Reexamination on the recommended price of National Fitness Award using contingent valuation method Jae-yoon Lee, Hyungil Kwon*, & Ju-hae Baeck Chung-A

Similar documents
<303120C2F7C0E7C7F5C2F7BFEBBCAEC0E5B0E6B7CE2E687770>

<C3D6C1BE2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D32C8A3292E687770>

, ( ) : 1) ** ** (CVM, Contingent Valuation Method) , I... (, 2000;, 2006). * ( ), **, s

정책연구시리즈 비시장재가치측정에관한연구 - 이중경계양분선택형 CVM 조사의제시금액분석을중심으로 - 김강수

에너지경제연구 Korean Energy Economic Review Volume 9, Number 2, September 2010 : pp. 19~41 석유제품브랜드의자산가치측정 : 휘발유를 중심으로 19


<C6EDC1FD2DBAB8B0EDBCAD BCF6C1A4292D DBABBB9AE2E687770>


Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

012임수진

....-1


DBPIA-NURIMEDIA




<3136C1FD31C8A35FC3D6BCBAC8A3BFDC5F706466BAAFC8AFBFE4C3BB2E687770>

에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 35~55 학술 전력시장가격에대한역사적요인분해 * 35

The characteristic analysis of winners and losers in curling: Focused on shot type, shot accuracy, blank end and average score SungGeon Park 1 & Soowo

264 축되어 있으나, 과거의 경우 결측치가 있거나 폐기물 발생 량 집계방법이 용적기준에서 중량기준으로 변경되어 자료 를 활용하는데 제한이 있었다. 또한 1995년부터 쓰레기 종 량제가 도입되어 생활폐기물 발생량이 이를 기점으로 크 게 줄어들었다. 그러므로 1996년부


서론



歯4차학술대회원고(황수경이상호).PDF

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

< FB4EBB1B8BDC320BAB8B0C7BAB9C1F6C5EBB0E8BFACBAB820B9DFB0A320BFACB1B85FBEF6B1E2BAB92E687770>

hwp

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

<C7D1B1B9B1B3C0B0B0B3B9DFBFF85FC7D1B1B9B1B3C0B05F3430B1C733C8A35FC5EBC7D5BABB28C3D6C1BE292DC7A5C1F6C6F7C7D42E687770>

<31342EBCBAC7FDBFB52E687770>

에너지경제연구 제13권 제2호

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -


저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: * A Study on Teache

2



Lumbar spine

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: * Strenghening the Cap

현 안 분 석 2 Catsouphes & Smyer, 2006). 우리나라도 숙련된 인 력부족에 대한 우려가 심화되고 있으며, 일자리의 미 스매치 수준이 해외 주요국보다 심각하다는 점도 지 지부진한 유연근무제의 확산을 위한 진정성 있는 노 력이 필요하다는 점을 보여준다

03이경미(237~248)ok

<C3D6C1BEBFCFBCBA2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D31C8A3292E687770>

<BCBCC1BEB4EB BFE4B6F72E706466>

DBPIA-NURIMEDIA

한국성인에서초기황반변성질환과 연관된위험요인연구

#Ȳ¿ë¼®

,,,.,,,, (, 2013).,.,, (,, 2011). (, 2007;, 2008), (, 2005;,, 2007).,, (,, 2010;, 2010), (2012),,,.. (, 2011:,, 2012). (2007) 26%., (,,, 2011;, 2006;

레이아웃 1

<3036C7E2BCF6C3D6C1BEBABB2E687770>

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

The effect of the temporal and spatial distance and the types of advertising messages on sport consumers attitude toward an advertising and purchase i

<3036C0CCBCB1BFEC2E687770>

DBPIA-NURIMEDIA

<303720C7CFC1A4BCF86F6B2E687770>

DBPIA-NURIMEDIA

<31372DB9CCB7A1C1F6C7E22E687770>

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

Job Satisfaction and Service Quality between Non-regular and Regular workers in Commercial Sports Facilities: Based on Qualitative Method Bokyeon Kim

A Problem for Government STAGE 6: Policy Termination STAGE 1: Agenda Setting STAGE 5: Policy Change STAGE 2: Policy Formulation STAGE 4: Policy Evalua

Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI: 3 * Effects of 9th

50-5대지05장후은.indd

Àå¾Ö¿Í°í¿ë ³»Áö

DBPIA-NURIMEDIA

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Study on the Pe

세종대 요람


WHO 의새로운국제장애분류 (ICF) 에대한이해와기능적장애개념의필요성 ( 황수경 ) ꌙ 127 노동정책연구 제 4 권제 2 호 pp.127~148 c 한국노동연구원 WHO 의새로운국제장애분류 (ICF) 에대한이해와기능적장애개념의필요성황수경 *, (disabi

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

Journal of Educational Innovation Research 2016, Vol. 26, No. 2, pp DOI: * The Mediating Eff

DBPIA-NURIMEDIA

분석결과 Special Edition 녹색건물의 가치산정 및 탄소배출 평가 이슈 서 민간분야의 적극적인 참여 방안의 마련이 필요하다. 또한 우리나라는 녹색건축의 경제성에 대한 검증에 대 한 연구가 미흡한 실정이다. 반면, 미국, 영국, 호주 등은 민간 주도로 녹색건축물

A study on the sports educational zeal through the qualitative network analysis: Focusing on mothers of student athletes Byung-Goo Lee & Han-Joo Lee*

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

Kinematic analysis of success strategy of YANG Hak Seon technique Joo-Ho Song 1, Jong-Hoon Park 2, & Jin-Sun Kim 3 * 1 Korea Institute of Sport Scienc

1..


untitled

untitled

<31342DC0CCBFEBBDC42E687770>

< F D20C0C7B7E1B9E8BBF3B0F8C1A6C1B6C7D520C3DFC1F820B0FCB7C320BFACB1B85FBCF6C1A42E687770>

03-ÀÌÁ¦Çö

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

歯


,......

PJTROHMPCJPS.hwp

???? 1

<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>

05_최운선_53~67,68.hwp

歯14.양돈규.hwp

,......

사회동향-내지간지수정

<BFCFBCBA30362DC0B1BFECC3B62E687770>

유럽연합의 양성평등지수와 세계경제포럼에서 측정하는 양성격차지수 등을 통해 스웨덴 사회의 양성평등 수준이 높을 것이라는 점은 예상할 수 있으나 그동안 스웨덴 노동시장의 양 성평등을 구체적으로 보여주는 성별 임금, 근로형태, 고용률, 실업률 등의 통계는 자세히 소 개되지

에너지경제연구 Korean Energy Economic Review Volume 17, Number 1, March 2018 : pp. 37~65 가정부문전기수요의결정요인분석 : 동태적패널 FD GMM 기법을중심으로 37

44-4대지.07이영희532~

서론 34 2

Transcription:

Reexamination on the recommended price of National Fitness Award using contingent valuation method Jae-yoon Lee, Hyungil Kwon*, & Ju-hae Baeck Chung-Ang University [Purpose] [Methods] [Results] [Conclusions] Key words:

Table 1. Socio-demographic descriptive statistics Gender Membership Age Income (million won) PA starting period PA in a week N Rate (%) Male 172 35.2 Female 317 64.8 Member 242 49.5 Non-member 247 50.5 20s 60 12.3 30s 56 11.5 40s 45 9.2 50s 101 20.7 60s 142 29.0 over 70s 85 17.5 less than 1 45 9.2 1-2 89 17.6 2-3 89 17.6 3-4 71 14.5 4-5 58 11.9 5-6 48 9.8 6-7 33 6.7 over 7 62 12.7 10s 62 12.7 20s 87 17.8 30s 67 13.7 40s 84 17.2 50s 68 13.9 60s 96 19.6 over 70s 25 5.1 once 45 9.2 2 times 95 19.4 3 times 167 34.2 4 times 37 7.6 5 times 60 12.3 6 times 14 2.9 7 times 8 1.6 none 63 12.9

Table 2. Descriptive statistics N(%) members non-members Gender Male 45 (18.6) 127 (51.4) Female 197 (81.4) 120 (48.6) 20s 0 (0.0) 60 (24.3) 30s 6 (2.5) 50 (20.2) Age 40s 15 (6.2) 30 (12.1) 50s 43 (17.8) 58 (23.5) 60s 113 (46.7) 29 (11.7) over 70s 65 (26.9) 20 (8.1) Marital Married 22 (9.1) 106 (42.9) status Single 220 (90.9) 141 (57.1) -1m 30 (12.4) 15 (6.1) 1m-2m 50 (20.7) 36 (14.6) 2m-3m 53 (21.9) 33 (13.4) Income 3m-4m 31 (12.8) 40 (16.2) (won) 4m-5m 28 (11.6) 30 (12.1) 5m-6m 21 (8.7) 27 (10.9) 6m-7m 8 (3.3) 25 (10.1) 7m- 21 (8.7) 41 (16.6) PA starting period PA in a week Necessity 10s 2 (0.8) 60 (24.3) 20s 6 (2.5) 81 (32.8) 30s 23 (9.5) 44 (17.8) 40s 50 (20.7) 34 (13.8) 50s 52 (21.5) 16 (6.5) 60s 86 (35.5) 10 (4.0) 70s- 23 (9.5) 2 (0.8) None 0 (0.0) 63 (25.5) once 0 (0.0) 45 (18.2) 2 times 48 (19.8) 47 (19.0) 3 times 128 (52.9) 39 (15.8) 4 times 23 (9.5) 14 (5.7) 5 times 31 (12.8) 29 (11.7) 6 times 7 (2.9) 7 (2.8) 7 times 5 (2.1) 3 (1.2) No 1 (0.4) 25 (10.1) Yes 241 (99.6) 222 (89.9)

Table 3. Response rate of from DBDC Bid amount (won) Observed value N-N N-Y Y-N Y-Y 5,000 3(5%) 5(7%) 18(19%) 50(34%) 10,000 10(18%) 7(10%) 17(18%) 36(25%) 2,0000 9(16%) 11(16%) 19(20%) 37(25%) 30,000 19(35%) 17(25%) 18(19%) 14(10%) 40,000 14(25%) 28(41%) 24(25%) 9(6%) Total 55 68 96 146 365 Table 4. Model analysis result of overall sample(sbdc) SBDC Model I Model II Model III Model IV β z β z β z β z Gender 7.508.259 3.891.228.071.249.043.250 Age -2.165 -.162-7.510 -.095 -.029.223 -.015 -.185 Marital status -3.864-1.068-2.198-1.026 -.367-1.010 -.209 -.791 Income 2.524 3.572 PA starting period PA in a week Bid amount 1.508 3.692.247 3.497.148 3.612-8.527 -.827-5.198 -.848 -.087 -.844 -.054 -.887 1.048 1.290 5.994 1.258.122 1.499.072 1.506-6.759-6.628-4.074-6.903-1.242-6.456 -.739-6.812 obs 365 365 365 365 LLF Pseudo R2-196. 0528-195. 8972-195. 3552-195. 1756.159.160.162.163

Table 5. Model analysis result of overall sample(dbdc) DBDC Model V Model VI β z β z Gender.041.169.029.201 Age -.014 -.122 -.004 -.061 Marital status.010.033 -.008 -.045 Income.302 5.200.182 5.437 PA starting period -.031 -.335 -.014 -.264 PA in a week.192 2.808.110 2.790 Bid amount -1.816-15.845-1.056-17.558 obs 365 365 LLF -461.6588-461.6849 Pseudo R2.162.163 Table 6. Estimated from overall sample Type Mean Truncated Median Average Excl. protest bidders I 34,909 27,573 33,441 31,974 23,885 II 32,742 27,522 33,372 31,212 23,315 III 118,172 27,171 33,248 59,530 44,469 IV 84,150 27,101 33,171 48,141 35,961 V 42,018 28,866 24,004 31,629 23,627 VI 36,585 28,589 23,371 29,515 22,048 Average 38,667 28,884

Table 7. Model analysis result of NFA members (SBDC) SBDC Model I Model II Model III Model IV β z β z β z β z Gender -2.332 -.046-2.205 -.075 -.081 -.161 -.052 -.178 Age -1.488 -.060-5.090 -.036 -.013 -.052 -.009 -.061 Marital status -9.329-1.566-5.588-1.608 -.912-1.527 -.543-1.559 Attendance -3.249 -.272-1.135 -.161 -.017 -.142 -.003 -.036 Income 1.827 1.784 1.118 1.873.181 1.767.112 1.868 PA starting -2.332-1.431-1.312-1.382 -.240-1.478.-137-1.442 period PA in a week Satisfaction 1.223 2.873 Bid amount 3.102.197 3.040.326.036.230.032.350-7.444-5.257 7.182 2.919 1.256 2.923-4.384-5.440-1.292-5.077.731 2.944 -.752-5.267 obs 208 208 208 208 LLF -109.8607-109.8576-110.3015-110.3981 Pseudo R2.192.192.188.188 Table 8. Model analysis result of NFA members (DBDC) Model V DBDC Model VI β z β z Gender -.387 -.888 -.199 -.813 Age.048.241.039.344 Marital status -.001 -.002 -.042 -.158 Attendance.009.093.025.430 Income.345 3.976.216 4.267 PA starting period -.116 -.817 -.062 -.786 PA in a week.135 1.000.076.997 Satisfaction 1.401 3.883.776 3.792 Bid amount -2.071-12.504-1.183-14.034 obs 208 208 LLF -255.8530-256.4680 Pseudo R2 Table 9. Estimated from NFA members Type Mean Truncated Median Average Excl. protest bidders I 30,877 25,829 29,455 28,720 24,699 II 30,880 25,964 29,861 28,902 24,855 III 89,484 25,447 27,497 47,476 40,829 IV 67,871 25,549 28,011 40,477 34,810 V 34,498 27,321 22,704 28,174 24,230 IV 31,867 27,239 22,281 27,129 23,331 Average 33,480 28,793 Table 10. Model analysis result of NFA non-members (SBDC) SBDC Model I Model II Model III Model IV β z β z β z β z Gender 3.500.084-5.996 -.024.047.113.011.043 Age -1.903 -.918-1.109 -.903 -.203 -.978 -.120 -.974 Marital status 1.338.240 8.589.259.134.239.058.253 Income 3.028 2.732 PA starting period PA in a week Bid amount 1.785 2.844.289 2.588.171 2.696 1.853.997 1.070.980.196 1.052.108.991 1.519 1.352 8.578 1.307.179 1.575.102 1.543-6.761-3.955-4.070-4.159-1.384-3.961 -.805-4.202 obs 157 157 157 157 x 2 (7) 35.963 36.294 38.604 38.732 LLF -78.6746-78.5091-77.3541-77.2901 Pseudo R2.186.187.200.200

Table 11. Model analysis result of NFA non-members (DBDC) Model V DBDC Model VI β z β z Gender.225.666.102.513 Age -.075 -.435 -.044 -.431 Marital status.069.154.045.167 Income.240 2.912.146 3.047 PA starting period.092.590.052.572 PA in a week.212 2.304 *.117 2.214 * Bid amount -1.640-9.643 -.964-10.484 obs 157 157 x 2 (6) 15.652 14.980 LLF -195.2705-195.3141 Pseudo R2 Table 12. Estimated from NFA non-members Type Mean Truncated Median Average Excl. protest bidders I 39,451 29,984 38,387 35,941 22,858 II 38,698 29,830 38,040 35,523 22,592 III 11,106 29,545 40,401 27,017 17,183 IV 87,967 29,334 40,298 52,533 33,411 V 51,247 30,152 25,356 35,585 22,632 VI 42,254 29,839 24,660 32,251 20,512 Average 36,475 23,198 β

An, U. S., & Jeong, H. Y. (2003). How customer satisfaction affects sales? Journal of the Korea Service Management Society, 4(1), 177-190. Arrow, K., Solow, R., Portney, P. R., Leamer, E. E., Radner, R., & Schuman, H. (1993). Report of the NOAA panel on contingent valuation. Federal Register, 58(10), 4601-4614. Bishop, R. C., & Heberlein, T. A. (1979). Measuring values of extramarket goods: Are indirect measures biased? American Journal of Agricultural Economics, 61(5), 926-930. Cameron, T. A. (1988). A new paradigm for valuing non-market goods using referendum data: maximum likelihood estimation by censored logistic regression. Journal of Environmental Economics and Management, 15(3), 355-379. Carson, R. T., & Groves, T. (2007). Incentive and informational properties of preference questions. Environmental and Resource Economics, 37(1), 181-210. Carson, R. T., & Mitchell, R. C. (1993). The issue of scope in contingent valuation studies. American Journal of Agricultural Economics, 75(5), 1263-1267. Cha, J. H. (2017). An analysis on the spectators benefits for ICT convergence technology services of professional sports team - Using contingent valuation method. Ph.d. Dissertation, Sungkyunkwan University. Gafni, A. (1991), Willingness-to-Pay as a Measure of Benefits. Medical Care, 29(12), 1246-1252. Haab, T. C., & McConnell, K. E. (2002). Valuing environmental and natural resources: The econometrics of non-market valuation. Northampton: Edward Elgar Publishing. Han, S. H. (2008). Estimating non-market valuation of the 12th Pusan International Film Festival using the doublebounded dichotomous choice contingent valuation method. International Journal of Tourism Management and Sciences, 23(1), 231-251. Hanemann, W. M. (1984). Welfare evaluations in contingent valuation experiments with discrete responses. American Journal of Agricultural Economics, 66(3), 332-341. Hanemann, M., Loomis, J., & Kanninen, B. (1991). Statistical efficiency of double-bounded dichotomous choice contingent valuation. American Journal of Agricultural Economics, 73(4), 1255-1263. Hole, A. R. (2007). A comparison of approaches to estimating confidence intervals for willingness to pay measures. Health Economics, 16(8), 827-840. Jeon, W. J., Lim, S. W., & Lee, W. H. (2015). The problem and future challenges of National Fitness Award 100 base center managing system. The Korean Journal of Physical Education, 54(3), 113-126. Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36. Kim, Y. R., Kwon, M. H., Ko, B. G., Kim, H. N., & Kwon, H. I. (2007).. Korea Institute of Sport Science. Korea Development Institute (2012). CVM. Public and Private Infrastructure Investment Management Center of Korea Development Institute. Korean Institute for Health and Social Affairs (2013). -., 2013-71. Korea Sports Promotion Foundation (2013). 100. Korea Sports Promotion Foundation. Korea Sports Promotion Foundation (2017). 100.. Korea Sports Promotion Foundation (2018). 2018

100 ( ). Korea Sports Promotion Foundation. McFadden, D. (1994). Contingent valuation and social choice. American Journal of Agricultural Economics, 76(4), 689-708. Ministry of Culture, Sports and Tourism (2016). Survey on participation of physical activities, 2016. Ministry of Culture, Sports and Tourism. Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York: McGraw-Hill. Shin, S. H., & Han, S. H. (2016). A study on analyzing economic values of sports public service by CVM. Korean Journal of Sport Management, 21(6), 31-43. Tracey, S. D., & Meredith E. D. (2012). Uncovering the real effect of switching costs on the satisfaction-loyalty association: The critical role of involvement and relationship benefits. European Journal of Marketing, 46, 447-468. Yoo, S. H., & Chae, K. S. (2001). Measuring the economic benefits of the ozone pollution control policy in Seoul: results of a contingent valuation survey. Urban Studies, 38(1), 49-60.