( )-76.fm

Similar documents
( )-84.fm

( )-47.fm

( )-40.fm

106.fm

( )-80.fm

45.fm

48.fm

74.fm

( )55.fm

( )-103.fm

(159번 어혜진).fm

( )-129.fm

17.fm

12.077~081(A12_이종국).fm

10.fm

129.fm

7.fm

31.fm

( )-68.fm

6.fm

49.fm

( )-70.fm

44.fm

( )-39.fm

14.fm

( )-86.fm

(153번 김철영).fm

46.fm

(154번 김사라은경).fm

( )-107.fm

3.fm

( )47.fm

( )48.fm

( )-87.fm

( )34.fm

17(1)-05.fm

85.fm

139.fm

< D B9DABBF3C8AF29BABCB5E52E666D>

116.fm

( )-59.fm

( )-124.fm

( )★56.fm

untitled

( )41.fm

( )-74.fm

( )-121.fm

10(3)-09.fm

14.531~539(08-037).fm

fm

53.fm

117.fm

17.fm

45.fm

17(1)-06.fm

16(5)-02(57).fm

( )49.fm

( )-93.fm

50(3)-09.fm

( )-41.fm

35.fm

19(1) 02.fm

61.fm

fm

( )-95.fm

( )-123.fm

( )78(이기성).fm

58.fm

한 fm

(1)-01(정용식).fm

16(5)-03(56).fm

21.fm

93.fm

88.fm

( )57.fm

49(6)-08.fm

9(1) 이채현.fm

58.fm

( )-83.fm

75.fm

10(3)-10.fm

16(5)-04(61).fm

304.fm

( )42.fm

( )-106.fm

(163번 이희수).fm

50(4)-10.fm

fm

( )-119.fm

17.fm

132.fm

( )-112.fm

47.fm

00....

62.fm

16(5)-06(58).fm

( )-103.fm

107.fm

115.fm

( )-100.fm

Transcription:

Jurnal f the Krean Ceramic Sciety Vl. 7, N. 5, pp. 50~56, 010. DOI:10.191/KCERS.010.7.5.50 Synthesis f Cr-dped Celsian Green Pigments and Their Applicatin Hyun-Sik Chung, Yen-Ju Kim, S-Nyng Chi, and Byung-Ha Lee Department f Material Science & Engineering, Myngji University, YngIn 9-78, Krea (Received July 1, 010; Revised August 0, 010; Accepted September 7, 010) Cr-dped Celsian w x Á½ Á Á w w œw (010 7 1 ; 010 8 0 ; 010 9 7 ) ABSTRACT During the prcess f synthesizing green celsian pigments, attempts were made t replace a given amunt f BaC with SrC t accelerate the hexagnal t mnclinic celsian phase transitin, which was assumed t prmte clr develpment. Mnclinic celsian have been synthesized frm Hngkng-Kalin, BaC, SrC, Al(OH), SiO and Cr with 1 t 1.5 wt% f LiF as a mineralizer frm 1100 t 100 C. It was fund that replacing BaC with SrC allwed mnclinic celsian t be frmed at a lwer temperature. While the pigments cntaining 1 mle f BaC were difficult t synthesize mnclinic celsian with absence f the mineralizer, the frmatin f mnclinic celsian was successfully achieved even withut mineralizer by using mle f SrC at 150 C fr 1 h. The clr develpment was imprved frm yellwish green t green with increasing amunt f SrC being replaced. Key wrds : Mnclinic celsian, Pigments, Yellwish green, Cr, SrC 1. Celsian feldspar grup w w, š w û q üyw,» w š û p š packaging, š ceramic matrix š. 1,) Ba celsian plymrphs ƒ, paracelsian celsian mnclinic xk w. hexagnal, rthrhmbic Ba celsian ƒƒ š x(β-frm) x(α-frm) w ùkù. Mnclinic hexagnal» c w (Al,Si)O tetrahedra duble sheets Ba ƒ ew w k xk. 1590 C mnclinic hexagnal hexagnal š þƒw m 1590 C w hexagnal w. ƒ yw LiF ƒw 900 C 6h w hexagnal 1100 C 6h Crrespnding authr : Byung-Ha Lee E-mail : aspek@unitel.c.kr Tel : +8-1-0-661 Fax : +8-1-0-657 w hexagnal mnclinic. ) Ba celsian feldspar grup w w SrO Al SiO (Sr celsian) ƒ y w š. Sr celsian Ba celsian w w v w. Sr celsian hexagnal 1000 C û w α-hexagnal ƒ ƒ. SrC ü ew p w w, v w š. -1) š celsian Cr + dpingw green ceramic pigments w. celsian Al Cr ey š g w w ü w light green yellwish green ùkü š x š. 1)» green (C,Zn)O (Al,Cr) Spinel š Vivid Blue Green ùkü Peacck Green, CaO-Cr -SiO Garnetx Victria, α-al x š Chrmium-Alumina Green. 15) w ƒ w w Ba celsian, Sr celsian green w BaC, SrC celsian 50

Cr-dped Celsian w 51 Table 1. Crystallgraphic Data fr BaAl Plymrph celsian α- ü š Cr š w.. x β- Paracelsian a(å) 8.67 5. 5.5 9.0 b 1.05 9. - 9.50 c 1.08 15.6 7.8 8.7 β 115.1 - - 90 Space grup I/c Immm P6 /mcm P 1 /a Table. Crystallgraphic Data fr SrAl Plymrph Sr-feldspar α- β- Slawsnite a(å) 8.9-5.191 8.888 b 1.9708 - - 9. c 1.681-7.596 8.6 β 115.51 - - 90. Space grup I/c Immm P6/mmm P 1 /a Table. Chemical Cmpsitin f Hng Kng Kalin (wt%) Cm SiO ZrO Al Fe MgO CaO MnO NbO K ORb O pne nt 9.0.017.9 0. 0.6 0.06 0.06 0.017.10 0.0.1. w Hng kng kalin, BaC (Duksan, Krea, practical grade), SrC (YAKURI, Japan, Extra pure reagents), Al(OH) (Duksan, Krea, practical grade), Cr (Duksan, Krea, 99%), LiF(Acrs, Belgium, 97%) w. celsian w w Ÿy LiF 1wt% ƒw 1100, 100, 100 C 1h w. kalin yw Table... p Celsian y w» w X- z (XRD-7000. Shimadzu, Japan), Raman spectrscpy (Dimensin-P Raman) w. w 6wt% ƒw y» 160 C 0 w z UV-vis spectrphtmeter(01-pc, Shimadzu, Japan) w y ùkù... x w» w z- w 6wt% ƒw w 160 C 0 w. z- seger frmular. 0.1 KNaO 0 CaO 0.7 Al.766 SiO 0.0116 MgO 0.0 BaO.. w w w r» w UV-vis spectrphtmeter(01-pc, Shimadzu, Japan) w d w, Munsell t 16) Fig. 1. X-ray diffractin patterns f samples BAS fired at (a) 1100 C, 100 C, 100 C/1 h and (b) BAS fired at 100 C, 100 C/1 h adding LiF 1 wt%. 7«5y(010)

5 x Á½ Á Á w Table. Cmpsitins f Ba Celsian System Samples with Different Amunt f Al-Cr (mle %) Sample Cmpsitin BAS BaAl BaAl 0.975 Cr 0.05 BaAl 0.950 Cr 0.050 Cr0.075 BaAl 0.95 Cr 0.075 Cr0.10 BaAl 0.900 Cr 0.100 (H:Hue), (V:Value), (C:Chrma) ùkü, CIE-L*a*b*t w ùkü.. š.1. BaO-Al -SiO w Fig. 1(a) Ba celsian w» w 1100 C, 100 C, 100 C 1h w w XRD d. LiF ƒw 1100~100 C¾ (hexagnal frm) w. LiF ƒ y j celsian(mnclinic frm)w» 100 C š w h 1 h¾ w. 1 h w main phase š, celsian trace y w. mw Ba celsian celsian w ù y w. Ÿy LiF ƒw ƒ yw. LiF celsian ƒ j z. LiF flurine w Si-O w ñš w Si F w w ƒ yw. w flurine ü sw w w š š. 17) Celsian w z LiF 1wt% ƒw 1100 C, 100 C, 100 C 1h w. Fig. 1(b) Table Ba celsian 100 C 100 C 1h w XRD. LiF 1 wt%ƒ ƒ, 100 C l celsian. Table w Fig. XRD ƒ Cr BaC l w BaCrO. θ=8. BaCrO y w. Raman spectrscpy d ùkù celsian p 5 cm 1, 65 cm 1, 510 cm 118) BaCrO p 51 cm 1, 61 cm 1, 0 cm 1, 86 cm 1, 87 cm 1, 900 cm 1. 19) Cr p 65 cm 1, Fig.. X-ray diffractin patterns f samples BAS and Cr fired at 100 C/1 h with LiF 1 wt%. Fig.. Raman spectrscpy analysis f samples Cr fired at 100 C/1 h. 555 cm 1 w ùkùš, 5 cm 1, 07 cm 1 w ùkù. 0) 86 cm 1 w p ùkü BaCrO Fig. mw y w. Cr ey ƒw BaCrO peak intensity ƒ ƒw š, Cr ƒ 0.075 mle ey l 65 cm 1 ùkù w p mw Cr + y w. Ba celsianü š Cr + š w 0.05 mle. Celsianü tetrahedral sites ewš Al + w Cr + ey» w tetrahedral y Cr + w ligand field thery w ƒ w. Fig. UV-vis d Tanabe-sugan w celsian ü Cr + š T 1g (F) T g (F), T 1g (F) T 1g (P), T 1g (F) A g (F) w ùkù 0 nm, 70 nm, 600 nm w wz

Cr-dped Celsian계 녹색안료의 합성과 적용 5 Cmpsitins f BSAS Samples with Different Amunt f Ba-Sr (mle %) Chemical Cmpsitin Sample SiO Al O Cr O BaCO SrCO 0.95 0.05 1 0 B S AS- 0.95 0.05 0.75 B S AS- 0.95 0.05 B S AS- 0.95 0.05 0.75 0.95 0.05 0 1 Table 5. 0.75 Fig.. UV-vis spectra f samples Cr fired at 100 C/1 h. 0.75 수밴드를 보였다. 이중 70 nm~80 nm에서 나타나는 흡 수밴드는 T (F) T (P)에서 의한 것으로 celsian 결정 내 Al 를 대신하여 고용 치환되는 Cr 의 양이 증가함에 따라 흡수밴드의 강도가 강해짐을 볼 수 있었다. BaCrO 는 UV-vis 측정 시 0~0 nm에서 흡수밴드를 나타낸다. Cr O 의 양이 증가할수록 0 nm의 흡수밴드의 강도가 커 지는 것을 볼 수 있었다. UV 분석결과 Ba celsian내 Cr 이 0.05 mle 치환 고용 되는 경우 최적의 발색을 보였다. CIE-L*a*b* 값은 L* 6.61, a* -15.70, b*.으로 yellwish green의 발색을 보였다. Cr O 의 양이 점점 증가함에 따라 Cr 의 영향으 로 채도가 낮아져 탁한 발색을 보였다. (Fig. 5).. BaO-SrO-Al O -SiO 계 안료합성 Ba celsian내 Cr O 고용한계량인 0.05 mle으로 고정시 킨 조성에 Ba Sr Al Si O (X=0~1)에서 X의 양을 0.0 5mle 씩 늘려 실험하였다. Table 5의 조성 B S AS일 때 1g 1g + + 1) + + Fig. 5. CIE- L*a*b* clrimetric parameters f lime barium glazes pigments Cr fired at 100 C/1 h. Fig. 6. 1-X X 8 0.75 X-ray diffractin patterns f samples (a) B fired at 100 C/1 h and (b) B fired at 100 C/1 h adding LiF 1 wt%. 제 7 권 제 5호(010)

5 x Á½ Á Á w Table 6. Cmpsitins f SAS System Samples with Different Amunt f Al-Cr (mle %) Sample Cmpsitin SAS SrAl SrAl 0.975 Cr 0.05 SrAl 0.950 Cr 0.050 Cr0.075 SrAl 0.95 Cr 0.075 Cr0.10 SrAl 0.900 Cr 0.100 Table 7. Results f the Glazed Tiles Test in Lime-barium Glaze Sample X L* a* b* (H) (V)/(C) Clr 0. 7.18-1.9.61 (.1) (7.)/(5.0) GY 6.8 6.61-15.70. (.5) (6.)/(6.1) GY 9. 65.09-15.16 1.91 (.) (6.)/(6.1) GY Cr0.075 19. 5.96-1.9 6.79 (.6) (5.)/(5.) GY Cr0.10 Fig. 7. Raman spectrscpy analysis f samples B fired at 100 C/1 h. Table 8. Results f the Glazed Tiles Test in Lime-barium Glaze Sample X L* a* b* (H) (V)/(C) Clr 6.8 6.61-15.70..5 (6.)/(6.1) GY B 0.75 S A 8.9 6.75-15.1 0.91. (6.)/(6.0) GY S- B S AS.7 69.61-15.0.0. (6.9)/(6.1) GY - B S 0.75 A 9.68 65.7-15.8.85. (6.)/(6.) GY S- 6.18 6.1-15.18 0..5 (6.1)/(5.9) GY celsian wì wš, X ƒw celsian wš Fig. 6 XRD mw y w. Celsian w feldspar grups framewrk structure ew Si +, Al ww ¼ ƒ ƒƒ + (Si O)=1.61Å, (Al O)=1.77Å a ¼ ƒ œ alkali catin ew š. Alkali catin Ba + Sr ƒ ew + (Ba +, Sr + )-O distanceƒ ƒƒ (Sr-O)=.691Å, (Ba-O)=.86Å w Sr-O distanceƒ Ba-O distance ¼. ƒw 8) Sr celsian Ba celsian w x w ƒ ƒ yw. Table 5 1wt% LiF ƒw 100 C Fig. 8. UV-vis spectra f samples B fired at 100 C/ 1h. Fig. 9. CIE-L*a*b* clrimetric parameters f lime barium glazes pigments B 1-x S x AS- fired at 100 C/1 h. w wz

Cr-dped Celsian w 55 Fig. 10. X-ray diffractin patterns f samples Cr fired at 100 C/1 h. Fig. 1. UV-vis spectra f samples Cr fired at 100 C/1 h. Fig. 11. Raman spectrscpy analysis f samples Cr fired at 100 C/1 h. Fig. 1. CIE-L*a*b* clrimetric parameters f lime barium glazes pigments Cr fired at 100 C/1 h. 1h w celsian. Fig. 9 t w UVd, B S AS-, B S 0.75 AS-Cr a* ƒƒ -15.7, -15., -15.8 ùkû, B S 0.75 AS- B S AS- w a* -15.7, -15.8 kw ùkþ... SrO-Al -SiO w Cr LiF 1wt% ƒw w w Raman spectrscpy d, Cr ƒw SrCrO w 51 cm -1, 61 cm -1, 0 cm -1, 86 cm -1, 87 cm -1, 900 cm ùkù p -1 intensity ƒ ƒw š, Cr ƒ 0.05 mle ƒ Table 9. Results f the Glazed Tiles Test in Lime-barium Glaze Sample X L* a* b* (H) (V)/(C) Clr 5.98 70.8-1.97 7.97. (6.9)/(5.5) GY 6.18 6.1-15.18 0..5 (6.1)/(5.9) GY.1 60.1-15.6 9.7.6 (5.9)/(5.8) GY Cr0.075 16.59 51.50-1. 6.06.8 (5.1)/(5.) GY Cr0.10 l š Cr w 65 cm -1 ew intensityƒ ƒw. Fig. 10 Fig. 11 mw Sr celsianü Cr š w 0.05 mle. Ba celsian Sr celsian Cr dpingw š 7«5y(010)

56 x Á½ Á Á w w 0.05mle y w. w š w y w» [CrO - ]ƒ Ba +, Sr ww + BaCrO, SrCrO ƒ Cr ƒ l celsian tetrahedral Al site + Cr ƒ ey ùkù + BaCrO, SrCrO w ùkù. Yellwish green w BaCrO SrCrO UV-vis 0~0 nm. x UVvis Cr ƒw 0 nm intensityƒ ƒw.. š w celsian w w. (1) Celsian w Ÿy LiF 1wt% w 100 C 1h w. Cr š w + 0.05 mle. () BaC w SrC 0.05 mle eyw l Ÿy Celsian w. () Ba Celsian ü Cr + 0.05 mle ey. w CIE-L*a*b* L* 6.61, a* -15.70, b*. yellwish green. () BaC SrC eyw x BaC SrCO ƒ mle ey. CIE-L*a*b* L* 69.61, a* -15.0, b*.0 ùkü yellwish green w ùkü. Acknwledgment 009 ( w» ) w w w. (N. ROA-006-000-10-0) REFERENCES 1. K. T. Lee and P. B. Aswath, Enhanced Prductin f Celsian Barium Aluminsilicates by a Three-Step Firing Technique, Mater. Chem. Phys., 71 7-5 (001).. K. T. Lee and P. B. Aswath, Rle f Mineralizers n the Hexacelsian t Celsian Transfrmatin in the Barium Aluminsilicate (BAS ) System, Mater. Sci. Eng. A., 5 [1-] 1-7 (00).. S. D. Jang, H. Sng, and S. W. Kim, Develpment f Lw Thermal Expansin Ceramics using Dmestic Clay Minerals, p. 16, KAIST, Ministry f Science and Technlgy, 1989.. Y. Kbayashi and M. Inagaki, Preparatin f Reactive Srcelsian Pwders by Slid-State Reactin and Their Sintering, J. Eur. Ceram. Sc., 99-0 (00). 5. P. Benna, M. Tribaudin, and E. Brun, Al-Si Ordering in Sr-Feldspar SrAl : IR, TEM and Single-Crystal XRD Evidences, Phys. Chem. Min., -50 (1995). 6. N.P. Bansal, Slid State Synthesis and Prperties f Mnclinic Celsian, J. Mater. Sci., [19] 711-15 (1998). 7. Y. P. Fu, C.C. Chang, C. H. Lin, and T.S. Chin, Slid-State Synthesis f Ceramics in the BaO-SrO-Al -SiO System, Ceram. Int., 0 1-5 (00). 8. R. A. McCauley, Plymrphism and Dielectric Electric Prperties f Ba and Sr-Cntaining Feldspars, J. Mater. Sci., 5 [15] 99- (000). 9. L. Barbieri, A. B. Crradi, C. Lenelli, T. Manfredini, M. Rmagnly, and C. Siligardi, The Micrstructure and Mechanical Prperties f Sintered Celsian and Strntium-Celsian Glass-Ceramics, Mater. Res. Bull., 0 [1] 7-1 (1995). 10. R. E. Chinn, M. J. Haun, C. Y. Kim, and D. B. Price, Micrstructures and Prperties f Three Cmpsites f Alumina, Mullite, and Mnclinic SrAl, J. Am. Ceram. Sc., 8 [11] 668-7 (000). 11. R. E. Chinn, M. J. Haun, C. Y. Kim, and D. B. Price, Lw Temperature Transient Glass-Phase Prcessing f Mnclinic SrAl, J. Am. Ceram. Sc., 81 85-9 (1998). 1. D. Lng-Gnzález, J. López-Cuevas, C. A. Gutiérrez-Chavarría, P. Pena, C. Baudin, and X. Turrillas, Synthesis f Mnclinic Celsian frm Cal Fly Ash by Using a One-Step Slid-State Reactin Prcess, Ceram. Int., 6 661-7 (010). 1. N. P. Bansal, M. J. Hyatt, and C. H. Drummnd, Crystallizatin and Prperties f Sr-Ba Aluminsilicate Glass- Ceramic Matrices, Ceram. Eng. Sci. Prc., 1 1- (1991). 1. M. C. Guillem and A. Navarr, Synthesis and Study f Chrmium-Celsian Pigments, Br. Ceram. Trans. J., 85 58-6 (1986). 15. Burgyan A. and Eppler R. A., Classificatin f Mixed- Metal-Oxide Inrganic Pigments, Am. Ceram. Sc. Bull., 6 [9] 1001- (198). 16. A. H. Munsell, Munsell Clr, Macbeth Divisin f Kllmrgen Crp., 1979. 17. G. A. Khater and M. H. Idris, Effect f Sme Nucleating Agents n Crystallizing Phases and Micrstructure in Li O- BaO-Al -SiO System, Ceram. Int., 5 69-75 (009). 18. A. Kremenvi, Ph. Clmban, B. Piriu, D. Massit, and P. Flrian, Structural and Spectrscpic Characterizatin f the Quenched Hexacelsian, J. Phy. Chem. Slids, 6 [11] 5-68 (00). 19. Ian M. Bell, Rbin J.H. Clark, and Peter J. Gibbs, Raman Spectrscpic Library f Natural and Synthetic Pigments (pre- ~1850 AD), Spectrchimica Acta Part A, 5 159-79 (1997). 0. Neil. T McDevitt and William L. Baun, Infrared Absrp-tin Study f Metal Oxides in the Lw Frequency Regin (700-0 cm -1 ), J. Spectrchimica Acta., 0 [5] 799-808 (196). 1. Jutta Töpel-Schadt, W. F. M ller and H. Pentinghaus Transmissin Electrn Micrscpy f SrAl : Feldspar and Hexacelsian Plymrphs, J. Mater. Sci., 1 1809-16 (1978). w wz