The development of integrated interface for finite element analysis offemur 精 里 福路 707 03-518647303-518-6521 Email:m9008022@chu.edu.tw 料 立 來 立 行 力 狀 立 ANSYS CT 亮度 亮度 力 行 力 不 更 浪 更 參 料 利 行 力 ANSYS 力 Abstract This study integrated previous developed programs to develop all-in-one user friendly windows based program. The analysis is based on the finite element analysis. This study presents a new method of using the integrated interface program to perform an automated three-dimensional finite element meshing for femur by using the ANSYS Software alone. This new methodology could provide a smooth boundary around the contour of femur as well as avoiding the ill-conditioned element. Therefore, the integrated software developed in this study, the finite element stress analysis is performed to compare with stress distribution of the intact femur, the femur created through previous software. Hopefully, it can effective shorten time for creating the finite element model as well as cost. At the same time, this new methodology developed here could be applied to other similar bone structure in the field of biomechanics research. Keywords: Finite Element Analysis, ANSYS Software, Femur, Biomechanics 1. Femur 兩 Epiphysis Diaphysis 年 易
行 不便 療 便 了 歷 了 了 良 不 [1-6] 了 例 料 類 力 了 Total Hip Replacement THR 類 例 力 力 Stress-Shielding Effect 流 力 流 切 良 來 若 不 (1) 利 切 粒 (2) 不 不 年來 不 良 狀 了 流 力 度 Brekelmans et al [7] 1972 年 利 行 力 行 力 Huiskes and Chao [8] 1972 1982 年 利 力 理 力 數 理論 [9-28] 2-D 3-D 力 度 料 更 立 論 利 [28] 亮度 力 度來 行 利 ANSYS 立 3D 便 行力 力 狀 易 料 ANSYS 料 ANSYS 來 便 不良 不連 2. 料 ANSYS 兩 不 力 亮度 數 利 ANSYS 力 立 料 理 立 林 立 立 不 立 不
略 0.33 CT 亮度 亮度 2.1 流 1. CT Pixel 來 CT 輪廓 2. 來 亮度 亮度 255 (3) 亮度 亮度 數 亮度 行 不 數 立 CT 數量 六 不 利 ANSYS spline 令 立 3. 立 ANSYS 行 料 ANSYS 立 行 立 立 兩 利 兩 立 4. 理 數 CT 亮度 都 狀 CT 亮度 利 料來 CT CT PC 讀 tif 0 255 5. 料 料 不 數 列 [28]: 度 = C 1 CT亮度 (1) 數 = C 2 度 3 MPa (2) C 1 = 0.000454 C 2 = 3418 料 CT 錄 亮度 連 料 數 料 2.2 利 流 立 數 CT 亮度 亮度 3. 例 行 A [28] 立 力 B 力 力 料 數不 理 來 祿 利 GEB75202EZ Hi-Speed 行 CT 亮度 狀 來 不 (10 mm) 離 (2 mm) 來 3.1 A 了 便 立 (202 mm) 數 不 立
參 [9] 70 年 2872 Z 13 力 力 XYZ 力 (z ) 力 力 來 力 令 度 零 A 力 力都 力 力 176.5 MPa 0.8336 力 不連 若 數 力 力 力 路 力 [26] 力 力 力便 降 力 力 100.67 MPa 力 降 3.2 B B 來 亮度 亮度 數 A 力 亮度 力 都 力 134.81~192.7 MPa 0.371 10 4 B 量 數 亮度 亮度 B 數 力 論 來 亮度 力 狀 力 B A 力 六 力 降 力 兩 理 A B B 力 A B 數 來更 4. 論 行 力 狀 兩不 亮度 來不 數 力 行 A B 來 不論 B A 說 了 亮度 不 數 了不 數 料 數 力 力 A B 力 A 論
便 易 靈 便 立 B 烈 論 省 參 便 行 便更 來 來 行 例 力 立 都 來 療 良 療 類 力 良 行 NSC : 92-2622-E-216-006-CC3 參 1. D. R. Nolan, R. H. Jr., Beckenbaugh, R. D. Fitzgerald, R. D. Beckenbaugh, and M. B. Coventry, Complications of Total Hip Arthroplasty Treated by Reoperation, J. Bone Joint Surg. 57-A, pp. 977, 1975. 2. J. O. Galante, Causes of Fracture of the Femoral Component in Total Hip Replacement, J. Bone Joint Surg., 62-A, pp. 670, 1980. 3. R. D. Scott, R. H. Turner, S. M. Leitzes and O. E. Aufranc, Femoral Fractures in Conjunction with Total Hip Replacements, J. Bone Joint Surg., 57-A, pp. 496, 1975. 4. E. A. Salvati., V. C. Im, P. Aglietti and P. D. Jr. Wilson, Radiology of Total Hip Replacements, Clin. Orthop., Vol. 121, pp. 74, 1976. 5. R. S. Beckenbaugh and D. M. Ilstrup, Total Hip Arthroplasty: A Review of Three Hundred and Thirty-Three Cases with Long-term Follow-up, J. Bone Joint Surg., 60-A, pp. 306, 1978. 6. T. A. Gruen, G. M. McNeice and H. C. Amstutz, Modes of Failure of Cemented Stem-Type Femoral Components, Clinical Orthopaedics and Related Research, No.141, pp. 17-27, 1979. 7. W. A. M. Brekelmans, H. W. Poort and T. J. J. H. Sloof, A New Method to Analyses the Mechanical Behavior of Skeletal Parts, Acta. orthop. Scand, Vol. 43, pp. 301-317, 1972. 8. R. Huskies and E. Y. S. Chao, A Survey of Finite Analysis in Orthopedic Bio-mechanics: The First Decade, J. Biomechanics, Vol.10, No.6, pp. 385-409, 1983. 9. M. E. Taylor, K. E. Tanner, M. A. R. Freeman and A. L. Yettram, Stress and Strain distribution Within the Intact Femur: Compression or Bending?, Medical Engineering & Physics, Vol. 18, pp. 122 ~ 131, 1996. 10. Kelly J. Baker, Thomas D. Brown and Richard A. Brand, A Finite-Element Analysis of the Effects of Intertrochanteric Osteotomy on Stresses in Femoral Head Osteonecrosis, Clinical Orthopaedics and Related Research, Num. 249, pp. 183 ~ 198, 1989. 11. Timothy P. Harrigan and William H. Harris, A Finite Element Study of the Effect of Diametral Interface Gaps on the Contact
Areas and Pressures in Uncemented Cylindrical Femoral Total Hip Components, Journal of Biomechanics, Vol. 24, pp. 87 ~ 91, 1991. 12. Timothy P. Harrigan and William H. Harris, A Three-Dimensional Non-Linear Finite Element Study of the Effect of Cement-Prosthesis Debonding in Cemented Femoral Total Hip Components, Journal of Biomechanics, Vol. 24, pp. 1047 ~ 1058, 1991. 13. E. J. Cheal, J. A. Hipp and W. C. Hayes, Evaluation of Finite Element Analysis for Prediction of the Strength Reduction Due to Metastatic Lesions in the Femoral Neck, Journal of Biomechanics, Vol. 26, pp. 251 ~ 264, 1993. 14. B. van Rietbergen, H. Weinans, H. W. J. Huiskes, A. Odgaard, A new method to Determine Trabecular Bone Elastic Properties and Loading Using Micromechanical Finite-Element Models, Journal of Biomechanics, Vol. 28, pp. 69 ~ 81, 1995. 15. R. Müller and P. Rüegsegger, Three - Dimensional Finite Element modeling of Non-Invasively Assessed Trabecular Bone Structures, Medical Engineering & Physics, Vol. 17, pp. 126 ~ 133, 1995. 16. Cinzia Zannoni, Raffaella Mantovani and Varco Viceconti, Material Properties Assignment to Finite Element Models of Bone Structures: A new Method, Medical Engineering & Physics, Vol. 20, pp. 735 ~ 740, 1998. 17. E. Sim, W. Freimuller and T. J. Reiter, Finite Element Analysis of The Stress Distributions in The Proximal End of The Femur After Stabilization of A Pertrochanteric Model Fracture: A Comparison of Two Implants, Injury, Vol. 26, pp. 445 ~ 449, 1995. 18. Tony M. Keaveny, X. Edward Guo, Edward F. Wachtel, Thomas A. Mcmahon and Wilson C. Hayes, Trabecular Bone Exhibts Fully Linear Elastic Behavior and Yields at Low Strains, Journal of Biomechanics, Vol. 27, pp. 1127 ~ 1136, 1994. 19. J. A. Simões, M. A. Vaz, S. Blatcher and M. Taylor, Influence of Head Constraint and Muscle Forces on the Strain Distribution Within the Intact Femur, Medical Engineering & Physics, Vol. 22, pp. 453 ~ 459, 2000. 20. L. H. Keyak, S. A. Rossi, K. A. Jones, C. M. Les, H. B. Skinner, Prediction of Fracture Location in the Proximal Using Finite Element Models, Medical Engineering & Physics, Vol. 23, pp. 657 ~ 664, 2001. 21. J. Stolk, N. Verdonschot, L. Cristofolini, A. Toni and R. Huiskes, Finite Element and Experimental models of Cemented Hip Joint Reconstructions can Produce Similar Bone and Cement Strains in Pre-Clinical Tests, Journal of Biomechanics, Vol. 35, pp. 499 ~ 510, 2002. 22., 立 論 1994 23. 劉 良 立 論 2001 24. 力 立 論 2000 25. 林 立 立 立 論 1997 26. J.H. Keyak and Y. Falkinstein, Comparison of in Situ and in Vitro CT Scan-based Finite Element Model Predictions of Proximal Femoral Fracture Load, Medical Engineering Physics, Vol. 25, pp. 781-787, 2003. 27. G. Cheng, P. Zalzal, M. Bhandari, J. K. Spelt and M. Papini, Finite Element Analysis of a
femoral Retrograde Intramedullary nail Subject to fait loading, Medical Engineering Physics, Vol.26, pp.93-108, 2004. 28. 沈 立 立 論 2003 2872 Z Y 87 13 77 X A 力 B 力
Model A Model B Model A Model B 1.6E+008 1.6E+008 von Mises Stress (Pa) 1.2E+008 8.0E+007 von Mises Stress (Pa) 1.2E+008 8.0E+007 4.0E+007 4.0E+007 0.036 0.072 0.108 0.144 0.18 Height (m) 0.036 0.072 0.108 0.144 0.18 Height (m) 兩 力 六兩 力 0.7 Model A Model B 1 Model A Model B 4.0E-005 0.6 0.8 von Mises Strain (Model A) 0.5 0.4 0.3 3.0E-005 2.0E-005 1.0E-005 von Mises Strain (Model B) von Mises Strain (Model A) 0.6 0.4 3.0E-005 2.0E-005 1.0E-005 vonmisestrain(modelb) 0.2 0.2 0.1 0.0E+000 0 0.0E+000 0.036 0.072 0.108 0.144 0.18 Height (m) 兩 0.036 0.072 0.108 0.144 0.18 Height (m) 兩