Runoff Characteristics of Non-Point Source Pollutants in Storm Event -Case Study on the Upstream and Downstream of Kokseong River, Korea- Heakun Yang* SS BOD COD T- P BOD COD T-N 3 315 SS T-P 4 7 29 EMC Abstract The study was investigated to runoff characteristics of non-point pollutants according to rainfall in Kokseong river watershed. The result of which is as follows First of all, major reason which affect the formation of water quality of Kokseong River is judged to be caused by non-point pollution source which flows out from farmland and residential area. Flow of rainfall effluent in the downstream in which direct flow components of urban district and combined sewer overflows of farmland was intervened faster than that in the upstream reacted more promptly. Generation of pollutants by non-point source shows increasing trend in general in accordance with the increase in the intensity of rainfall but it was affected by SS, BOD, COD and T-P in the upstream part whereas BOD, COD and T-N were significantly affected by beginning period of rainfall in the downstream. EMC in the downstream increased approximately 3~315 times as compared to upstream, particularly the discharge of SS and T-P were extremely increased. While surface flow out of rainfall effluent in the upstream was only 4.7%, the surface flow in the downstream took up as much as 29%, which was major reason for the increase of EMC. From the above contents, we can see that the change in water quality according to the increase and decrease of effluent at the time of rainfall showed very complex pattern depending on the type of land use, and it is judged that the most important thing for the administration of non-point pollution source is to come up with the solution for the reduction of effluent at the beginning. rainfall-runoff, non-point pollution, EMC(Event Mean Concentration), landuse, Kokseong River Lecturer, Dept. of Geography, Konkuk University), hydroyang@hotmail.com 418
2002 1988 Hall 1984 Pegram et al., 1999 2003 2004 Myers et al 1985 1990 1998 Park 1992 1993 Kunze and Stednick 2006 1999 COD 15 SS 28 Ojo 1990 Gregory 1987 1991 2001 Hong et al 2001 1991 1998 1999 2001 2002 2005 2003 2004 2005 EMS; Event Mean Concentration E.L. 735m E.L. 655 6 E.L. 697 0m 230 560m Fig. 1 NNE-SSW SSW-NNE 250m 1998 419
2005 NW SE 1 2 SSW NNE Fig. 1 Fig 2 Deformed biotite granite Precambrian Gneiss Jurassic Period Biotite granite 1984 Granite gneiss 420
2004 89 1 2000 10 913 Fig. 3 Table 1 Fig. 3 1 25 000 1 1 50 000 2 71 86 22 117km 2 20 84 4 4 1 92 0 71 0 28 3 Fig 4 1 1 50 000 2 2000 2 49 64 8 62 13 6 St K1 Fig 1 81 05 18 06 0 09 2000 2 Pinus densiflora Pinus rigida Quercus variabilis Quercus serrata Pinus densiflora Quercus serrata St. K1 St. K2 Fig. 1 1999 4 9 4 10 30 1mm 4 92 8mm 4 30 1mm 4 1 3 St. K1 5 St. K1 K2 1 421
ph potential hydrogen EC electric conductivity DO; dissolved oxygen SS suspended solid T-N; total nitrogen T-P; total phosphorus NO 3 -N nitrate nitrogen PO 4 -P orthophosphates BOD; biochemical oxygen demand COD chemical oxygen demand St. K1 (upstream of Kokseong River) St. K2 (downstream of Kokseong River) Area(km 2 ) Rate(%) Area(km 2 ) Rate(%) Residential Area - - 1.355 4.40 Paddy Field - - 3.831 12.45 Field - - 2.581 8.39 Reservoir - - 0.085 0.28 Deciduous Forest 0.004 0.09 2.654 8.62 Forest Mixed Forest 4.285 0.808 100 18.86 22.117 4.186 71.86 13.60 Coniferous Forest 0.347 81.05 15.277 49.64 Road - - 0.590 1.92 River - - 0.218 0.71 Total 4.285 100 30.776 100 422
NP 275 1 ph, EC, DO CKC, CT 66 ph meter TOA HM-12P EC meter(toa CM-14PW DO meter(toa DO-14P ice box SS T-N T-P NO 3 -N PO 4 -P COD BOD Standard Methods (APHA-AWWA-WEF 1998 Fig. 5 a St K1 ph 1999 4 9 13 10 01 28 4mm 4 10 09 13 1 75mm 1999 4 9 13 21 2mm 21 23 6 9mm/hr 9 17 22 10 06 10 16 St K1 1974 423
ph 4 10 20 CO 2 CO 2 Keben 2001 Tokuchi et al 1993 1985 St. K1 DO 10mg/L Fig 5 b St. K2 ph DO overflow lag time St. K2 St. K1 7 ph DO Fig 6 a b EC SS EC 424
1988 2005 1997 K2 EC 2000 EC Fig 7 Fig 8 St. K1 K2 SS SS 1994 St. K1 St. K2 SS SS lag time 2005 SS St. K1 0 4 0mg L SS St. K2 5 45 247 09mg L 45 BOD COD 1999 Fig 7 BOD COD St. K1 BOD ~ St. K2 ~ COD BOD St K1 BOD COD St K2 1998 2004 NH + 4 N Nitrification NO - 2 NO - 3 N T N Chow et al., 1981; Quilbé et al., 2006 NO - 3 N 1988 Hobara et al 2001 NO - 3 N NO - 3 N 2005 1997 1988 Hobara et al 2001 St. K1 T N NO - 3 0 24 2 68mg L 0 23 2 54mg L T N NO - 3 N Fig 8 St. K1 1988 2005 T N 2 68mg L 2 54mg L St K2 St K2 T N NO 3 N flushing Fig 9 T P PO 4 P 425
426
T P 2004 K2 K1 T P PO 4 P K1 K2 1998 6 1999 T P PO 4 P 2003 2004 Myers et al 1985 Fig 10 Q t ; Q t Q t ; Q t L t ; L t L t ; L t Table 2 0 76 0 98 0 78 0 98 2005 1 1 St K1 SS BOD COD T P 1 St K2 BOD COD T N 1 St K1 T N St K2 SS T P 2 427
1 2004 COD T N 2005 Ichiki and Yamada 1999 Pegram et al 1999 1990 1988 Type 1 Type 2 EMS Fig 11 SS St K1 K2 Type 1 T N T P St K1 Type 1 St K2 428
St. SS BOD COD T-N T-P K1 K2 y=1.2623x-0.0152 y=1.1032x-0.0369 y=1.0521x-0.0368 y=0.8297x-0.0427 y=1.1288x-0.0938 R 2 =0.76 R 2 =0.96 R 2 =0.98 R 2 =0.80 R 2 =0.79 y=0.956x+0.0345 y=1.046x-0.0235 y=1.0523x-0.0136 y=1.0288x-0.0306 y=0.9561x-0.0199 R 2 =0.78 R 2 =0.96 R 2 =0.97 R 2 =0.98 R 2 =0.89 T-P St K2 SS T N T P 2 St K2 2003 EPA 1983 Novotny et al 1993 EMS EMC ; z Q C ; Q 429
St. SS BOD COD NO3-N T-P T-N PO4-P (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) K1 1.67 0.55 1.50 0.45 0.48 0.03 0.35 K2 63.51 2.88 4.76 1.33 1.67 0.18 110.08 Q i m 3 sec m 3 hr Ci mg L EMC mg L 2003 4 10 pollutograph EMS T N T P 0 8 St K1 K2 EMC Table 3 K1 SS BOD COD NO N T N PO 4 P T P EMC 1 67mg L 0 55mg L 1 50mg L 0 45mg L 0 48mg L 0 03mg L 0 35mg L K2 SS BOD COD NO 3 N T N PO 4 P T P EMC 63 51mg L 2 88mg L 4 76mg L 1 33mg L 1 67mg L 0 18mg L 110 08mg L COD NO 3 EMC 3 BOD 5 2 PO 4 P 6 SS 38 T P 315 SS T P 1997 Mg, Na, Ca, Cl HCO 3 2 3 18 O EC EC Qt=Qg+gd Ct Qt=Cg Qg+Cd Qd Q C EC t d g Qg) Qg { Ct-Cd Cg-Cd }Qt Qt Ct Cg Cd St K1 EC EC Cg Cd Fig 12 Fig 13 St K1 95 3 St K2 71 29 3 315 EMC 29 430
2003 EMS 1999 04 09 10 2 71 86 20 84 4 4 1 92 0 71 0 28 SS BOD COD T P BOD COD T N EMC 3 315 SS T P 4 7 431
29 EMC 1 http://egis.me.go.kr/egis/ 2 http://www.ngic.go.kr/index.jsp 3 2000 2003 4 (http://www.kma.go.kr/kor/weather/climate/climate_06.jsp?a=3&pop=nor-pre.html 5 1997 1995 p 34 36 6 T P PO 4 8 10 2003 EMS 25 6 760 770 2002 24 11 2019 2027 2005 7 1 51 56 2005 24 3 270 279 1994 SRC Method 1 17 31 1997 1995 2004 11 4 21 33 2004 39 4 544 561 2001 17 3 299 311 2003 38 1 16 31 2004 20 6 657 663 1993 82 3 283 291 2005 40 3 335 352 1999 7 1 45 53 1991 1998 1 1 1 84 94 1999 22 5 235 240 1997 86 1 56 68 2005 432
31 1 1 6 1998 32 1 19 34 1999 15 3 315 323 1984 2001 43 3 56 65 2000 2 8 11 1990 1997 10 2 133 143 1985 1985 2 61 71 1974 1997 3 10 2 154 160 1988 399 10 131 140 APHA-AWWA-WEF, 1998, Standard Methods for the Examination of Water and Wastewater, 20th ed., Amer. Pub. Health Asso., Chow, V. T., R. Eliassen and R. K. Linsley, 1981, Models for water quality management, McGraw-Hill, New York. Gregory, K. J. and D. E. Walling, 1987, Human activity and environmental process, John Wiely & Sons, New York. Hall, M, J., 1984, Urban hydrology, Elsevier Applied Science Publisher, London. Hobara, H., N. Tokuchi, N. Ohte, K. Koba, M. Katsuyama, S. J. Kim and A. Nakanishi, 2001, Mechanism of nitrate loss from a forested catchment following a small-scale natural disturbance, Canadian Journal of Forest Research, 31, 1326-1335. Hong, S. G. and S. K. Kwun, 2001, Identification of Critical Areas on Water Quality in a Rural Watershed, The Korean Society of Agricultural Engineers, 43(5), 145-152. Ichiki, A. and K. Yamada, 1999, Study on characteristics of pollutant runoff into lake Biwa Japan, Water Science and Technology, 39(12), 17-25. Kebew, A. E., 2001, Applied chemical hydrogeology, Prentice-Hall, New York. Kunze M. D. and J. D. Stednick, 2006, Streamflow and suspended sediment yield following the 2000 Bobcat fire, Colorado, Hydrological Processes, 20, 1661-1681. Myers, C. F., J. Meek, J. Tuller and A. Weinberg, 1985, Nonpoint sources of water pollution, Journal of Soil Water Conser., 40(1), 14-18. Muraoka, K. and T. Hirata, 1988, Streamwater chemistry during rainfall events in a forested basin, Journal of Hydrology, 102, 235-253. Ojo, O., 1990, The Example of Lagos, Nigeria in hydrological process and water management in urban areas, in Herbert, M. and John, P., (ed.), Recent Trends in Precipiation and the Water Balance of Tropical Cities, IAHS, 33-41. Park, J. K., 1992, Suspended sediment transport in a mountainous catchment, Science Reports of the Geoscience, Univ. Tsukuba, Section A-12,137-197. Pegram, G. C., G, Quibell and M. Hinsch, 1999, The nonpoint source impacts of peri-urban settlements in South Africa: implications for their management, Water Science and Technology, 39(12), 283-290. Quilbe, R., A. N. Rousseau, M. Duchemin, A Poulin, G. Gangbazo and J. P. Villeneuve, 2006, Selecting a calculation method to estimate sediment and nutrient loada in streams: Application to the Beaurivage River(Quebec, Canada), Journal of Hydrology, 305, 1-16. 433
Tokuchi, N., H. Tanaka and G. Iwatsubo, 1993, Vertical changes in soil solution chemistry in soil profiles under coniferous forest, Geoderma, 59, 1-17. U. S. EPA., 1983, Results of the nationwide urban runoff program, Vol.1 Final Report, Water Division, U. S. EPA. 143 701 1 hydroyang@hotmail.com 02 450 3434 Correspondence Heakun Yang Dept.of Geography Science College, Konkuk University, 1 Hwayang-dong, Gwangjin-Gu, Seoul 143-701 Korea(email hydroyang@hotmail.com, phone +82-2-450-3434) 434