } 500 mlp 10 µm l l l, Ž e Šp s p cells/ml m. p pn l green filter l e Š e, kp m r p, tlp n l p p v k p pn l Ž p m. p } tp } e l 10~50 µm o p ~p ml s s p 10 cells p ˆ p. r m } } 5p s p r r p kl l } 5p p k l s l e Š p pp r m. 2.2.3.2 Š(>50 µm) (1) Š s r Š ~ p o r m r p e 500 ml j }v l, n ~( : 50 µm) m. e Bogorov Žl p (Stemi SV11 ZEISS Co.) l m. Š r n p n s t v m, v p m. Šp s rp p p q m (Yamaji[1984]; Chihara and Murano[1997]). (2) Š Ž Šp Ž tp v(appendage)p n p m. (Stemi SV11 ZEISS Co.) l e Šp nvpp p l n ~ mr ˆp Šl 5 p nvpp lp rp s p q l pp lp tp p t (APHA[1985]). e p kp Š p l r~ t, p tp } l p p m. p } tp } e l 50 µm p p ~p s ~ m 3 10 ~ p np. r m } } 5p p k l s l Šp n p Ž p p p m. 2.2.3.3 k (1) k e k o lž }v (300 ml)l e p t p r(s 2~4%) l e e n m. r e DAPI(6-diamidino- 2-phenylindole) m (Porter and Feig, [1980])l Ž k k ˆp eml 5 k eˆ, UV fiter set(02-g356, FT395, LP420 and 15-BP546, FT580, LP590, Zeiss) n l p( 1000) m. e 10 p p l, 300 p p m. (2) k k Petrifilm plate(3m ) e m } p TM p (aerobes), q (coliform) q (Escherichia coli)p k l k } p m. rs } rp n p mp r clean benchl p lr. p p e m } l e 1mLj k vl op Petrifilm platel p ol k Žp (gel) (k 30~62 n), 35 Cl o k m. 48e k okp (colony) vmp m. Petrifilm platel p (aerobes) p 250 p n p kl p l 20p l r~ m. q (E. coli) q (coliform)p rsp o 10 mlp e l l v(0.2 µm membrane filter) rl t m. p Petrifilm platel l v m p p 35 Cp s l 24e k o m. edš dp v l re } tp q p 100 ml 250 cfu p np. } 5p s p r r p l l } k l s l p Ž p p m. 3. 3.1 m i s e p e p q m 0.05-0.08 ppmp ˆ, s p } l 0.09 ppmp ˆ. e } p Expt. 1l 8.7 ppmp, Expt. 2l 26.6 ppmp ˆ l r v kp p p m (Table 1). Expt. 1 Expt. 2p km 10 ppm 30 ppm plp, l ˆ p l o v( Š )p p sq ˆ p k r p.
k Š vp r m 131 Table 1. Total residual chlorine (TRC) in the test and treated seawater of Control, Expt. 1 and Expt. 2. Control Expt. 1 (10Gppm) Expt. 2 (30Gppm) Test water (ppm) Treated water (ppm) Test water (ppm) Treated water (ppm) Test water (ppm) Treated water (ppm) 0.08 0.09 0.08 8.72 0.05 26.60 3.2 p o z 3.2.1 e Š(10~50 µm) edš dp v l l e p o e e Š vp s (standing crop)p 10 6 ~10 7 cells/l ol plk, 3 p (phyla)/ (division) 5s(species)p l plk. s l e Š vp 70sp l, p tl s (diatoms) 51sp l, v (silicoflagellates) 2s, m (dinoflagellates) 17sp l. e p o e Š vp Expt. 1(10 ppm)l 121sp l, p tl s 87sp q p m, m 31s, v 3 s m. p 6s p s (cryptomonads), (microflagellates) o (euglenoids) l (Table 2). Expt. 2(30 ppm)e p n 121sp m, p tl s 88sp q k, m 30s, v 3s m. p l e 6s p s, o l. e (Control, Expt. 1, Expt. 2) p s p 1 10 6 cells/l r ˆ e p o e Š e s p s l (Table 2). 3.2.2 Š(>50 µm) Šp ~ 10 2 ~10 3 ~/L o l plk, 3 p (phyla)/ (division)l 5s(species)p lk e tp seˆ o q l q Šp m. porp k l tpeˆ Artemia l s e l p (hydroids), k (chaetognaths), v (cladocerans)p Podon leuckarti, n (copepods), r n (harpacticoids), e (decapods) o (larvae) p lr p l (Table 3). p tl q k p n, p 5s, ep d 2sp m. Š ~ s l 3.0 10 2 ~/L, Expt. 1l 3.5 10 2 ~/L, Expt. 2l 3.6 10 2 ~/Lp o ˆ e tp se (Table 3). 3.3 3.3.1 e Š(10~50 µm) 3.3.1.1 n Žkp Ž e l n p ˆ e Šp s p n n s (pennate diatoms)p Cylindrotheca closterium Pseudonitzschia seriata l, m l Akashiwo sanguinea Table 2. Taxonomic groups and standing crops of phytoplankton observed in the test water. Taxonomic groups Species number Standing crops (cells/l) Control Expt.1 Expt.2 Control Expt.1 Expt.2 Chrysophyceae 2 3 3 2,083 3,799 1,715 Bacillariophyceae 51 87 88 955,208 810,720 691,632 Cryptophyceae - 1 1-11,440 11,198 Euglenophyceae - 1 1-2,893 2,867 Dinophyceae 17 31 30 17,708 19,484 11,208 Microflagellates - 1 1-36,574 18,618 Sum (cells/l) 975,000 885,089 737,237 Table 3. Taxonomic groups and abundance of mesozooplankton observed in the test water. Taxonomic groups Species number Abundance (individuals/l) Control Expt.G1 Expt.G2 Control Expt.G1 Expt.G2 Hydroids - - 1 - - 2 Cladocerans (Podon leuckarti) - 1 1-13 17 Copepods 2 7 7 187 97 93 Harpacticoids - 1 1-5 4 Larvae 2 4 4 91 40 41 Artemia 1 1 1 5 191 205 Chaetognaths 1 - - 19 - - Sum (individuals/l) 302 345 360
132 r Ëe Ë Ëq ~Ë p Ëq Table 4. Differences in the motility of phytoplankton before and directly (~1 hour) after passage through the electrochemical disinfection system. Unit : cells/l Species list Control Expt. 1 (10Gppm) Expt. 2 (30Gppm) Test water Treated water Test water Treated water Test water Treated water Diatoms Cylindrotheca closterium 1,563 909 18,172-15,642 - Ditylum brightwellii 0 0 389-672 - Pleurosigma sp. 0 0 389-0 - Pseudo-nitzschia seriata 1,042 1,364 14,375-35,274 - Rhizosolenia setigera 3,125 1,818 7,513-0 - Dinoflagellates Alexandrium sp. 0 0 691-1,728 - Akashiwo sanguinea 0 0 4,101-1,344 - Ceratium furca 1,042 455 2,245-2,760 - C. fusus 2,083 909 3,281-696 - Ceratium sp. 521 455 0-1,416 - Gonyaulax sp. 0 0 0-1,080 - Protoperidinium sp. 0 0 6,042-11,350 - -indicates no motility found Number means cells with motility m Ceratium, Alexandrium, Gonyaulux Protoperidinium p s p pl. k l s p n p ˆ, Ditylum brightwellii, Pleurosigma sp. Rhizosolenia setigerap s p rp n p k p l. n s p n Ž p r nvp (sliding movement) vp ˆ, m dd r (rotating movement) v vp ˆ. e r m l e } l p o e Š e }v m. } e op l s p nvpp v kk (Table 4). pm km p v kp m s p e Šp v rp nvpp ˆ (Table 4). ym mk r m q r(e ) (} )l p e Šp p pn l m m. e p e Šp p m. s Coscinodiscus sp., Chaetoceros sp. Leptocylindrus danicusp m, m Protoperidinium sp.m Ceratium fusus m (Fig. 2). p ek r l mp e p e Šp r p ˆ, q } l l p ˆ k p ˆ (Fig. 2). ~o p pn l e Šp Ž rp vrrp r r t p qrp p. ql e p e r p n, e Šp p r rp r p r pn m. r m q p km p eˆv k eˆ s p n, q m 0.05~0.09 ppmp o ˆ p p ll (Table 5). 5p k e p m r rp l. r m q Expt. 1(10 ppm) s l l e } mp p q m 8.7 ppmp ˆ, e p (6.95 FSU)p 0.06 FSU m. k m (10 ppm) ˆ po l Š p p ˆ p p. Expt. 2(30 ppm)p s l } q m 26.6 ppmp ˆ, e p (7.11 FSU)p 0.03 FSUp m. } v p s l ˆ 0.06 FSU 0.03 FSU kel q m l v w 0p ˆ, p p e s e v pl r (Table 5). 3.3.2 Š(>50 µm) km p eˆv k m q l s e eˆ 35.3%p p ˆ, p (30 cm/ sec)p rl rp l p p Ž. Expt. 1(10 ppm) s p s l r m q e ˆ Šp p 83%m, Expt. 2(30 ppm)s l 76% ˆ. sp 17%(Expt. 1) m 24%(Expt. 2) Artemiap sl p p, ql }v Šp m. Artemiap rp l p o l } k l 6p m. q 6 p p e s (Expt. 1, Expt. 2) l 500 mlj (duplicates) l Artemiap
k Š vp r m 133 Fig. 3. Abundance of living Artemia before and after being passed through the electrochemical disinfection system. Fig. 2. Planktonic diatoms and dinoflagellates before and directly (~1 hour) after passage through the electrochemical disinfection system. (A: Coscinodiscus sp., B: Chaetoceros sp., C: Protoperidinium sp., D: Ceratium fusus, E: Leptocylindrus danicus). sl p m. 24e }v e l s (Expt. 1 Expt. 2)l 57 ~/L m 64 ~/L ˆ Artemia m, p 6p kp Šp v kk (Fig. 3). 3.3.3 k e p s mk k s p s m e (10 ppm, 30 ppm) s l 234,688 cells/ml, 137,910 cells/ml, 126,719 cells/mlp ˆ. } r e s mk k s p 10 cells/mlp p lk e s p 4 se. k Ž p p, q, q p p e m } l }v e l l, 48e kp r l. } e (10 ppm 30 ppm)p o e l e } l rs k q p n 0~2 CFU/mLp o ˆ, q p ll. p p 10 ppm s l 1,440~2,200 CFU/mLp o ˆ, 30 ppm s l 2,450~2,700 CFU/mLp o k. r m Table 5. Temporal variations of phytoplankton fluorescence and total residual chlorine (TRC) under darkness after electrochemical disinfection treatment. Test water Treated water Time Fluorescence (FSU) TRC (ppm) Fluorescence (FSU) TRC (ppm) (day) Control Expt.G1 Expt.G2 Control Expt.G1 Expt.G2 Control Expt.G1 Expt.G2 Control Expt.G1 Expt.G2 0 14.33 6.95 7.11 0.06 0.08 0.05 16.13 0.06 0.03 0.09 8.72 26.60 1 10.83 0.00 0.00 0.07 7.05 17.58 2 10.77 0.00 0.00 0.07 5.56 18.35 3 8.97 0.00 0.00 0.06 5.87 16.85 4 7.18 0.00 0.00 0.04 4.97 15.78 5 5.55 0.00 0.00 0.05 4.78 14.76 6 5.37 0.00 0.00 0.05 4.76 15.02 FSU means fluorescence units
134 r Ëe Ë Ëq ~Ë p Ëq Table 6. Colony forming unit of 48 hours incubated bacteria before and shortly after electrochemical disinfection treatment (Control, 10Gppm, 30Gppm). Indicator microbes Test water Control Expt. 1: 10Gppm Expt. 2: 30Gppm Treated water Test water Treated water Test water Treated water E. coli 0 0 2 0 0.3 0 Aerobes 2,240 2,660 1,887 0 2,613 0 Coliform 0 0 0 0 0 0 q } l s l t ˆ v kk (Table 6). e } 6p k l l e s l p e } l ke p m, e s e v l t v kk. s p e l q q p ˆ v kk, p p n 2,240 CFU/mL p ˆ. s } l q q p ll, p p 2,660 CFU/mL ˆ e m p ll. 4. m r m (electrochemical disinfection system) e e p r p l rp km (10 ppm, 30 ppm)l } rp ql ˆp k, e Š Šp rp mpp ltl. p p p l sq t (Drake et al. [2002])p, qqrp psp rp plk } }ˆ p n (Tamburri et al. [2002])l. k p p p, l sq p mr r r p p r rp pnl, } q q(regrowth) p llk p p. sl p n vp m t pn p q (E. coli)p rp n lp, l qn (Ultraviolet)p rp n p (Watts and Linden[2007]). l rp m sp 1800 n l mp l kr p lr n rp rp p. qn p r rp } p p l n p edš(a hydrocyclone, selfcleaning screen and a UV treatment system)p p ˆ v kp q qp ˆ p l (Waite et al.[2003]). 1 r } p ˆ m q ~ (50 µm) k vv k l rrp qn } l ps edšp. p q q p rp } lp, p 18e p v. p rl p edšp k p } p D-2 regulationp seˆv p Ž. l l p km s (10, 30 ppm)l } v k, } 5p kp kl p rs l p p, q p q p q qp v kk. Waite et al.[2003]p e l pn q USEPA tp 35 cells/100 ml j p 2000 cells/mlp s pl, k l r n Colilert 18 system p p p p m p p l. l ll p l s p v r l re D-2 regulationl l k r lr kp. Waite et al.(2003)p l m p, } q p Ž }ˆp tn rp. e Šp nl mn k, l Ž (Cangelosi et al. [2007]) n, m p n(perrins et al.[2006]), ATP p (Waite et al.[2003]) p p. p p } l e Šp k pp ˆ p, s s s p n l p. p tl v } m -a s phaeopigment v e l pp m l, m p } p m p. ATP pn p Ž p r r t pp 10-50 µm o l e Š nl o p n o p Š p sq pl p dv k. p l l l e Šp r l l mk p sp Ž o q (autofluorescence) (Pouneva [1997]) r (Turner-Designs 10-AU) Ž m, ˆ mk p nvpp p sp Ž p pn m. r m } v e Š p nvpp ll, pl q q p p 5p p k q qp ll. rp } p p nl l l p e Šp 100% r p ll (Waite et al. [2003]), 25 µmm 50 µmp l p pn nl s (microalgae)p r ˆo mp, 2 } n p rk m (Cangelosi et al.[2007]). qn p } n Sutherland et al. [2001]p n, } 16p p k l e Šp q qp l, Waite et al.[2003]p qn } p s r l rpv kpp m. p e p n r l re e s p k ql ˆp
k Š vp r m 135 p. e r se k e s p s (standing crop)p 10 6 ~10 7 cells/lp op, p p k lkp q l p r e Š s o(10~619 10 4 cells/l) tp p t q p l ( kl o[2004]). qn p pn l p t p kp 10 cells/ml t(d-2 regulation)p qn p s p v (> 60 mw s cm 2 )eˆ } p }kk n p. lr q qp lr r kl p l ˆp. Šp r m } v p pp km e Š, 10 ppm 30 ppm s l 83%m 76% ˆ. p (open-ocean and mid-ocean exchange method)p m p l. lkll l s p r pp 67~86%mp (Locke et al.[1993]), mnrp 87% ˆ n pp (Zhang and Dickman [1999]), d tp pp ˆ (Levings et al.[2004]). e l 17%m 24%p spp e Š v t k l vr }v p, p k p Artemia(brine shrimp)l p pl. p Artemia } eˆ v 24e l 100% m, p 5p kp k l k sp ll. v Šp o n sp p Ž (bivalve) m s (gastropod)p o p l ppp l (Ruiz et al.[2000]). p l e e s o m v(biofouling community)p q k r p p o r n 100% km } mp n n p p p r ppp p. t p l o Šp n Acartia omorii l p l (Seuront, [2005]), p A. omorii n lp o ˆ l m p p n sp p lt p. p s } v 100% p ˆ n p o p p Ž l. e l t rp s e Šp p 35.3%p rp. e r s p p lp, r q v kp ˆl e p e p ˆ p p p p p v p p t n m, l d p p l r. r q eˆ e s (10 ppm 30 ppm)l n ~p ˆ s m s p ˆ ss l. p k l km pnl r l ro p m Š l l p Ž l. qn p ql vp Šp } e r l l ˆ e t p p p ~ s p nl lpp ˆ (Sutherland et al.[2001]; Waite et al.[2003]). e s l t p ~ s (10 2 ~10 3 ~/L)p p r p vl kv lp, m (50 µm) p pn r r p pp ˆ p (Waite et al.[2003]; Tang et al.[2006]; Cangelosi et al.[2007]). q v l p } t r l r p rp edšp pp edš(oe, Peraclean)(Germany[2003]) do p q ~ l q m } (AOT: Advanced Oxidation Technology) edš(sweden[2003]), p p p p pn edš(special pipe} + v} )p p. pp edšp } l 100% ˆ l m p m. pl do l n } p Š(>50 µm)p n 99.7%, e Š(10-50 µm)p 99.5% km q p 99.9%p pp ˆ, q qp p p p ˆ. p} r } p po sl n (, l, l}, qn )p 100% ˆ v p (Gregg and Hallegraeff [2007]). l ep edšp, e p rp r q l r q l ro m v p pn l } t(d-2 regulation)p se prp p. r l vrrp pv kp l p o s p q(cyst)m Šp (diapause eggs)p p. n (copepods), v (cladocerans) o (rotifers) p Š p sl r s (,, p m m )l p l p (Bailey et al.[2004]). p p sp p p tn qp, s p sl r e v p t. p Š p k e Šl, o m (toxic dinoflagellates)p qp n p r pql l p rp (Hallegraeff [1998]). m k tp p p e Šp Šp q p q p s p. p p r l kk p qp n ~ ks p v ˆ ll m o s p p ˆ, s p p l l p p sl m p p. p po Gray et al.[2005]p r l p } (invertebrate eggs)p eˆ o km p pn e p m, 1000 mg/l } n ˆ pp 11% pl, p pp r v m. p
136 r Ëe Ë Ëq ~Ë p Ëq l l p vp qs p rp k p p p eˆ rp r p l v. 1,000 ppmp p e r k k k l r v ˆ l km p p q. e l Šp rp eˆ pp l m p p 10 ppm 30 ppm p r p pm p pop, l m p r tp o } p o p l l q l p v tl p (Tamburri et al.[2002]; Tang et al.[2006]). vp } l pr lkl l o p p } p l pl tn p (Tamburri et al.[2002]). km p q~ kr ˆp, qn p p l qlrp m p o vp p (Jeong et al. [2002]; o [2005]). k l p km p t v v sl e p p m p p p q. rl k m p t (neutralization)eˆ n pp, pl n. km 30 ppmp eˆ t rp sodium thiosulfate(na 2S 2O 3 5H 2O) t eˆ m s ql t l l e p m (Korea [2005]). n l p 9.98 cmm 13.4 gp plp, 24e k eˆ p 0%m (Korea [2005]). r m p rn mp n, r km p t eˆ p k l p o p tp p p l r. n sp p lr o } p r l t v o nl l, s, r Š, s q, p n p. po r l k p r p ˆ (Calton and Geller[1993]), l (Williams et al.[1988]) k, l m v(ship hull biofouling) n s pp ~ k r p p (Gollasch[2002]). r ~ l s l e p rs p rp, p s p ˆ rp rl p lk p. p k q p rp pe p rp (o [2006]), r l l k oo l tn pr lv p. nk, r kl re s p s e r m }, km e Š(10-50 µm)p n s (10 ppm, 30 ppm) l 100% l. Š(>50 µm)p n } v p p 83%m 76%l ~p, } l eˆ 24e l m. } p 5p kp t k p llp, qqrp o p v Šp m s m s m p o p 100% l. } t e p p k l qqr o p r pl r kl e } v tp s p ˆ. p Š l te e oo e p mte e e l o. p kl op o l (PP07402) l n o d e (PM42700) lp vo p q ld. y [1] or, ˆo,, r, ~, 2006, l p d l sq k o, Ocean and Polar Res., Vol. 28, 57-65. [2] o, t, p,,, 2005, d } I ( r p rn l ), k v, r8 r4, 174-178. [3] kl o, 2004, t p pn k l o ˆ l, kl o, BSPE 88600-1698-3. pp. 53-88. [4] APHA(American Public Health Association), 1985, Standard methods for the examination of water and wastewater, Port City Press, 742-748. [5] Bailey, S.A., Duggan, I.C., Van Overdijk, C.D.A., Johengen, T.H., Reid, D.F. and Macisaac, H.J., 2004. Salinity tolerance of diapausing eggs of freshwater zooplankton, Freshwater Biol., Vol. 49, 286-295. [6] Cangelosi, A.A., Mays, N.L., Balcer, M.D., Reavie, E.D., Reid, D.M., Sturtevant, R. and Gao, X., 2007. The response of zooplankton and phytoplankton from the North American Great Lakes to filtration, Harmful Algae, Vol. 6, 547-566. [7] Carlton, J.T. and Geller, J.B., 1993, Ecological Roulette: The Global Transport of Nonindigenous Marine Organisms, Science, Vol. 261, 78-82. [8] Chihara, M. and Murano, M., 1997, An Illustrated Guide to Marine Plankton in Japan, Tokai University Press. [9] Cupp, E.E., 1977, Marine plankton Diatoms of the west coast of north America, Otto Koeltz Science Publishers, Germany. [10] Dickman, M. and Zhang, F., 1999, Mid-ocean exchange of container vessel ballast water. 2: Effects of vessel type in the transport of diatoms and dinoflagellates from Manzanillo, Mexico, to Hong Kong, China, Mar. Ecol. Prog. Ser., Vol. 176, 253-262. [11] Dodge, J.D., 1982, Marine Dinoflagellates of the Brithish Isles, Her Majesty s stationery office, London. [12] Drake, L.A., Ruiz, G.M., Galil, B.S., Mullady, T.L., Friedmann,
k Š vp r m 137 D.O. and Dobbs, F.C., 2002, Microbial ecology of ballast water during a transoceanic voyage and the effects of open-ocean exchange, Mar. Ecol. Prog. Ser., Vol. 233, 13-20. [13] Germany, 2003, Marine Environmental Protection Committe (MEPC), Harmful Aquatic Organisms in ballast water, Documentation of Ballast Water Management Systems in Germany, submitted by Germany, MEPC 53/2/11. [14] Gollasch, S., 2002, The importance of ship hull fouling as a vector of species introductions into the North Sea, Biofouling, Vol. 18, 105-121. [15] Gray, D.K., Duggan, I.C. and MacIsaac, H.J., 2005, Can sodium hypochlorite reduce the risk of species introductions from diapausing invertebrate eggs in non-ballasted ships?, Mar. Pollut. Bull., Vol. 52, 689-695. [16] Gregg, M.D. and Hallegraeff, G.M., 2007, Efficacy of three commercially available ballast water biocides against vegetative microalgae, dinoflagellate cysts and bacteria, Harmful Algae, Vol. 6, 567-584. [17] Hallegraeff, G.M., 1998, Transport of toxic dinoflagellates via ship s ballast water: bioeconomic risk assessment and efficacy of possible ballast water management strategies, Mar. Ecol. Prog. Ser., Vol. 168, 297-309. [18] Hays, K.R. and Sliwa, C., 2003, Identifying potential marine pestsa deductive approach applied to Australia, Mar. Pollut. Bull., Vol. 46, 91-98. [19] Jeong, H.J., Kim, H.R., Kim, K.I., Kim, K.Y., Park, K.H., Kim, S.T., Yoo, Y.D., Song, J.Y., Kim, J.S., Seong, K.A., Yih, W.H., Pae, S.J., Lee, C.H., Huh, M.D. and Lee. S.H., 2002, NaOCl produced by electrolysis of natural seawater as a potential method to control marine red-tide dinoflagellates, Phycologia, Vol. 41, No. 6, 643-656. [20] Korea, 2005, Marine Environmental Protection Committe (MEPC), Harmful Aquatic Organisms in ballast water, Application for basic approval of active substances used by Electro-Clean (Electrolytic disinfection) ballast water management system, submitted by the Republic of Korea, MEPC 53/2/11. [21] Levings, C.D., Cordell, J.R., Ong, S. and Piercey, G.E., 2004, The origin and identity of invertebrate organisms being transported to Canada s Pacific coast by ballast water, Can. J. Fish. Aquat. Sci., Vol. 61, 1-11. [22] Lewis, P.N., Hewitt, C.L., Riddle, M. and McMinn, A., 2003, Marine introductions in the Southern Ocean: an unrecognized hazard to biodiversity, Mar. Pollut. Bull., Vol. 46, 213-223. [23] Locke, A., Reid, D.M., Van Leeuwen, H.C., Sprules, W.G. and Carlton, J.T., 1993, Ballast water exchange as a means of controlling dispersal of freshwater organisms by ships, Can. J. Fish. Aquat. Sci., Vol. 50, 2086-2093. [24] Orsi, J.J. and Ohtsuka, S., 1999, Introduction of the Asian copepods Acartiella sinensis, Tortanus dextrilobatus (Copepoda: Calanoida), and Limnoithona tetraspina (Copepoda: Cyclopoida) to the San Francisco Estuary, California, USA, Plankton Biol. Ecol., Vol. 46, No. 2, 128-131. [25] Perrins, J.C., Cordell, J.R., Ferm, N.C., Grocock, J.L. and Herwig, R.P., 2006, Mesocosm experiments for evaluating the biological efficacy of ozone treatment of marine ballast water, Mar. Pollut. Bull., Vol. 52, 1756-1767. [26] Pouneva, I., 1997, Evaluation of algal culture viability and physiological state by fluorescent microscopic methods, Bulg. J. Plant Physiol., Vol. 23, 67-76. [27] Porter, K.G. and Feig, Y.S., 1980, The use of DAPI for identifying and counting aquatic microflora, Limnol. Oceanogr., Vol. 25, 943-948. [28] Ruiz, G.M., Rawlings, T.K., Dobbs, F.C., Drake, L.A., Mullady, T., Huq, A. and Colwell, R.R., 2000, Global spread of microorganisms by ships, Nature, Vol. 408, 49-50. [29] Seuront, L., 2005. First record of the calanoid copepod Acartia omorii (Copepoda: Calanoida:Acartiidae) in the southern bight of the North Sea, J. Plankton Res., Vol. 27, 1301-1306. [30] Shim J.-H., 1994, Korean Animal and Plant Picture Book, Volume 34, Plants (Sea Phytoplankton), Ministry of Education, Korea. [31] Sutherland, T.F., Levings, C.D., Elliott, C.C. and Hesse, W.W., 2001, Effect of a ballast water treatment system on survivorship of natural populations of marine plankton, Mar. Ecol. Prog. Ser., Vol. 210, 139-148. [32] Sweden, 2003, Marine Environmental Protection Committe (MEPC), Harmful Aquatic Organisms in ballast water, Information to be considered by the review group, submitted by Sweden, MEPC 53/2/6. [33] Tamburri, M.N., Wasson, K. and Matsuda, M., 2002, Ballast water deoxygenation can prevent aquatic introductions while reducing ship corrosion, Biological Conservation, Vol. 103, 331-341. [34] Tang, Z., Butkus, M.A. and Xie, Y.F., 2006, Crumb rubber filtration: A potential technology for ballast water treatment, Mar. Environ. Res., Vol. 61, 410-423. [35] Tomas, C. R. (1997). Identifying marine phytoplankton. 858pp. [36] Watts, M.J. and Linden, K.G., 2007. Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water, Water Res., Vol. 41, 2871-2878. [37] Waite, T.D., Kazumi, J., Lane, P.V.Z., Farmer, L.L., Smith, S.G., Smith, S.L., Hitchcock, G. and Capo, T.R., 2003, Removal of natural populations of marine plankton by a large-scale ballast water treatment system, Mar. Ecol. Prog. Ser., Vol. 258, 51-63. [38] Williams, R.J., Griffiths, F.B., Van der Wal, E.J. and Kelly, J., 1988, Cargo vessel ballast water as a vector for the transport of non-indigenous marine species, Estuar. Coast. Shelf Sci., Vol. 26, 409-420. [39] Yamaji, I., 1984, Illustrations of the marine plankton of Japan. Hoikusha Publishing Co. Ltd., Japan. [40] Zhang, F. and Dickman, M., 1999, Mid-ocean exchange of container vessel ballast water. 1: Seasonal factors affecting the transport of harmful diatoms and dinoflagellates, Mar. Ecol. Prog. Ser., Vol. 176, 243-251. 2006 7o 1p o r 2007 8o 20p r }ˆ