Korean Journal of Microbiology (2018) Vol. 54, No. 4, pp. 354-361 pissn 0440-2413 DOI https://doi.org/10.7845/kjm.2018.8053 eissn 2383-9902 Copyright c 2018, The Microbiological Society of Korea Bacillus subtilis DS660 과 Paenibacillus polymyxa DS842 의항균활성 이다솔 송홍규 * 강원대학교생명과학과 Antimicrobial activities of Bacillus subtilis DS660 and Paenibacillus polymyxa DS842 Da-Sol Lee and Hong-Gyu Song* Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea (Received August 6, 2018; Revised October 5, 2018; Accepted October 19, 2018) This study was carried out to isolate soil bacteria with antimicrobial activity and evaluate antimicrobial substances produced by isolated bacteria. Among many isolates Bacillus subtilis DS660 and Paenibacillus polymyxa DS842 showed high antimicrobial activities against 6 species of microbial residents on human skin and 3 species of pathogenic bacteria. DS660 and DS842 showed 15.3~26.8 and 11.3~27.5 mm of inhibition zone diameter, respectively on nutrient agar medium against most target bacteria and fungi. DS660 and DS842 produced 57 ± 8 and 170 ± 15 μmol/ml of siderophore, respectively as an antimicrobial substance. Analysis of ethyl acetate extract of culture supernatants of DS660 and DS842 suggested production of glycolipid biosurfactant which reduced surface tension of culture supernatant of DS660 and DS842 from 60.0 to 40.3 and 30.3 mn/m, respectively. DS660 and DS842 also showed 169.2 ± 9.9 and 357.2 ± 13.7 nmol/min/mg protein of β-1,3-glucanase activity, respectively, and hydrolyzed cell wall components of 3 bacterial species. These results suggest that B. subtilis DS660 and P. polymyxa DS842 may be utilized as an environment-friendly biocontrol agent against some skin microbes and pathogenic bacteria. Keywords: Bacillus subtilis DS660, β-1,3-glucanase, Paenibacillus polymyxa DS842, antimicrobial activity, biosurfactant, siderophore *For correspondence. E-mail: hgsong@kangwon.ac.kr; Tel.: +82-33-250-8545; Fax: +82-33-259-5665 미생물은매우다양한환경과조건에서살수있으며따라서미생물번식으로인한문제가우리주변에서끊임없이제기되고있다. 화장품의경우다양한세균과진균이이용할수있는유, 무기물을다량함유하고있어미생물오염가능성이상존하며 (Ku et al., 2013), 이를사용하는인간에큰문제를초래할수있다 (Behravan et al., 2005). 실제 2005년에서 2008년사이에유럽지역에서화장품 173종류가회수되었는데그중대부분이 Pseudomonas aeruginosa에오염되었고, 일부에서 Candida albicans, Staphylococcus aureus와 Klebsiealle sp. 이검출되었다 (Lundov and Zachariae, 2008). 위와같은병원균또는기회적병원균들은패혈증, 전신감염, 만성기도감염증, 각막염등을일으킬수있을정도로심각한영향을미칠수있다 (Behravan et al., 2005). 식품의경우에는 Listeria monocytogenes, Salmonella sp., Staphylococcus aureus와일부병원성 Escherichia coli 등과같은세균의번식이인간의건강을위협할수있을뿐만아니라, 경제적손실을초래할수있다 (Jiang et al., 2012). 현재이런미생물오염을제어하기위하여식품이나화장품산업에서는프로피온산 (propionic acid), 나이신 (nisin), 파라벤 (paraben) 등의첨가물을이용하고있는데, 빠른활성감소, 피부부작용유발등의문제가있어대체항균물질에대한관심이증가하고있다 (White and Groot, 2006). 대체항균물질후보에는미생물유래항균물질이있는데, 대표적으로는생물계면활성제, 박테리오신등이있으며 (Jiang et al., 2012; Sharma and Saharan, 2014), 그외에다양한세포벽분해효소
Antimicrobial activity of B. subtilis DS660 and P. polymyxa DS842 355 와 siderophore가알려져있다 (Nagarajkumar et al., 2004). 다양한미생물중 Bacillus subtilis는지난 50년동안항생물질생산잠재력을인정받고있고, 산업적으로중요한효소를생산하고있다 (Stein, 2005; Ansari et al., 2012). 또한 Paenibacillus polymyxa의경우인간병원성세균, 식물병원성세균과진균에대한항균활성이보고된바있다 (Seldin et al., 1999; von der Weid et al., 2003). 이에본연구에서는보다항균성이강한균주를탐색하기위해토양에서분리된 Bacillus subtilis DS660 와 Paenibacillus polymyxa DS842에대한항균활성을평가하고항균물질을조사하였다. 재료및방법 항균활성세균균주분리및동정강원도의여러지역에서토양시료를채취하고 Luria-Bertani agar (LA) 배지에시료를도말하여배양하였다 (30 C, 7일 ). 배양된세균집락으로부터세균균주를순수분리하였고다음과같은미생물에대하여항균활성을평가하였다 : 화장품업계에서표준대상미생물로이용하는피부상재균 6종 Candida albicans ATCC10231, Bacillus subtilis ATCC19659, Staphylococcus aureus ATCC6538, Aspergillus niger, Pseudomonas aeruginosa KCTC2513, Escherichia coli ATCC8739와경상대학교병원체자원은행으로부터분양받은 Listeria monocytogenes GNUH- NCCP 2148, 2637과 2868, Micrococcus luteus GNUH-NCCP 2837, 2922와 3683, Klebsiella pneumonia GNUH-NCCP 29, 4149와 4159. 분리균주를대상미생물과대치배양한후분리균주집락주변에생긴저해대를토대로균주를 1차선별하였다. 선별균주중항균활성이뛰어난 DS660과 DS842는 ( 주 ) 마크로젠에의뢰하여 16S rdna 염기서열을분석하였으며미국 National Center for Biotechnology Information (NCBI) 에등록된균주와상동성을비교하였다. 이후형태학적동정, API kit (50CHB와 20E, biomérieux) 를이용한생리생화학적검사를통해서균주를최종동정하였다. 균주의항균활성두균주를 LB 배지에배양하고배양액을원심분리 (2,300 g, 40분 ) 하였다. 대상미생물이도말된 nutrient agar (NA) 배지에 cork borer로 10 mm 직경의홈을뚫고배양상등액을 100 µl 첨가하여배양후저해직경을측정하였다 (Ansari et al., 2012). 한편두균주의세균세포벽용해활성을조사하기위하여 B. subtilis, P. aeruginosa와 E. coli의배양액을원심분리 (2,300 g, 40분 ) 하여세포를수집하였다. 121 C에서 15분간멸균하여균을사멸시킨후침전된성분만을건조시켜세포벽성분이함유된분말을 NA 배지에 0.2% 로첨가하여배지를제작하였다. 배지에균주를획선배양후집락주변에생긴투명환을토대로세균세포벽용해능을판단하였다 (Lim et al., 2001). 항균물질계면활성물질 : DS660과 DS842 균주의배양상등액을회수하여시료로이용하였다. 유리페트리접시에증류수 50 ml 를담고, 원유 20 µl를떨어뜨리고배양상등액 10 µl를가한뒤생긴투명환의직경을측정하였으며 (Rodrigues et al., 2006), 표면장력계 (514-B2, Itoh Seisakuso) 를이용하여배양상등액의표면장력을측정하였다 (Sharma and Saharan, 2014). 계면활성물질의추출을위해균주배양상등액을 ph 2로보정하고동량의에틸아세테이트를첨가하였다. 추출된시료를감압증발기로건조시킨후소량의메탄올에용해하여 thin layer chromatography (TLC) plate (silicagel 60) 에 100 µl를점적하고, 이동상 ( 클로로포름 / 메탄올 / 빙초산 = 65:15:2) 에위치시킨후전개하였다. 이후 1% ninhydrin, orcinol 및 bromothymol blue로염색하여물질의성질을판단하였다 (Amani et al., 2013). Siderophore (catechol type) : Chrome azurol S(CAS) 배지를제작하여 10 mm의홈을뚫고균주배양액을 70 µl 넣은후배양하여황색환의형성유무를조사하였다. DS660 과 DS842 배양상등액의 ph를 2.9로보정하고동량의에틸아세테이트를첨가하여 siderophore 추출후동량의 Hathway 반응용액과 30분간반응시키고 700 nm에서흡광도를측정하였다 (Nagarajkumar et al., 2004). β-1,3-glucanase : Peptone-bouillon-yeast 배지에 DS660과 DS842 균주를획선배양하고집락주변에생긴투명환으로효소생성여부를판단하였다 (Kang et al., 1977). 효소정량분석을위해 LB 배지에서 DS660과 DS842를배양후상등액 250 µl, 0.1 M 인산염완충액 (ph 5.5) 500 µl와 0.2% laminarin (Sigma Aldrich Co.) 500 µl를혼합하고 2시간동안 40 C 항온수조에서반응시켰다. 그리고이후시료는 dinitrosalicylic acid 방법을이용하여분석하였다 (Nagarajkumar et al., 2004). 결과및고찰 항균활성세균균주분리및동정영월토양시료에서분리한 DS660 균주와삼척의대금굴토 Korean Journal of Microbiology, Vol. 54, No. 4
356 Lee and Song 양시료에서분리한 DS842 균주를다양한미생물과함께배양하였을때대부분의대상미생물을억제하는항균활성을나타내었다. DS660과 DS842 균주의 16S rdna 염기서열분석시각각 NCBI 등록균주중 Bacillus subtilis 168 및 Paenibacillus polymyxa DSM36과 99.0% 의상동성을나타내었다. 이후형태학적조사와 API kit를이용한생리생화학적검사를수행하였는데두균주가각각 95.8과 95.3% 로 biomérieux사의 API kit 동정기준인 80% 이상의기준을만족하였다 (Table 1). 따라 Table 1. Biochemical characteristics of strain DS660 and DS842 by using API kit Characteristic Bacillus subtilis DS660 Paenibacillus polymyxa DS842 Gram stain + + + + Morphologie rod rod rod rod Optimum temperature ( C) 29 30 29 30 Control - - - - Glycerol + + + + Ertythritol - - - - D-Arabinose - - - - L-Arabinose + + + + Ribose + + + + D-Xylose + + + + L-Xylose - - + - Adonitol - - - - β-methyl-xylopyranside - - - + Galactose - - + + D-Glucose + + + + D-Fructose + + + + D-Mannose + + + + L-Sorbose - - - - Rhamnose - - + - Dulcitol - - - - Inositol + + - - Mannitol + + + + Sorbitol + + - - α-methyl-d-mannopyranside - - - + α-methyl-d-glucoside + + + + N-Acethyl-glucosamine - - - - Amygdaline + + + + Arbutine + + + + Esculine + + + + Salicine + + + + Cellobiose + + + + Maltose + + + + Lactose - + + + Melibiose - + + + Sucrose + + + + Trehalose + + + + Inuline + - + - Melezitose - - - - 미생물학회지제 54 권제 4 호
Antimicrobial activity of B. subtilis DS660 and P. polymyxa DS842 357 Table 1. Continued Characteristic Bacillus subtilis DS660 Paenibacillus polymyxa DS842 D-Raffinose + + + + Starch + + + + Glycogen + + + + Xylitol - - - - β-gentiobiose + + + + D-Turanose + - + + D-Lyxose - - - - D-Tagatose - - - - D-Fucose - - - - L-Fucose - - - - D-Arabitol - - - - L-Arabitol - - - - Gluconate - - - + 2-Keto-gluconate - - - - 5-Keto-cluconate - - - - 2-Nitrophenyl-β-D-galactopyranoside + + + + L-Arginine - - - - L-Lysine - - - - L-Omithine - + - - Trisodium citrate - + - - Sodium thoisulfate - - - - Urea - - - - L-Tryptophane (TDA) - - - - Indole (I) - - - - Sodium pyruvate + - + - Gelatin (Bovine origin) + + + + D-Glucose - - - - 서두균주를 Bacillus subtilis DS660과 Paenibacillus polymyxa DS842로명명하였다. 이균주들의염기서열은 GenBank에서각각 MG745873과 MF403069의등록번호를받았으며, 균주는 Korean Collection for Type Cultures에서각각 KCTC18521P 와 KCTC18528P의기탁번호를받았다. 균주의항균활성생활에영향을미치는중요한미생물을대상으로 B. subtilis DS660과 P. polymyxa DS842 배양상등액의항균활성을조사하였을때, 두균주모두피부상재균인 Candidia albicans ATCC10231, Bacillus subtilis ATCC19659, Staphylococcus aureus ATCC6538, Pseudomonas aeruginosa KCTC2513, Escherichia coli ATCC8739와 Aspergillus niger ATCC16404 의생장을억제하였고, 추가적으로 DS842 균주는병원성세균 인 Klebsiella pneumoniae 세균주 (GNUH-NCCP 29, 4149와 4159), Listeria monocytogenes GNUH-NCCP2148 와 Micrococcus luteus GNUH-NCCP2837과 2922 두균주의생장을억제하였다 (Table 2). 그중에서도특히두균주의배양상등액은 Staphylococcus aureus ATCC6538을 26 mm 이상의억제직경으로저해하였는데이는 Bacillus subtilis KIBGE IB-17이 Staphylococcus aureus ATCC6538과음용수에서분리한 Pseudomonas aeruginosa와 Escherichia coli 균주에대해각각 0, 0과 18 mm의억제직경을나타낸결과 (Ansari et al., 2012) 와비교할때대상균주가다르기는하지만항균활성이유사하거나더뛰어났다. DS842 균주의경우 Bacillus licheniformis M104 균주가생산하는계면활성물질이 Listeria monocytogenes ATCC19115와 Klebsiella pneumoniae ATCC10031에활성을나타내지못한결과 (Gomaa, 2013) 나 Bacillus amyloliquefaciens Korean Journal of Microbiology, Vol. 54, No. 4
358 Lee and Song Table 2. Inhibition of target organism by culture supernatant of B. subtilis DS660 and P. polymyxa DS842 as determined by the agar well diffusion test Target organism C. albicans ATCC10231 B. subtilis ATCC19659 S. aureus ATCC6538 P. aeruginosa KCTC2513 E. coli ATCC8739 K. pneumoniae GNUH-NCCP29 K. pneumoniae GNUH-NCCP4149 K. pneumoniae GNUH-NCCP4159 * IZD, inhibition zone diameter **, No inhibition zone IZD* (mm) IZD (mm) Target Organism DS660 DS842 DS660 DS842 17.0 ± 2.6 20.0 ± 0.0 15.3 ± 2.5 18.6 ± 0.5 26.8 ± 2.5 27.5 ± 1.2 25.3 ± 1.1 12.6 ± 1.5 17.6 ± 0.5 21.0 ± 0.0 14.0 ± 0.0 11.6 ± 1.1 11.3 ± 0.0 L. monocytogenes GNUH-NCCP2148 L. monocytogenes GNUH-NCCP2637 L. monocytogenes GNUH-NCCP2868 M. luteus GNUH-NCCP2837 M. luteus GNUH-NCCP2922 M. luteus GNUH-NCCP3683 A. niger ATCC16404 ** 11.3 ± 0.5 20.0 ± 0.0 25.2 ± 0.0 23.3 ± 1.5 27.3 ± 3.0 (A) (B) (C) Fig. 1. Digesting of cell wall components of B. subtilis (A), P. aeruginosa (B), and E. coli (C) by B. subtilis DS660 and P. polymyxa DS842. An6이 Pseudomonas aeruginosa ATCC27853과 Klebsiella pneumoniae ATCC13883에억제활성을나타내지못한것 (Ayed et al., 2015) 과비교하여더폭넓게대상미생물을제어하였다. 또한두균주의항균활성은 Paenibacillus polymyxa SCE2가 Escherichia coli HB101과 Micrococcus sp. 에활성을보이지못한결과보다우수하며, Staphylococcus aureus RN450 에대해서는유사한활성을나타내었다 (Seldin et al., 1999). 추가적으로 Bacillus subtilis MIR 15가 Staphylococcus aureus, Staphylococcus epidermidis와 Candida utilis를저해하지못한이전의보고된결과 (Perez et al., 1992) 와비교하여 DS660 과 DS842 균주의항균활성이뛰어나다고할수있다. B. subtilis ATCC19659, P. aeruginosa KCTC2513과 E. coli ATCC8739의배양액을각각원심분리하여수집한세포를고압멸균후건조시킨분말에각세균의세포벽성분이다량포함되어있다고판단되었으며이것이 0.2% 첨가된 NA 배지에 DS660과 DS842 균주를획선배양시집락주변에투명대가형성되었으며 (Fig. 1), 따라서두균주가대상세균의세포벽성분을용해할수있을것으로추정된다. 이는인체피부에서식하는 Micrococcus luteus ATCC4698을열-사멸처리하여얻어진성분을이용한동일한방법의연구 (Lim et al., 2001) 와유사한결과이며이연구에서도열사멸처리된세포의세포벽성분의분리정제과정은거치지않았다. 항균물질계면활성물질 : 생물계면활성제는미생물에의해생산되어세포밖으로분비되는물질로다른미생물세포막에흡착되어증식을억제하고나아가세포막을교란시켜서미생물을사멸시킬수있다. 이러한계면활성제의활성척도인표면장력감소와미생물생육억제간에유의한관계가존재한다 (Kang et al., 2017). 기름확산검사를통해서 B. subtilis DS660과 P. 미생물학회지제 54 권제 4 호
Antimicrobial activity of B. subtilis DS660 and P. polymyxa DS842 359 polymyxa DS842 배양상등액의계면활성성질을조사하였는데원유에두균주의배양상등액첨가시원유가퍼져투명대가형성되어두균주가계면활성물질을생산하는것을알수있었다. 직경이각각 5.1 ± 1.6와 6.6 ± 0.3 cm로넓게투명대를형성하였으며, 이는다양한 Bacillus sp. 균주 (Youssef et al., 2004) 와 Alcanivorax dieselolei B-5 (Qiao and Shao, 2013) 의배양액이최대 3 cm 범위로원유를퍼트리는결과보다약 2배우수한효과였다. DS660과 DS842의계면활성을조사하기위해배양상등액의표면장력을측정하였는데초기 LB 배지표면장력 60 mn/m 이배양 24시간후 35 mn/m 이하로급격히감소하였다. 이후두균주의배양상등액은 168시간까지표면장력이서서히감소하여각각최대 32.3 ± 0.8과 30.3 ± 0.8 mn/m를나타내었다. 이는 Lactobacillus casei MRTL3이유산균배지의표면장력 53.1 mn/m를배양 24시간후 40.7 mn/m로감소시킨결과 (Sharma and Saharan, 2014) 보다빠르고크게표면장력을낮추며, 다양한 Bacillus sp. 균주의계면활성물질 50~2,000 mg/l 첨가시 35 mn/m로표면장력이감소한결과 (Youssef et al., 2004) 보다우수한계면활성을나타내었다. 따라서 DS660과 DS842 두균주의계면활성이항균활성에크게기여할것으로추정된다. B. subtilis DS660과 P. polymyxa DS842가생산하는계면활성물질의성질을조사하고자배양상등액을에틸아세테이트로추출하여 TLC를수행하고 bromothymol blue로염색하였다. Bromothymol blue는 anisaldehyde+ammonium molybdate/ cerium sulfate와유사하게 glycolipid 성분과반응하여색을변화시키는데 DS660과 DS842 균주배양추출물의분획물에서도양성반응을나타낸구간이관찰되었다 (Fig. 2). 이는계면활성을보인물질을 TLC로분획하여각각당과지방산을염색시키는염색약을처리하였을때양성반응이나타난 Amani 등의결과 (Amani et al., 2013) 와일치하여두균주에의해생산된계면활성물질은 glycolipid 구조를가진물질로추정할수있다. 추가적으로양성반응을나타낸분획물을긁어증류수에용해시킨후기름확산검사를수행한결과, 두균주배양상등액의계면활성과유사하게원유를퍼트리는효과를나타내었다 ( 결과미제시 ). Fig. 2. Glycolipid biosurfactant from B. subtilis DS660 and P. polymyxa DS842 detected by thin-layer chromatography. TLC plate was sprayed with bromothymol blue. Siderophore (catechol type) : Siderophore는철과강력하게결합할수있는물질로서미생물이분비하면주변환경의가용한철과결합하기때문에인접한미생물들이필수미량원소인철을이용하지못하여생장이억제될수있다. CAS 배지를이용한 siderophore의정성분석에서 DS660과 DS842 균주가 siderophore를생산한다고판단되었다. 이를토대로 dihydroxy benzoic acid로표준곡선을작성하여정량한결과 DS660과 DS842 균주는배양 2일차에각각 57 ± 8과 170 ± 15 µmol/ml 의최대생산량을나타내었으며생장곡선과일치하는양상을보였다 (Fig. 3). 이는 Pseudomonas fluorescens가생산하는 siderophore 최대생산량인 13 µmol/ml 보다훨씬높았다 (Nagarajkumar et al., 2004). 또한엽권분리 SBUA 균주가 (A) (B) Fig. 3. Siderophore production by B. subtilis DS660 (A) and P. polymyxa DS842 (B). (x) optical density at 600 nm, ( ) siderophroe production (mmol/ml). Korean Journal of Microbiology, Vol. 54, No. 4
360 Lee and Song 0.57 ± 0.001 µmol/ml의최대 siderophore 생산량을나타낸결과 (Banik et al., 2016) 와비교하여 DS842의경우약 300배이상의생산량을나타내어주변미생물이철을이용하지못하게하여생장을저해할수있는우수한능력을지녔다고할수있다. β-1,3-glucanase : β-1,3-glucanase는효모의세포벽성분중하나인 laminarin과같은물질을분해하며이를생산하는미생물은진균의생장을억제할수있다 (Fridlender et al., 1993). 효모세포벽성분을포함하고있는 Peptone-bouillon-yeast 배지에서배양 3일이후 DS660과 DS842 균주집락주변에투명대형성이관찰되었다. Kang 등 (1977) 의연구에서효모세포벽분해균주분리및 2차선별모두위와동일한배지가사용되었고, DS660과 DS842 균주또한이연구의결과와유사한결과를나타내었다. 진균의세포벽분해는 β-1,3-glucanase를주축으로하여 β-1,6-glucanase, mannase, protease 및 phosphomannase 등의보조역할로일어나는데본연구에서는이중 β-1,3- glucanase에대한추가조사를수행하였다. 정량실험에이용된 laminarin은 β-glu[1 3] 결합을주축으로하여일부 β- Glu[1 6] 결합이존재하는다당류이며 laminarin을분해하는 laminarinase는 β-1,3-glucanase라고부르며 (Salyers et al., 1977), 이를생산하는미생물은진균의생장을제어할수있다. Laminarin 첨가후 dinitrosalicylic acid 방법을이용하여 β-1,3- glucanase 를정량한결과 DS660과 DS842 두균주는 LB 배지에서배양 1일차에각각 169.2 ± 9.9와 357.2 ± 13.7 nmol/min/mg protein의효소를생산하였다 (Fig. 4). 특히 DS842의경우 Pseudomonas fluorescens가생산하는 β-1,3-glucanase의최대치인 200 nmol/min/mg protein (Nagarajkumar et al., 2004) 보다 1.7배높았으며, 또한 P. fluorescens 14개균주에서 60~200 nmol/min/mg protein 사이의 β-1,3-glucanase 생산과비교하여 DS660과 DS842의 β-1,3-glucanase 생산이우수하였다. 이렇게높은 β-1,3-glucanase의생산으로 Table 2에제시된것처럼 A. niger에높은항진균결과가나타났을것으로추측할수 있고, 결과를제시하지않았지만두균주는 A. niger의포자발아도상당히우수하게저해하였다. 진균세포벽분해효소와진균생장저해에대한이전연구 (Leelasuphakul et al., 2006) 에서벼시들음병과마름병을유발하는 Pyricularia grisea과 Rhizoctonia solani에대한 Bacillus subtilis NSRS 89-24의항진균활성을보고하였는데이균주는 β-1,3-glucanase를생산하였으며, 항진균활성에이효소가크게기여하였다. 따라서 DS660과 DS842 균주의높은항진균활성에도이효소가큰영향을미치는것으로추정된다. 적요 이연구에서는여러미생물에항균활성을갖는토양세균을분리하고그들이생성하는항균물질과그효과를조사하였다. 많은세균분리균주중 Bacillus subtilis DS660과 Paenibacillus polymyxa DS842은 6가지인간피부상재균과 3종의병원성세균에대하여높은항균활성을나타내었다. DS660과 DS842 균주는대부분의대상세균과진균에대하여 NA 배지상에서각각직경 15.3~26.8과 11.3~27.5 mm의생장저해대를형성하는우수한항균활성을나타내었다. DS660과 DS842 균주는 siderophore를생산하였는데각각 570 ± 8과 1700 ± 15 µmol/ml 의최대생산량을나타내었고, 균주배양상등액의에틸아세테이트추출물의분석은그들의 glycolipid 계면활성물질생성을나타내며이에의해배양상등액의표면장력을 60 mn/m에서각각 40.3과 30.3 mn/m으로현저하게낮추는계면활성을보였다. 또한두균주는 169.2 ± 9.9와 357.2 ± 13.7 nmol/min/mg protein의 β-1,3-glucanase 생산을나타낼뿐만아니라세균의세포벽성분을용해하는능력을지녔다. 이러한결과들은 B. subtilis DS660과 P. polymyxa DS842가일부중요한인간피부상재균과병원성세균에대한효율적인생물제어제로사용될수있음을암시한다. (A) (B) Fig. 4. Change of β-1,3-glucanase activity of B. subtilis DS660 (A) and P. polymyxa DS842 (B) during incubation in LB medium. 미생물학회지제 54 권제 4 호
Antimicrobial activity of B. subtilis DS660 and P. polymyxa DS842 361 감사의말 본연구는 2016년도중소기업기술혁신개발사업의지원으로수행되었습니다 ( 과제번호 C1012548-01-02). 피부상재균과병원성세균균주를제공해주신 래디안과경상대학교병원체자원은행에감사드립니다. References Amani H, Müller MM, Syldatk C, and Hausmann R. 2013. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery. Appl. Biochem. Biotechnol. 170, 1080 1093. Ansari A, Aman A, Siddiqui NN, Iqbal S, and Qader SA. 2012. Bacteriocin (BAC-IB17): Screening, isolation and production from Bacillus subtilis KIBGE IB-17. Pak. J. Pharm. Sci. 25, 195 201. Ayed HB, Maalej H, Hmidet N, and Nasri M. 2015. Isolation and biochemical characterisation of a bacteriocin-like substance produced by Bacillus amyloliquefaciens An6. J. Glob. Antimicrob. Resist. 3, 255 261. Banik A, Mukhopadhaya K, and Dangar TK. 2016. Characterization of N 2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes. Planta 243, 799 812. Behravan J, Bazzaz BSF, and Malaekeh P. 2005. Survey of bacteriological contamination of cosmetic creams in Iran. Int. J. Dermatol. 44, 482 485. Fridlender M, Inbar J, and Chet I. 1993. Biological control of soilborne plant pathogens by a β-1,3-glucanase producing Pseudomonas cepacia. Soil Biol. Biochem. 25, 1211 1221. Gomaa EZ. 2013. Antimicrobial activity of a biosurfactant produced by Bacillus licheniformis strain M104 grown on whey. Braz. Arch. Biol. Technol. 56, 259 268. Jiang J, Shi B, Zhu D, Cai Q, Chen Y, Li J, Qi K, and Zhang M. 2012. Characterization of a novel bacteriocin produced by Lactobacillus sakei LSJ618 isolated from traditional Chinese fermented radish. Food Cont. 23, 338 344. Kang SY, Lee SR, and Lee CY. 1977. Microbial production of yeast cell wall lytic enzyme. Korean J. Food Sci. Technol. 9, 97 105. Kang BR, Kim YH, Nam HS, and Kim YC. 2017. Correlation between biosurfactants and antifungal activity of a biocontrol bacterium, Bacillus amyloliquefaciens LM11. Res. Plant Dis. 23, 177 185. Ku JE, Han HS, and Song JH. 2013. The recent trend of the natural preservative used in cosmetics. Asian J. Beauty Cosmetol. 11, 835 844. Leelasuphakul W, Sivanunsakul P, and Phongpaichit S. 2006. Purification, characterization and synergistic activity of β-1,3- glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight. Enzyme Microb. Technol. 38, 990 997. Lim JH, Min BK, and Cho YK. 2001. Characterization of the bacterial cell wall lytic enzyme produces by Aspergillus sp. HCLF-4. Korean J. Microbiol. 37, 15 20. Lundov MD and Zachariae C. 2008. Recalls of microbiologically contaminated cosmetics in EU from 2005 to May 2008. J. Cosmet. Sci. 30, 471 474. Nagarajkumar M, Bhaskaran R, and Velazhahan R. 2004. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol. Res. 159, 73 81. Perez C, Suarez C, and Castro GR. 1992. Production of antimicrobials by Bacillus subtilis MIR 15. J. Biotechnol. 26, 331 336. Qiao N and Shao Z. 2013. Isolation and characterization of a novel biosurfactant produced by hydrocarbon-degrading bacterium Alcanivorax dieselolei B-5. J. Appl. Microbiol. 108, 1207 1216. Rodrigues LR, Teixeira JA, van der Mei HC, and Oliveira R. 2006. Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids Surf. B Biointerfaces 49, 79 86. Salyers, AA, Palmer, JK, and Wilkins, TD. 1977. Laminarinase (beta-glucanase) activity in Bacteroides from the human colon. Appl. Environ. Microbiol. 33, 1118 1124. Seldin L, Silva de Azevedo F, Alviano DD, de Alviano CS, and de Freire Bastos MC. 1999. Inhibitory activity of Paenibacillus polymyxa SCE2 against human pathogenic micro-organism. Lett. Appl. Microbiol. 28, 423 427. Sharma D and Saharan BS. 2014. Simultaneous production of biosurfactants and bacteriocins by probiotic Lactobacillus casei MRTL3. Int. J. Microbiol. 2014, 698713. Stein T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 4, 845 857. von der Weid I, Alviano DS, Santos ALS, Soares RMA, Alviano CS, and Seldin L. 2003. Antimicrobial activity of Paenibacillus peoriae strain NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi. J. Appl. Microbiol. 95, 1143 1151. White IR and Groot AC. 2006. Cosmetics and skin care products. In Frosch PJ, Menn T, and Lepoittevin JP. (eds.), Contact Dermatitis, 4 th ed. Springer, Berlin, Germany. Youssef NH, Duncan KE, Nagle DP, Savage KN, Knapp RM, and McInerney MJ. 2004. Comparison of methods to detect biosurfactant production by diverse microorganisms. J. Microbiol. Methods 56, 339 347. Korean Journal of Microbiology, Vol. 54, No. 4