Reexamination on the recommended price of National Fitness Award using contingent valuation method Jae-yoon Lee, Hyungil Kwon*, & Ju-hae Baeck Chung-Ang University [Purpose] [Methods] [Results] [Conclusions] Key words:
Table 1. Socio-demographic descriptive statistics Gender Membership Age Income (million won) PA starting period PA in a week N Rate (%) Male 172 35.2 Female 317 64.8 Member 242 49.5 Non-member 247 50.5 20s 60 12.3 30s 56 11.5 40s 45 9.2 50s 101 20.7 60s 142 29.0 over 70s 85 17.5 less than 1 45 9.2 1-2 89 17.6 2-3 89 17.6 3-4 71 14.5 4-5 58 11.9 5-6 48 9.8 6-7 33 6.7 over 7 62 12.7 10s 62 12.7 20s 87 17.8 30s 67 13.7 40s 84 17.2 50s 68 13.9 60s 96 19.6 over 70s 25 5.1 once 45 9.2 2 times 95 19.4 3 times 167 34.2 4 times 37 7.6 5 times 60 12.3 6 times 14 2.9 7 times 8 1.6 none 63 12.9
Table 2. Descriptive statistics N(%) members non-members Gender Male 45 (18.6) 127 (51.4) Female 197 (81.4) 120 (48.6) 20s 0 (0.0) 60 (24.3) 30s 6 (2.5) 50 (20.2) Age 40s 15 (6.2) 30 (12.1) 50s 43 (17.8) 58 (23.5) 60s 113 (46.7) 29 (11.7) over 70s 65 (26.9) 20 (8.1) Marital Married 22 (9.1) 106 (42.9) status Single 220 (90.9) 141 (57.1) -1m 30 (12.4) 15 (6.1) 1m-2m 50 (20.7) 36 (14.6) 2m-3m 53 (21.9) 33 (13.4) Income 3m-4m 31 (12.8) 40 (16.2) (won) 4m-5m 28 (11.6) 30 (12.1) 5m-6m 21 (8.7) 27 (10.9) 6m-7m 8 (3.3) 25 (10.1) 7m- 21 (8.7) 41 (16.6) PA starting period PA in a week Necessity 10s 2 (0.8) 60 (24.3) 20s 6 (2.5) 81 (32.8) 30s 23 (9.5) 44 (17.8) 40s 50 (20.7) 34 (13.8) 50s 52 (21.5) 16 (6.5) 60s 86 (35.5) 10 (4.0) 70s- 23 (9.5) 2 (0.8) None 0 (0.0) 63 (25.5) once 0 (0.0) 45 (18.2) 2 times 48 (19.8) 47 (19.0) 3 times 128 (52.9) 39 (15.8) 4 times 23 (9.5) 14 (5.7) 5 times 31 (12.8) 29 (11.7) 6 times 7 (2.9) 7 (2.8) 7 times 5 (2.1) 3 (1.2) No 1 (0.4) 25 (10.1) Yes 241 (99.6) 222 (89.9)
Table 3. Response rate of from DBDC Bid amount (won) Observed value N-N N-Y Y-N Y-Y 5,000 3(5%) 5(7%) 18(19%) 50(34%) 10,000 10(18%) 7(10%) 17(18%) 36(25%) 2,0000 9(16%) 11(16%) 19(20%) 37(25%) 30,000 19(35%) 17(25%) 18(19%) 14(10%) 40,000 14(25%) 28(41%) 24(25%) 9(6%) Total 55 68 96 146 365 Table 4. Model analysis result of overall sample(sbdc) SBDC Model I Model II Model III Model IV β z β z β z β z Gender 7.508.259 3.891.228.071.249.043.250 Age -2.165 -.162-7.510 -.095 -.029.223 -.015 -.185 Marital status -3.864-1.068-2.198-1.026 -.367-1.010 -.209 -.791 Income 2.524 3.572 PA starting period PA in a week Bid amount 1.508 3.692.247 3.497.148 3.612-8.527 -.827-5.198 -.848 -.087 -.844 -.054 -.887 1.048 1.290 5.994 1.258.122 1.499.072 1.506-6.759-6.628-4.074-6.903-1.242-6.456 -.739-6.812 obs 365 365 365 365 LLF Pseudo R2-196. 0528-195. 8972-195. 3552-195. 1756.159.160.162.163
Table 5. Model analysis result of overall sample(dbdc) DBDC Model V Model VI β z β z Gender.041.169.029.201 Age -.014 -.122 -.004 -.061 Marital status.010.033 -.008 -.045 Income.302 5.200.182 5.437 PA starting period -.031 -.335 -.014 -.264 PA in a week.192 2.808.110 2.790 Bid amount -1.816-15.845-1.056-17.558 obs 365 365 LLF -461.6588-461.6849 Pseudo R2.162.163 Table 6. Estimated from overall sample Type Mean Truncated Median Average Excl. protest bidders I 34,909 27,573 33,441 31,974 23,885 II 32,742 27,522 33,372 31,212 23,315 III 118,172 27,171 33,248 59,530 44,469 IV 84,150 27,101 33,171 48,141 35,961 V 42,018 28,866 24,004 31,629 23,627 VI 36,585 28,589 23,371 29,515 22,048 Average 38,667 28,884
Table 7. Model analysis result of NFA members (SBDC) SBDC Model I Model II Model III Model IV β z β z β z β z Gender -2.332 -.046-2.205 -.075 -.081 -.161 -.052 -.178 Age -1.488 -.060-5.090 -.036 -.013 -.052 -.009 -.061 Marital status -9.329-1.566-5.588-1.608 -.912-1.527 -.543-1.559 Attendance -3.249 -.272-1.135 -.161 -.017 -.142 -.003 -.036 Income 1.827 1.784 1.118 1.873.181 1.767.112 1.868 PA starting -2.332-1.431-1.312-1.382 -.240-1.478.-137-1.442 period PA in a week Satisfaction 1.223 2.873 Bid amount 3.102.197 3.040.326.036.230.032.350-7.444-5.257 7.182 2.919 1.256 2.923-4.384-5.440-1.292-5.077.731 2.944 -.752-5.267 obs 208 208 208 208 LLF -109.8607-109.8576-110.3015-110.3981 Pseudo R2.192.192.188.188 Table 8. Model analysis result of NFA members (DBDC) Model V DBDC Model VI β z β z Gender -.387 -.888 -.199 -.813 Age.048.241.039.344 Marital status -.001 -.002 -.042 -.158 Attendance.009.093.025.430 Income.345 3.976.216 4.267 PA starting period -.116 -.817 -.062 -.786 PA in a week.135 1.000.076.997 Satisfaction 1.401 3.883.776 3.792 Bid amount -2.071-12.504-1.183-14.034 obs 208 208 LLF -255.8530-256.4680 Pseudo R2 Table 9. Estimated from NFA members Type Mean Truncated Median Average Excl. protest bidders I 30,877 25,829 29,455 28,720 24,699 II 30,880 25,964 29,861 28,902 24,855 III 89,484 25,447 27,497 47,476 40,829 IV 67,871 25,549 28,011 40,477 34,810 V 34,498 27,321 22,704 28,174 24,230 IV 31,867 27,239 22,281 27,129 23,331 Average 33,480 28,793 Table 10. Model analysis result of NFA non-members (SBDC) SBDC Model I Model II Model III Model IV β z β z β z β z Gender 3.500.084-5.996 -.024.047.113.011.043 Age -1.903 -.918-1.109 -.903 -.203 -.978 -.120 -.974 Marital status 1.338.240 8.589.259.134.239.058.253 Income 3.028 2.732 PA starting period PA in a week Bid amount 1.785 2.844.289 2.588.171 2.696 1.853.997 1.070.980.196 1.052.108.991 1.519 1.352 8.578 1.307.179 1.575.102 1.543-6.761-3.955-4.070-4.159-1.384-3.961 -.805-4.202 obs 157 157 157 157 x 2 (7) 35.963 36.294 38.604 38.732 LLF -78.6746-78.5091-77.3541-77.2901 Pseudo R2.186.187.200.200
Table 11. Model analysis result of NFA non-members (DBDC) Model V DBDC Model VI β z β z Gender.225.666.102.513 Age -.075 -.435 -.044 -.431 Marital status.069.154.045.167 Income.240 2.912.146 3.047 PA starting period.092.590.052.572 PA in a week.212 2.304 *.117 2.214 * Bid amount -1.640-9.643 -.964-10.484 obs 157 157 x 2 (6) 15.652 14.980 LLF -195.2705-195.3141 Pseudo R2 Table 12. Estimated from NFA non-members Type Mean Truncated Median Average Excl. protest bidders I 39,451 29,984 38,387 35,941 22,858 II 38,698 29,830 38,040 35,523 22,592 III 11,106 29,545 40,401 27,017 17,183 IV 87,967 29,334 40,298 52,533 33,411 V 51,247 30,152 25,356 35,585 22,632 VI 42,254 29,839 24,660 32,251 20,512 Average 36,475 23,198 β
An, U. S., & Jeong, H. Y. (2003). How customer satisfaction affects sales? Journal of the Korea Service Management Society, 4(1), 177-190. Arrow, K., Solow, R., Portney, P. R., Leamer, E. E., Radner, R., & Schuman, H. (1993). Report of the NOAA panel on contingent valuation. Federal Register, 58(10), 4601-4614. Bishop, R. C., & Heberlein, T. A. (1979). Measuring values of extramarket goods: Are indirect measures biased? American Journal of Agricultural Economics, 61(5), 926-930. Cameron, T. A. (1988). A new paradigm for valuing non-market goods using referendum data: maximum likelihood estimation by censored logistic regression. Journal of Environmental Economics and Management, 15(3), 355-379. Carson, R. T., & Groves, T. (2007). Incentive and informational properties of preference questions. Environmental and Resource Economics, 37(1), 181-210. Carson, R. T., & Mitchell, R. C. (1993). The issue of scope in contingent valuation studies. American Journal of Agricultural Economics, 75(5), 1263-1267. Cha, J. H. (2017). An analysis on the spectators benefits for ICT convergence technology services of professional sports team - Using contingent valuation method. Ph.d. Dissertation, Sungkyunkwan University. Gafni, A. (1991), Willingness-to-Pay as a Measure of Benefits. Medical Care, 29(12), 1246-1252. Haab, T. C., & McConnell, K. E. (2002). Valuing environmental and natural resources: The econometrics of non-market valuation. Northampton: Edward Elgar Publishing. Han, S. H. (2008). Estimating non-market valuation of the 12th Pusan International Film Festival using the doublebounded dichotomous choice contingent valuation method. International Journal of Tourism Management and Sciences, 23(1), 231-251. Hanemann, W. M. (1984). Welfare evaluations in contingent valuation experiments with discrete responses. American Journal of Agricultural Economics, 66(3), 332-341. Hanemann, M., Loomis, J., & Kanninen, B. (1991). Statistical efficiency of double-bounded dichotomous choice contingent valuation. American Journal of Agricultural Economics, 73(4), 1255-1263. Hole, A. R. (2007). A comparison of approaches to estimating confidence intervals for willingness to pay measures. Health Economics, 16(8), 827-840. Jeon, W. J., Lim, S. W., & Lee, W. H. (2015). The problem and future challenges of National Fitness Award 100 base center managing system. The Korean Journal of Physical Education, 54(3), 113-126. Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36. Kim, Y. R., Kwon, M. H., Ko, B. G., Kim, H. N., & Kwon, H. I. (2007).. Korea Institute of Sport Science. Korea Development Institute (2012). CVM. Public and Private Infrastructure Investment Management Center of Korea Development Institute. Korean Institute for Health and Social Affairs (2013). -., 2013-71. Korea Sports Promotion Foundation (2013). 100. Korea Sports Promotion Foundation. Korea Sports Promotion Foundation (2017). 100.. Korea Sports Promotion Foundation (2018). 2018
100 ( ). Korea Sports Promotion Foundation. McFadden, D. (1994). Contingent valuation and social choice. American Journal of Agricultural Economics, 76(4), 689-708. Ministry of Culture, Sports and Tourism (2016). Survey on participation of physical activities, 2016. Ministry of Culture, Sports and Tourism. Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York: McGraw-Hill. Shin, S. H., & Han, S. H. (2016). A study on analyzing economic values of sports public service by CVM. Korean Journal of Sport Management, 21(6), 31-43. Tracey, S. D., & Meredith E. D. (2012). Uncovering the real effect of switching costs on the satisfaction-loyalty association: The critical role of involvement and relationship benefits. European Journal of Marketing, 46, 447-468. Yoo, S. H., & Chae, K. S. (2001). Measuring the economic benefits of the ozone pollution control policy in Seoul: results of a contingent valuation survey. Urban Studies, 38(1), 49-60.